Skip to main content

What are Lichenized Fungi?

  • Chapter
  • First Online:
Endolichenic Fungi: Present and Future Trends

Abstract

Conventionally lichens are considered as an example of symbiotic involvement between a fungus and one or more algae but it is widely debated and deserves further investigation. With the discovery of endolichenic and lichenicolous fungi this relationship becomes much more complex to explain. The lichen thallus in itself is a comparatively established and proportionate symbiotic association with both heterotrophic and autotrophic participants. If the parasitic lichenicolous fungi are considered as decomposers of this ecosystem then the lichen can be considered as an autonomous minuscule biological network. The lichens produces plethora of secondary metabolites, such as, phenolic compounds, dibenzofurans, depsides, depsidones, depsones, lactones, quinones and pulvinic acid derivatives, which are accumulated externally on the hyphae rather within the cells. These compounds not only play substantial role in characterizing a species but also have bioactive potential and allow lichens to be used as food, fodder, dyes, medicines and pharamaceuticals. Besides this, since time immemorial, lichens have been used as best bio-indicators of air pollution. But now days, these tiny creatures are facing high risk of extinction and needed to be conserved. These organisms can be protected by the preservation of habitats, in-situ conservation of ecological niches, and also by promoting research on lichens. This chapter discusses the unique details about lichens and the rationale of studying lichens like other higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharius E (1798) Lichenographiae Svecicae Prodromus. D.G. Björn, Linköping. https://doi.org/10.5962/bhl.title.79420

    Book  Google Scholar 

  • Acharius E (1803) Methodus qua omnus detectos Lichenes. F.D.D. Ulrich, Stockholm. https://doi.org/10.5962/bhl.title.79411

    Book  Google Scholar 

  • Acharius E (1810) Lichenographia universalis. Dandewerts, Göttingen. https://doi.org/10.5962/bhl.title.79418

    Book  Google Scholar 

  • Acharius E (1814) Synopsis methodica lichenum. Lund

    Google Scholar 

  • Ahmadjian V (1967) The lichen symbiosis. Blaisdell Publishing, Toronto/Waltham, MA, pp 250

    Google Scholar 

  • Ahmadjian V (1993) The lichen symbiosis. Wiley, New York

    Google Scholar 

  • Ahmadjian V, Jacobs JB (1983) Algal-fungal relationships in lichens: recognition, synthesis, and development. In: Goff LJ (ed) Algal symbiosis. Cambridge University Press, New York, pp 147–172

    Google Scholar 

  • Alstrup V, Hawksworth DL (1990) The lichenicolous fungi of Greenland. Meddelelser om Grönland, Bioscience 31:1–90

    Google Scholar 

  • Armaleo D, Clerc P (1990) Lichen chimeras: DNA analysis suggests that one fungus forms two morphotypes. Exp Mycol 15:1–10

    Article  Google Scholar 

  • Armstrong R (2004) Lichens, lichenometry and global warming. Microbiol:32–35

    Google Scholar 

  • Aschenbrenner IA, Cernava T, Berg G, Grube M (2016) Understanding microbial multi-species symbioses. Front Microbiol 7(1–9):180

    PubMed  PubMed Central  Google Scholar 

  • Awasthi DD (2000) A hand book of lichens. Bishan Singh Mahendra Pal Singh, Dehradun

    Google Scholar 

  • Barreno E, Herrera-Campos M, García-Breijo F et al (2008) Non photosynthetic bacteria associated to cortical structures on Ramalina and Usnea thalli from Mexico. [WWW document]. URL http://192.104.39.110/archive/IAL6abstracts.pdf. Asilomar, Pacific Grove, CA, USA: Abstracts IAL 6-ABLS Joint Meeting, pp 5

  • Beck A (2002) Photobionts: diversity and selectivity in lichen symbioses. Int Lichenol Newslett 35:18–24

    Google Scholar 

  • Beck A, Friedl T, Rambold G (1998) Selectivity of photobiont choice in a defined lichen community: inferences from cultural and molecular studies. New Phytol 139:709–720

    Article  CAS  Google Scholar 

  • Belnap J, Lange OL (2003) Biological soil crusts: structure, function and management. In: Baldwin IT, Caldwell MM, Heldmaier G et al (eds) Ecological studies series. Springer, Berlin, pp 1–503

    Google Scholar 

  • Bjelland T, Ekman S (2005) Fungal diversity in rock beneath a crustose lichen as revealed by molecular markers. Microb Ecol 49:598–603

    Article  PubMed  Google Scholar 

  • Boonpragob K, Crittenden PD, Lumbsch TH (2012) Lichens: from genome to ecosystems in a changing world. MycoKeys 6:1–2

    Google Scholar 

  • Boucher VL, Nash TH III (1990) The role of the fruticose lichen Ramalina menziesii in annual turnover of biomass and macronutrients in a blue oak woodland. Bot Gaz 151(1):114–118

    Article  CAS  Google Scholar 

  • Boustie J, Grube M (2005) Lichens-a promising source of bioactive secondary metabolites. Plant Genetic Resources 3(2):273–287

    Article  CAS  Google Scholar 

  • Brodo IM, Sharnoff SD, Sharnoff S (2001) Lichens of North America. Yale University Press, New Haven

    Google Scholar 

  • Brunialti G, Giordani P (2003) Variability of lichen diversity in a climatically heterogeneous area (Liguria, NW Italy). Lichenologist 35:55–69

    Article  Google Scholar 

  • Cambridge dictionary. https://dictionary.cambridge.org/us/dictionary/english/lichen

  • Christopher JE, Sally E, Marios T et al (2015) Epiphyte communities and indicator species. An ecological guide for Scotland’s woodlands. Royal Botanic Garden, Edinburgh

    Google Scholar 

  • Casano LM, del Campo EM, García-Breijo FJ et al (2011) Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus competition? Environ Microbiol 13(3):806–818

    Article  CAS  PubMed  Google Scholar 

  • Cobanoglu G, Sesal C, Gokmen B et al (2010) Evaluation of the antimicrobial properties of some lichens. South-west J Hortic Biol Environ 1(2):153–158

    Google Scholar 

  • Collins dictionary. https://www.collinsdictionary.com/dictionary/english/lichen

  • Crites S, Dale-Mark RT (1998) Diversity and abundance of bryophytes, lichens and fungi in relation to wood substrate and successional stage in aspen mixed wood boreal forests. Can J Bot 76:641–651

    Google Scholar 

  • De Bary A (1879) Die Erscheinung der Symbiose. Verlag Karl Trübner, Strasbourg

    Google Scholar 

  • de Jussieu A (1730) De la nécessité d’établir dans la méthode nouvelle des plantes, une classe particulière pour les fungus. Hist Acad Roy Sci Mém Math Phys 1730:377–383

    Google Scholar 

  • des Abbayes H (1953) Travaux sur les lichens parus de 1939 à 1952. Bulletin Sociétié Botanique de France 100:83–123

    Article  Google Scholar 

  • Dettki H, Esseen PA (1998) Epiphytic macrolichens in managed and natural forest landscapes: a comparison at two spatial scales. Ecographysiol 21:613–624

    Article  Google Scholar 

  • Elenkin A (1902) Zur frage der Theorie des Endosaprophytismus bei Flechten. Bull Jard Imp St Petersb 2:65–84

    Google Scholar 

  • Esseen PA, Renhorn KE, Pettersson RB (1996) Epiphytic lichen biomass in managed and old-growth boreal forests: effect of branch quality. Ecol Appl 6(1):228–238

    Article  Google Scholar 

  • Evans RD, Johansen JR (1999) Microbiotic crusts and ecosystem processes. CRC CR Rev Plant Sci 18(2):183–225

    Article  Google Scholar 

  • Eversman S (1982) Epiphytic lichens of a ponderosa pine forest in southeastern Montana. The Bryologist 85:204–213

    Article  Google Scholar 

  • Färber L, Solhaug KA, Esseen P et al (2014) Sunscreening fungal pigments influence the vertical gradient of pendulous lichens in boreal forest canopies. Ecology 95(6):1464–1471

    Article  PubMed  Google Scholar 

  • Farrar JF (1976) The lichen as an ecosystem: observation and experiment. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: progress and problems. Academic Press, London, pp 385–406

    Google Scholar 

  • Forman RTT (1975) Canopy lichens with blue-green algae: a nitrogen source in a Columbian rain forest. Ecology 56(5):1176–1184

    Article  Google Scholar 

  • Friedl T (1989) Systematik und Biologie von Trebouxia (Microthamniales, Chlorophyta) als Phycobiont der Parmeliaceae (lichenisierte Ascomyceten). Ph.D. thesis. Universtät Bayreuth, Bayreuth

    Google Scholar 

  • Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053

    Article  CAS  PubMed  Google Scholar 

  • Frisvad JC, Anderson B, Thrane U (2008) The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycol Res 112:231–240

    Article  CAS  PubMed  Google Scholar 

  • Galloway DJ (1992) Biodiversity: a lichenological perspective. Biodivers Conserv 1:312–323

    Article  Google Scholar 

  • Galun M, Kardish N (1995) Lectins as determinants of symbiotic specificity in lichens. Cryptog Bot 5:144–148

    Google Scholar 

  • Garty J, Tomer S, Levin T et al (2003) Lichens as biomonitors around a coal-fired power station in Israel. Environ Res 91:186–198

    Article  CAS  PubMed  Google Scholar 

  • Gauslaa Y (1995) The Lobarion, an epiphytic community of ancient forests, threatened by acid rain. Lichenologist 27:59–76

    Article  Google Scholar 

  • Gerson U, Seaward MRD (1977) In: MRD S (ed) Lichen-invertebrate associations. Lichen ecology. Academic Press, London, pp 69–120

    Google Scholar 

  • Gombert S, Asta J, Seaward MRD (2004) Assessment of lichen diversity by index of atmospheric purity (IAP), index of human impact (IHI) and other environmental factors in an urban area (Grenoble, southeast France). Sci Total Environ 324:83–199

    Article  CAS  Google Scholar 

  • Grube M, Cardinale M, de Castro JV et al (2009) Species-specific structural and functional diversity of bacterial communities in lichen symbioses. ISME J 3(9):1105–1115

    Article  PubMed  Google Scholar 

  • Hale ME, Cole M (1988) Lichens of California. University of California Press, Berkeley, CA

    Google Scholar 

  • Hawksworth DL (1971) Lichens as litmus for air pollution: a historical review. Int J Environ Stud 1:281–296

    Article  Google Scholar 

  • Hawksworth DL (1976) Lichen chemotaxonomy. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: progress and problems. Academic, London, pp 139–184

    Google Scholar 

  • Hawksworth DL (1988) The variety of fungal-algal symbioses, their evolutionary significance, and the nature of lichens. Bot J Linn Soc 96:3–20

    Article  Google Scholar 

  • Hawksworth DL (2003) The lichenicolous fungi of Great Britain and Ireland. An overview and annotated checklist. Lichenologist 35:191–192

    Article  Google Scholar 

  • Hawksworth DL, Honegger R (1994) The lichen thallus: a symbiotic phenotype of nutritionally specialized fungi and its response to gall producers. In: Williams MAJ (ed) Plant galls: organisms, interactions, populations. Clarendon Press, Oxford, pp 77–98

    Google Scholar 

  • Hayward GD, Rosentreter R (1994) Lichens as nesting material for northern flying squirrels in the northern Rocky Mountains. J Mammal 75:663–673

    Article  Google Scholar 

  • Henssen A, Jahns HM (1973 [1974]) Lichenes. Eine Einführung in die Flechtenkunde. Stuttgart: Thieme

    Google Scholar 

  • Honegger R (1988) The functional morphology of cell-to-cell interactions in lichens. In: Scannerini S, Smith DC, Bonfante-Fasolo P et al (eds) Cell to cell signals in plant, animal and microbial symbiosis, Springer/NATO ASI series Berlin, Series H, vol 17, pp 39–53

    Chapter  Google Scholar 

  • Honegger R (1991) Functional aspects of the lichen symbiosis. Ann Rev Plant Phys Plant Mol Biol 42(1):553–578

    Article  CAS  Google Scholar 

  • Honegger R (2000) Great discoveries in bryology and lichenology – Simon Schwendener (1829–1919) and the dual hypothesis of lichens. Bryologist 103:307–313

    Article  Google Scholar 

  • Ihda TA, Nakano T, Yoshimura I et al (1993) Phycobionts isolated from Japanese species of Anzia (lichenes). Arch Protistenkd 143:163–172

    Article  Google Scholar 

  • Jovan S (2008) Lichen Bioindication of biodiversity, air quality, and climate: baseline results from monitoring in Washington, Oregon, and California. General technical report, PNW-GTR-737. Portland. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. pp 115

    Google Scholar 

  • Kirk PM, Cannon PF, Minter DW et al (2008) Dictionary of the Fungi, 10th edn. CABI, Wallingford

    Google Scholar 

  • Knops JMH, Nash TH III, Boucher VL et al (1991) Mineral cycling and epiphytic lichens: implications at the ecosystem level. Lichenologist 23:309–321

    Article  Google Scholar 

  • Kricke R, Loppi S (2002) Bioindication: the IAP approach. In: Nimis PL, Scheidegger C, Wolseley PA (eds) Monitoring with lichens – monitoring lichens. Kluwer, Dordrecht, pp 21–37

    Chapter  Google Scholar 

  • Kuusinen M, Siitonen J (1998) Epiphytic lichen diversity in old-growth and managed Picea abies stands in southern Finland. J Veg Sci 9:283–292

    Article  Google Scholar 

  • Lalley JS, Viles HA, Copeman N et al (2006) The influence of multi-scale environmental variables on the distribution of terricolous lichens in a fog desert. J Veg Sci 17:831–838

    Article  Google Scholar 

  • Lawrey JD (1977) Adaptive significance of O-methylated lichen depsides and depsidones. Lichenologist 9:137–142

    Article  CAS  Google Scholar 

  • Lawrey J, Diederich P (2003) Lichenicolous fungi: interactions, evolution, and biodiversity. The Bryologist 106:80–120

    Article  Google Scholar 

  • Lehmkuhl JF (2004) Epiphytic lichen diversity and biomass in low-elevation forests of the eastern Washington Cascade range, USA. Forest Ecol Manag 187:381–392

    Article  Google Scholar 

  • Lesica P, McCune B, Cooper SV et al (1991) Differences in lichen and bryophyte communities between old-growth and managed second growth forests in Swan Valley, Montana. Can J Bot 69:1745–1755

    Article  Google Scholar 

  • Linnaeus C (1753) Species plantarum. Salvius, Stockholm

    Google Scholar 

  • Lücking R, Bernecker-Lücking A (2002) Distance, dynamics, and diversity in tropical rainforests: an experimental approach using foliicolous lichens on artificial leaves. I. Growth performance and succession. Ecotropica 8:1–13

    Google Scholar 

  • McCune B (1993) Gradients in epiphyte biomass in three Pseudotsuga-Tsuga forests of different ages in western Oregon and Washington. The Bryologist 96:405–411

    Article  Google Scholar 

  • McCune B (2000) Lichen communities as indicators of forest health. The Bryologist 103:353–356

    Article  Google Scholar 

  • McCune B, Geiser L (1997) Macrolichens of the Pacific Northwest. Oregon State University Press, Corvallis

    Google Scholar 

  • Medlin JJ (1996) Michigan Lichens. In: Cranbrook Institute of Science. Bloomfield Hills, Michigan

    Google Scholar 

  • Merriam Webster dictionary. https://www.merriam-webster.com/dictionary/lichen

  • Miadlikowska J, Arnold AE, Hofsteler V et al (2004a) High diversity of cryptic fungi inhabiting healthy lichen thalli in a temperate and tropical forest, In: Randlanc T, Saag A (eds) Lichens in Focus. Book of Abstracts of the 5th IAL Symposium, Tartu University Press, Estonia, pp 43

    Google Scholar 

  • Miadlikowska J, Arnold AE, Lutzoni F (2004b) Diversity of cryptic fungi inhabiting healthy lichen thalli in a temperate and tropical forest. Ecol Soc Am Annu Meet 89:349–350

    Google Scholar 

  • Mitchell ME (2007) Signposts to symbiosis. A review of early attempts to establish the constitution of lichens. Huntia 13(2):101–120

    Google Scholar 

  • Moore D, Nauta MM, Evans SE et al (2001) Fungal conservation – issues and solutions. Cambridge University Press, New York, pp 262

    Book  Google Scholar 

  • Muggia L, Grube M (2018) Fungal diversity in lichens: from extremotolerance to interactions with algae. Life 8(12). https://doi.org/10.3390/life8020015

    Article  PubMed Central  Google Scholar 

  • Nash TH III (2008) Lichen biology, II edn. Arizona State University, Cambridge University Press, New York, pp 484

    Google Scholar 

  • Nash III TH, Ryan BD, Gries C et al (2002) Lichen flora of the Greater Sonoran desert region, Vol 1, Lichens Unlimited, Arizona State University, Tempe, AZ, pp 532

    Google Scholar 

  • Nayaka, S (2017) Future prospects in lichenology in Indian contest. In: Sinha GP (ed) Workshop manual for Workshop on Lichen Identification and Nomenclature, BSI, Allahabad, Rajesh Corporation, pp 9–11

    Google Scholar 

  • Nelson PR, McCune B, Swanson DK (2015) Lichen traits and species as indicators of vegetation and environment. The Bryologist 118(3):252–263

    Article  Google Scholar 

  • Nieboer E, Richardson DHS, Tomassini FD (1978) Mineral uptake and release by lichens: an overview. The Bryologist 81(2):226–246

    Article  CAS  Google Scholar 

  • Nienburg W (1917) Ãœber die Beziehungen zwischen den Algen und Hyphen im Flechtenthallus. Zeitschrift für Botanik 9:529–545

    Google Scholar 

  • Nimis PL, Poelt J (1987) The lichens and lichenicolous fungi of Sardinia (Italy). An annotated list. Studia Geobotanica Trieste 7(suppl.1):1–269

    Google Scholar 

  • Oxford Living Dictionaries. https://en.oxforddictionaries.com/definition/lichen

  • Pettersson RB, Ball JP, Renhorn KA et al (1995) Invertebrate communities in boreal forest canopies as influenced by forestry and lichens with implications for passerine birds. Biol Conserv 74:57–63

    Article  Google Scholar 

  • Pharo EJ, Beattie AJ, Binns D (1999) Vascular plant diversity as a surrogate for bryophyte and lichen diversity. Conserv Biol 13:282–292

    Article  Google Scholar 

  • Pike LH (1978) The importance of epiphytic lichens in mineral cycling. The Bryologist 81:247–257

    Article  CAS  Google Scholar 

  • Poelt J (1973) Systematic evaluation of morphological characters. In: Ahmadjian V, Hale ME (eds) The Lichens. Academic Press, London

    Google Scholar 

  • Rambold G, Triebel D (1992) The inter-lecanoralean associations. Biblioth Lichenol 48:3–201

    Google Scholar 

  • Rambold G, Friedl T, Beck A (1998) Photobionts in lichens: possible indicators of phylogenetic relationships? The Bryologist 101:392–397

    Article  Google Scholar 

  • Reinke J (1872) Ueber die anatomischen Verhältnisse einiger Arten von Gunnera L. Nachrichten von der Königl. Gesellschaft der Wissenschaften und der Georg-Augusts-Universität zu Göttingen 9:100–108

    Google Scholar 

  • Rosentreter R, Hayward GD, Howard MW (1997) Northern flying squirrel seasonal food habits in the interior conifer forests of central Idaho, USA. Northwest Sci 71:97–102

    Google Scholar 

  • Sanders WB (2001) Lichens: the Interface between mycology and plant morphology. Bioscience 51(12):1025–1035

    Article  Google Scholar 

  • Santesson R, Moberg R, Nordin A et al (2004) Lichen–forming and lichenicolous fungi of Fennoscandia. Museum of Evolution, Uppsala University, Uppsala

    Google Scholar 

  • Scharnagl K (2019) The scale of symbiosis. Symbiosis. https://doi.org/10.1007/s13199-019-00601-x

    Article  Google Scholar 

  • Schwendener S (1867) Ãœber die wahre Natur der Flechtengonidien. Verhandlungen der schweizerischen naturforschenden Gesellschaft 57:9–11

    Google Scholar 

  • Seaward MRD (1988) Contribution of lichens to ecosystems. In: Galun M (ed) CRC handbook of lichenology. CRC Press, Boca Raton, pp 107–129

    Google Scholar 

  • Sheard JW, Jonesen MW (1974) A multivariate analysis of the distribution of lichens on Populus lemuloids in West-Central Canada. The Bryologist 77:514–530

    Article  Google Scholar 

  • Shukla V (2017) Lichen secondary metabolites and their uses. In: Sinha GP (ed) Workshop manual for workshop on lichen identification and nomenclature, BSI, Allahabad, Rajesh Corporation, pp 19–21

    Google Scholar 

  • Shukla V, Upreti DK, Patel DK et al (2010) Accumulation of polycyclic aromatic hydrocarbons in some lichens of Garhwal Himalayas, India. Int J Environ Waste Manag 5(1/2):104–113

    Article  CAS  Google Scholar 

  • Shukla V, Upreti DK, Bajpai R et al (2014) Spatial distribution of metallic content in Himalayan ecosystem monitored using lichens. Water Air Soil Pollut 224:1859

    Article  CAS  Google Scholar 

  • Søchting U (1999) Lichens of Bhutan – biodiversity and use. Botanical Institute, University of Copenhagen, Denmark, pp 29

    Google Scholar 

  • Speer BR, Ben W (1997) Lichens: life history & ecology. University of California Museum of Paleontology Last modified 2006. http://www.ucmp.berkeley.edu/fungi/lichens/lichenlh.html

  • Spribille T, Tuovinen V, Resl P et al (2016) Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science 353:488–492 https://doi.org/10.1126/science.aaf8287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staley JT (1997) Biodiversity: are microbial species threatened? Curr Opin Biotech 8:340–345

    Article  CAS  PubMed  Google Scholar 

  • Stanton DE, Horn HS (2013) Epiphytes as ‘filter-drinkers’: Life-form changes across a fog gradient. The Bryologist 116:34–42

    Article  Google Scholar 

  • Starkey E, Hagar JC (1999) Biodiversity of young forest-role of birds. Final Report to US Department of Interior, Blue River District

    Google Scholar 

  • Sun HJ, Depriest PT, Gargas A et al (2002) Pestalotiopsis maculans: a dominant parasymbiont in North American lichens. Symbiosis 33:215–226

    Google Scholar 

  • Suryanarayanan TS, Thirunavukkarasu N, Hariharan GN et al (2005) Occurrence of non-obligate microfungi inside lichen thalli. Sydowia 57(1):20–130

    Google Scholar 

  • Tehler A, Irestedt M (2007) Parallel evolution of lichen growth forms in the family Roccellaceae (Arthoniales, Euascomycetes). Cladistics 23:432–434

    Article  Google Scholar 

  • The Free dictionary. https://www.thefreedictionary.com/lichen

  • Tournefort JP (1694) Elements de Botanique. Imprimerie Royale, Paris

    Google Scholar 

  • Uliczka H, Angelstam P (1999) Occurrence of epiphytic macrolichens in relation to tree species and tree age in managed boreal forest. Ecography 22(4):395–404

    Article  Google Scholar 

  • Voss EG, Burdet HM, Chaloner WG et al (1983) International code of botanical nomenclature, adopted by the thirteenth international botanical congress, Sydney, August 1981. Regnum Veg 111: i–xv, 1–472

    Google Scholar 

  • Will-Wolf S (2010) Analyzing lichen indicator data in the forest inventory and analysis program. General technical report, PNW-GTR-818. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, pp 62

    Google Scholar 

  • Will-Wolf S, Neitlich P, Esseen PA (2002) Monitoring biodiversity and ecosystem function: forests. In: Nimis PL, Scheidegger C, Wolseley P (eds) Monitoring with lichens–monitoring lichens. NATO Science Series. Kluwer Academic Publishers, The Hague, pp 203–222

    Chapter  Google Scholar 

  • Will-Wolf S, Geiser LH, Neitlich P et al (2006) Comparison of lichen community composition with environmental variables at regional and subregional geographic scales. J Veg Sci 17:171–184

    Google Scholar 

  • Wirth V (1972) Die Silikatflechten – Gemeinschaften im ausseralpinen Zentraleuropa. Dissertationes Botanicae 17:1–306

    Google Scholar 

  • Wirth V (1995) Die Flechten Baden-Württembergs, 2nd edn Ulmer, Stuttgart

    Google Scholar 

  • Wolseley PA, Aguirre-Hudson B (2007) Lichens as indicators of environmental changes in the tropical forests of Thailand [Online] http://www.jstor.org/locate/envpol.

  • Wolseley PA, Stofer S, Stofer R et al (2006) Variation of lichen communities with land use in Aberdeenshire, UK. Lichenologist 38:307–322

    Article  Google Scholar 

  • Zabel CJ, Waters JR (1997) Food preference of captive northern flying squirrels from the Lassen National Forest in northeastern California. Northwest Sci 71:103–107

    Google Scholar 

  • Zahlbruckner A (1907) Lichenes (Flechten). In: Engler A, Prantl K (eds) Die Naturlichen Pflanzenfamilien. W. Engelmann, Leipzig, pp 49–249

    Google Scholar 

  • Zahlbruckner A (1926) Afrikanische Flechten (Lichenes). Engl Bot Jahrb 60:468–552

    Google Scholar 

  • Zopf W (1897) Ãœber Nebensymbiose (Parasymbiose). Ber deut Bot Ges 15:90–92

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tripathi, M., Joshi, Y. (2019). What are Lichenized Fungi?. In: Endolichenic Fungi: Present and Future Trends . Springer, Singapore. https://doi.org/10.1007/978-981-13-7268-1_1

Download citation

Publish with us

Policies and ethics