Skip to main content

Biochar and Organic Amendments for Sustainable Soil Carbon and Soil Health

  • Chapter
  • First Online:

Abstract

Organic matter is the life of soil and vital to environmental quality and sustainability. Intensive cultivation solely depending on inorganic fertilizers with lesser quantity or no organic fertilizers resulted in lower carbon content in soils of tropical and subtropical countries. This paper attempted to identify the best soil and crop management practices which ensure slower microbial decomposition of organic materials, cause a net buildup of carbon in soils, and potentially mitigate the negative effect of global warming and climate change. Biochar and other organic materials have been applied to soil as most valuable amendments for increasing carbon sequestration, soil health improvement, and reduction of greenhouse gas emission from soil. Being recalcitrant in nature, biochar is highly efficient in storing carbon in soils. Biochar possesses a larger surface area and therefore is capable of holding and exchanging cations in soils. Quantity and quality of biochar produced from different organic materials are highly variable because of various production temperature and meager oxygen control system. This review contributes to understanding details of production technologies and performance mechanisms of biochar and other organic amendments in soil. Biochar and organic materials improve soil bio-physicochemical properties, serve as a sink of atmospheric CO2, and ensure ecological integrity and environmental sustainability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BSMRAU:

Bangabandhu Sheikh Mujibur Rahman Agricultural University

CEC:

Cation-exchange capacity

CFU:

Colony forming unit

DMBC:

Dairy manure biochar

EC:

Electrical conductivity

FRG:

Fertilizer recommendation guide

FYM:

Farmyard manure

GHG:

Greenhouse gas

NETL:

US National Energy Technology Laboratory

Pg C:

Petagram of carbon

RHBC:

Rice husk biochar

SOC:

Soil organic carbon

USDE:

United States Department of Education

WHC:

Water holding capacity

References

  • Acea MJ, Carballas T (1996) Microbial response to organic amendments in a forest soil. Bioresour Technol 57(2):193–199

    Article  CAS  Google Scholar 

  • Agegnehu G, Srivastava AK, Bird MI (2017) The role of biochar and biochar-compost in improving soil quality and crop performance: a review. Appl Soil Ecol 119:156–170

    Article  Google Scholar 

  • Agehara S, Warncke DD (2005) Soil moisture and temperature effects on nitrogen release from organic nitrogen sources. Soil Sci Soc Am J 69(6):1844–1855

    Article  CAS  Google Scholar 

  • Agrafioti E, Bouras G, Kaldis D, Diamandopoulos E (2013) Biochar production by sewage sludge pyrolysis. J Anal Appl Pyrolysis 101:72–78

    Article  CAS  Google Scholar 

  • Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33

    Article  CAS  Google Scholar 

  • Alexander M (1977) Mineralization and immobilization of nitrogen. In: Alexander M (ed) Introduction to soil microbiology, 2nd edn. Wiley, New York, pp p136–p247

    Google Scholar 

  • Amanullah MM, Sekar S, Muthukrishnan P (2010) Prospects and potential of poultry manure. Asian J Plant Sci 9(4):172

    Article  Google Scholar 

  • Amaral F, Abelho M (2016) Effects of agricultural practices on soil and microbial biomass carbon, nitrogen and phosphorus content: a preliminary case study. Web Ecol 16(1):3–5

    Article  Google Scholar 

  • Amonette JE, Joseph S (2009) Characteristics of biochar: microchemical properties. In: Lehman J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 33–52

    Google Scholar 

  • Angelova VR, Akova VI, Artinova NS, Ivanov KI (2013) The effect of organic amendments on soil chemical characteristics. Bulgarian J Agric Sci 19(5):958–971

    Google Scholar 

  • Anik MFA, Rahman MM, Rahman GM, Alam MK, Islam MS, Khatun MF (2017) Organic amendments with chemical fertilizers improve soil fertility and microbial biomass in rice-rice-rice triple crops cropping systems. Open J Soil Sci 7:87–100

    Article  CAS  Google Scholar 

  • Antal MJ, Grønli M (2003) The art, science, and technology of charcoal production. Ind Eng Chem Res 42(8):1619–1640

    Article  CAS  Google Scholar 

  • Aoyama M, Nozawa T (1993) Microbial biomass nitrogen and mineralization-immobilization processes of nitrogen in soils incubated with various organic materials. Soil Sci Plant Nutr 39(1):23–32

    Article  CAS  Google Scholar 

  • Ashoka P, Meena RS, Kumar S, Yadav GS, Layek J (2017) Green nanotechnology is a key for eco-friendly agriculture. J Clean Prod 142:4440–4441

    Article  Google Scholar 

  • Atiyeh RM, Lee S, Edwards CA, Arancon NQ, Metzger JD (2002) The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Bioresour Technol 84(1):7–14

    Article  CAS  Google Scholar 

  • Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337(1–2):1–18

    Article  CAS  Google Scholar 

  • Baaru MW, Mungendi DN, Bationo A, Verchot L, Waceke W (2007) Soil microbial biomass carbon and nitrogen as influenced by organic and inorganic inputs at Kabete, Kenya. In: Bationo A, Waswa B, Kihara J, Kimetu J (eds) Advances in integrated soil fertility management in sub-Saharan Africa: challenges and opportunities. Springer, Dordrecht, pp 827–832

    Chapter  Google Scholar 

  • Baldock JA, Smernik RJ (2002) Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Org Geochem 33(9):1093–1109

    Article  CAS  Google Scholar 

  • Benbi DK, Biswas CR, Bawa SS, Kumar K (1998) Influence of farmyard manure, inorganic fertilizers and weed control practices on some soil physical properties in a long-term experiment. Soil Use Manag 14(1):52–54

    Article  Google Scholar 

  • Biederman LA, Harpole WS (2013) Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. GCB Bioenergy 5(2):202–214

    Article  CAS  Google Scholar 

  • Blanco-Canqui H, Lal R, Post WM, Izaurralde RC, Shipitalo MJ (2006) Organic carbon influences on soil particle density and rheological properties. Soil Sci Soc Am J 70(4):1407–1414

    Article  CAS  Google Scholar 

  • Boix-Fayos C, Calvo-Cases A, Imeson AC, Soriano-Soto MD (2001) Influence of soil properties on the aggregation of some Mediterranean soils and the use of aggregate size and stability as land degradation indicators. Catena 44(1):47–67

    Article  Google Scholar 

  • Bonanomi G, D’Ascoli R, Scotti R, Gaglione SA, Caceres MG, Sultana S, Scelza R, Rao MA, Zoina A (2014) Soil quality recovery and crop yield enhancement by combined application of compost and wood to vegetables grown under plastic tunnels. Agric Ecosyst Environ 192:1–7

    Article  CAS  Google Scholar 

  • Boyle M, Frankenberger WT, Stolzy LH (1989) The influence of organic matter on soil aggregation and water infiltration. J Prod Agric 2(4):290–299

    Article  Google Scholar 

  • Brady NC, Weil RR (1999) Soil organic matter. In: Brady NC, Weil RR (eds) The nature and properties of soils. Prentice Hall, Upper Saddle River, pp 446–490

    Google Scholar 

  • Cerny J, Balik J, Kulhanek M, Nedved V (2008) The changes in microbial biomass and N in long-term field experiments. Plant Soil Environ 54(5):212–218

    Article  CAS  Google Scholar 

  • Chakraborty A, Chakrabarti K, Chakraborty A, Ghosh S (2011) Effect of long-term fertilizers and manure application on microbial biomass and microbial activity of a tropical agricultural soil. Biol Fertil Soils 47(2):227–233

    Article  Google Scholar 

  • Chen KS, Wang HK, Peng YP, Wang WC, Chen CH, Lai CH (2008) Effects of open burning of rice straw on concentrations of atmospheric polycyclic aromatic hydrocarbons in Central Taiwan. J Air Waste Manage Assoc 58(10):1318–1327

    Article  CAS  Google Scholar 

  • Cheng CH, Lehmann J, Thies JE, Burton SD, Engelhard MH (2006) Oxidation of black carbon by biotic and abiotic processes. Org Geochem 37(11):1477–1488

    Article  CAS  Google Scholar 

  • Chun Y, Sheng G, Chiou CT, Xing B (2004) Compositions and sorptive properties of crop residue-derived chars. Environ Sci Technol 38(17):4649–4655

    Article  CAS  Google Scholar 

  • Clemmensen KE, Bahr A, Ovaskainen O (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339(6127):1615–1618

    Article  CAS  Google Scholar 

  • Cornelissen G, Martinsen V, Shitumbanuma V, Alling V, Breedveld GD, Rutherford DW, Sparrevik M, Hale SE, Obia A, Mulder J (2013) Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia. Agronomy 3(2):256–274

    Article  Google Scholar 

  • Crecchio C, Curci M, Pizzigallo MD, Ricciuti P, Ruggiero P (2004) Effects of municipal solid waste compost amendments on soil enzyme activities and bacterial genetic diversity. Soil Biol Biochem 36(10):1595–1605

    Article  CAS  Google Scholar 

  • Crovetto C (1997) Zero tillage and soil nutrition. In: Sustainable high production agriculture, now! 5th national congress of AAPRESID. Mar del Plata, Argentina, pp 73–78

    Google Scholar 

  • Dadhich RK, Meena RS (2014) Performance of Indian mustard (Brassica juncea L.) in Response to foliar spray of thiourea and thioglycolic acid under different irrigation levels. Indian J Ecol 41(2):376–378

    Google Scholar 

  • Das BB, Dkhar MS (2011) Rhizosphere microbial populations and physico chemical properties as affected by organic and inorganic farming practices. Am-Euras J Agric Environ Sci 10:140–150

    Google Scholar 

  • Das BB, Dkhar MS (2012) Organic amendment effects on microbial population and microbial biomass carbon in the rhizosphere soil of soybean. Commun Soil Sci Plant Anal 43(14):1938–1948

    Article  CAS  Google Scholar 

  • Das B, Chakraborty D, Singh VK, Aggarwal P, Singh R, Dwivedi BS (2014) Effect of organic inputs on strength and stability of soil aggregates under rice-wheat rotation. Int Agrophys 28(2):163–168

    Article  CAS  Google Scholar 

  • Datta R, Vranová V, Pavelka M, Rejšek K, Formánek P (2014) Effect of soil sieving on respiration induced by low-molecular-weight substrates. Int Agrophys 28(1):119–124

    Article  CAS  Google Scholar 

  • Datta R, Anand S, Moulick A, Baraniya D, Pathan SI, Rejsek K, Vranova V, Sharma M, Sharma D, Kelkar A (2017a) How enzymes are adsorbed on soil solid phase and factors limiting its activity: a review. Int Agrophys 31(2):287–302

    Article  CAS  Google Scholar 

  • Datta R, Kelkar A, Baraniya D, Molaei A, Moulick A, Meena R, Formanek P (2017b) Enzymatic degradation of lignin in soil: a review. Sustainability 9(7):1163

    Article  CAS  Google Scholar 

  • Datta R, Baraniya D, Wang Y-F, Kelkar A, Meena RS, Yadav GS, Teresa Ceccherini M, Formanek P (2017c) Amino acid: its dual role as nutrient and scavenger of free radicals in soil. Sustainability 9(8):1402

    Article  CAS  Google Scholar 

  • Dhakal Y, Meena RS, Kumar S (2016) Effect of INM on nodulation, yield, quality and available nutrient status in soil after harvest of green gram. Legum Res 39(4):590–594

    Google Scholar 

  • Doran JW (2002) Soil health and global sustainability: translating science into practice. Agric Ecosyst Environ 88(2):119–127

    Article  Google Scholar 

  • Dutta B, Raghavan V (2014) A life cycle assessment of environmental and economic balance of biochar systems in Quebec. Int J Energy Environ Eng 5(2–3):106

    Article  CAS  Google Scholar 

  • Emerson WW, McGarry D (2003) Organic carbon and soil porosity. Soil Res 41(1):107–118

    Article  Google Scholar 

  • Eusufzai MK, Fujii K (2012) Effect of organic matter amendment on hydraulic and pore characteristics of a clay loam soil. Open J Soil Sci 2(04):372

    Article  Google Scholar 

  • FRG (2012) Fertilizer recommendation guide, Bangladesh Agricultural Research Council (BARC) Farmgate. Dhaka 1215, 274 p

    Google Scholar 

  • Girvan MS, Bullimore J, Ball AS, Pretty JN, Osborn AM (2004) Responses of active bacterial and fungal communities in soils under winter wheat to different fertilizer and pesticide regimens. Appl Environ Microbiol 70(5):2692–2701

    Article  CAS  Google Scholar 

  • Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal–a review. Biol Fertil Soils 35(4):219–230

    Article  CAS  Google Scholar 

  • Grandy AS, Strickland MS, Lauber CL, Bradford MA, Fierer N (2009) The influence of microbial communities, management, and soil texture on soil organic matter chemistry. Geoderma 150(3–4):278–286

    Article  CAS  Google Scholar 

  • Habteselassie MY, Miller BE, Thacker SG, Stark JM, Norton JM (2006) Soil nitrogen and nutrient dynamics after repeated application of treated dairy-waste. Soil Sci Soc Am J 70(4):1328–1337

    Article  CAS  Google Scholar 

  • Haynes RJ (2000) Interactions between soil organic matter status, cropping history, method of quantification and sample pretreatment and their effects on measured aggregate stability. Biol Fertil Soils 30(4):270–275

    Article  Google Scholar 

  • Haynes RJ, Naidu R (1998) Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutr Cycl Agroecosyst 51(2):123–137

    Article  Google Scholar 

  • Heard JR, Kladivko EJ, Mannering JV (1988) Soil macroporosity, hydraulic conductivity and air permeability of silty soils under long-term conservation tillage in Indiana. Soil Tillage Res 11(1):1–18

    Article  Google Scholar 

  • Helyar KR, Cregan PD, Godyn DL (1990) Soil acidity in New-South-Wales-Current pH values and estimates of acidification rates. Soil Res 28(4):523–537

    Article  CAS  Google Scholar 

  • Hernandez-Soriano MC, Kerré B, Kopittke PM, Horemans B, Smolders E (2016) Biochar affects carbon composition and stability in soil: a combined spectroscopy-microscopy study. Sci Rep 6:25127

    Article  CAS  Google Scholar 

  • Hillel D (1998) Environmental soil physics. Academic, San Diego

    Google Scholar 

  • Hossain MB, Rahman MM, Biswas JC, Miah MMU, Akhter S, Maniruzzaman M, Choudhury AK, Ahmed F, Shiragi MHK, Kalra N (2017) Carbon mineralization and carbon dioxide emission from organic matter added soil under different temperature regimes. Int J Recycl Org Waste Agric 6(4):311–319

    Article  Google Scholar 

  • Houben D, Evrard L, Sonnet P (2013) Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere 92(11):1450–1457

    Article  CAS  Google Scholar 

  • Huang GF, Wong JWC, Wu QT, Nagar BB (2004) Effect of C/N on composting of pig manure with sawdust. Waste Manag 24(8):805–813

    Article  CAS  Google Scholar 

  • Ikpe FN, Powell JM (2002) Nutrient cycling practices and changes in soil properties in the crop-livestock farming systems of western Niger Republic of West Africa. Nutr Cycl Agroecosyst 62(1):37–45

    Article  Google Scholar 

  • Jeffery S, Verheijen FG, van der Velde M, Bastos AC (2011) A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ 144(1):175–187

    Article  Google Scholar 

  • Kamara A, Mansaray MM, Kamara A, Sawyerr PA (2014) Effects of biochar derived from maize stover and rice straw on the early growth of their seedlings. Am J Agric For 2(5):232–236

    Google Scholar 

  • Kinney TJ, Masiello CA, Dugan B, Hockaday WC, Dean MR, Zygourakis K, Barnes RT (2012) Hydrologic properties of biochars produced at different temperatures. Biomass Bioenergy 41:34–43

    Article  CAS  Google Scholar 

  • Kirkby CA, Kirkegaard JA, Richardson AE, Wade LJ, Blanchard C, Batten G (2011) Stable soil organic matter: a comparison of C: N: P: S ratios in Australian and other world soils. Geoderma 163(3–4):197–208

    Article  CAS  Google Scholar 

  • Krishnakumar S, Saravanan A, Natarajan SK, Veerabadram V, Mani S (2005) Microbial population and enzymatic activity as influenced by organic farming. Res J Agric Biol Sci 1:85–88

    Google Scholar 

  • Kumar S, Meena RS, Bohra JS (2018) Interactive effect of sowing dates and nutrient sources on dry matter accumulation of Indian mustard (Brassica juncea L.). J Oilseed Brassica 9(1):72–76

    Google Scholar 

  • Kuzyakov Y, Subbotina I, Chen H, Bogomolova I, Xu X (2009) Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol Biochem 41(2):210–219

    Article  CAS  Google Scholar 

  • Laghari M, Hu Z, Mirjat MS, Xiao B, Tagar AA, Hu M (2016) Fast pyrolysis biochar from sawdust improves the quality of desert soils and enhances plant growth. J Sci Food Agric 96(1):199–206

    Article  CAS  Google Scholar 

  • Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123(1–2):1–22

    Article  CAS  Google Scholar 

  • Lal R (2008) Soil carbon stocks under present and future climate with specific reference to European ecoregions. Nutr Cycl Agroecosyst 81(2):113–127

    Article  Google Scholar 

  • Lal R (2016) Soil health and carbon management. Food Energy Secur 5(4):212–222

    Article  Google Scholar 

  • Larney FJ, Angers DA (2012) The role of organic amendments in soil reclamation: a review. Can J Soil Sci 92(1):19–38

    Article  CAS  Google Scholar 

  • Latifah O, Ahmed OH, Majid NMA (2018) Soil pH buffering capacity and nitrogen availability following compost application in a tropical acid soil. Compost Sci Util 26(1):1–15

    Article  CAS  Google Scholar 

  • Lee KE, Pankhurst CE (1992) Soil organisms and sustainable productivity. Soil Res 30(6):855–892

    Article  Google Scholar 

  • Lee Y, Park J, Ryu C, Gang KS, Yang W, Park YK, Hyun S (2013) Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 °C. Bioresour Technol 148:196–201

    Article  CAS  Google Scholar 

  • Lehmann J (2007) Bio-energy in the black. Front Ecol Environ 5(7):381–387

    Article  Google Scholar 

  • Lehmann J, Joseph S (eds) (2015) Biochar for environmental management: science, technology and implementation. Routledge, New York

    Google Scholar 

  • Lehmann J, Rondon M (2006) Bio-char soil management on highly weathered soils in the humid tropics. In: Norman U et al (eds) Biological approaches to sustainable soil systems. CRC Press, Boca Raton, pp 517–530

    Chapter  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota–a review. Soil Biol Biochem 43(9):1812–1836

    Article  CAS  Google Scholar 

  • Leroy BLM, Herath HMSK, Sleutel S, De Neve S, Gabriels D, Reheul D, Moens M (2008) The quality of exogenous organic matter: short-term effects on soil physical properties and soil organic matter fractions. Soil Use Manag 24(2):139–147

    Article  Google Scholar 

  • Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’neill B, Neves EG (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70(5):1719–1730

    Article  CAS  Google Scholar 

  • Liu B, Gumpertz ML, Hu S, Ristaino JB (2007) Long-term effects of organic and synthetic soil fertility amendments on soil microbial communities and the development of southern blight. Soil Biol Biochem 39(9):2302–2316

    Article  CAS  Google Scholar 

  • Liu J, Schulz H, Brandl S, Miehtke H, Huwe B, Glaser B (2012) Short-term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions. J Plant Nutr Soil Sci 175(5):698–707

    Article  CAS  Google Scholar 

  • Lojkova L, Datta R, Sajna M, Marfo TD, Janous D, Pavelka M, Formanek P (2015) Limitation of proteolysis in soils of forests and other types of ecosystems by diffusion of substrate. In: Amino acids, vol 8. Springer, Wien, pp 1690–1691

    Google Scholar 

  • Lynch JM, Bragg E (1985) Microorganisms and soil aggregate stability. In: Stewart BA (ed) Advances in soil science, vol 2. Springer, New York, pp 133–171

    Google Scholar 

  • Mäder P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296(5573):1694–1697

    Article  Google Scholar 

  • Mahmood-ul-Hassan M, Rafique E, Rashid A (2013) Physical and hydraulic properties of aridisols as affected by nutrient and crop-residue management in a cotton-wheat system. Acta Sci Agron 35(1):127–137

    Article  CAS  Google Scholar 

  • Marfo TD, Datta R, Lojkova L, Janous D, Pavelka M, Formanek P (2015) Limitation of activity of acid phosphomonoesterase in soils. In: Amino acids, vol 8. Springer, Wien, pp 1691–1691

    Google Scholar 

  • McClellan AT, Deenik J, Uehara G, Antal M (2007) Effects of flashed carbonized macadamia nutshell charcoal on plant growth and soil chemical properties. A century of integrating crops, soils & environment. In: International annual meeting, Nov 4–8, New Orleans, Louisiana

    Google Scholar 

  • Meena H, Meena RS (2017) Assessment of sowing environments and bio-regulators as adaptation choice for clusterbean productivity in response to current climatic scenario. Bangladesh J Bot 46(1):241–244

    Google Scholar 

  • Meena RS, Yadav RS (2014) Phonological performance of groundnut varieties under sowing environments in hyper arid zone of Rajasthan, India. J Appl Nat Sci 6(2):344–348

    Article  CAS  Google Scholar 

  • Meena RS, Yadav RS, Meena H, Kumar S, Meena YK, Singh A (2015) Towards the current need to enhance legume productivity and soil sustainability worldwide: a book review. J Clean Prod 104:513–515

    Article  Google Scholar 

  • Meena RS, Kumar S, Pandey A (2017a) Response of sulfur and lime levels on productivity, nutrient content and uptake of sesame under guava (Psidium guajava L.) based agri-horti system in an acidic soil of eastern Uttar Pradesh, India. J Crop Weed 13(2):222–227

    Google Scholar 

  • Meena RS, Meena PD, Yadav GS, Yadav SS (2017b) Phosphate solubilizing microorganisms, principles and application of microphos technology. J Clean Prod 145:157–158

    Article  Google Scholar 

  • Miechówka A, Gąsiorek M, Józefowska A, Zadrożny P (2011) Content of microbial biomass nitrogen in differently used soils of the Carpathian Foothills. Ecol Chem Eng A18(4):577–583

    Google Scholar 

  • Mohan D, Abhishek K, Sarswat A, Patel M, Singh P, Pittman CU (2018) Biochar production and applications in soil fertility and carbon sequestration–a sustainable solution to crop-residue burning in India. RSC Adv 8(1):508–520

    Article  CAS  Google Scholar 

  • Molaei A, Lakzian A, Datta R, Haghnia G, Astaraei A, Rasouli-Sadaghiani M, Ceccherini MT (2017) Impact of chlortetracycline and sulfapyridine antibiotics on soil enzyme activities. Int Agrophys 31(4):499–505

    Article  CAS  Google Scholar 

  • Molaei A, Lakzian A, Haghnia G, Astaraei A, Rasouli-Sadaghiani M, Ceccherini MT, Datta R (2017a) Assessment of some cultural experimental methods to study the effects of antibiotics on microbial activities in a soil: an incubation study. PLoS One 12(7):e0180663

    Article  CAS  Google Scholar 

  • Murphy B (2015) Key soil functional properties affected by soil organic matter-evidence from published literature. IOP Conf Ser Earth Environ Sci 25:012008. https://doi.org/10.1088/1755-1315/25/1/012008

    Article  Google Scholar 

  • Nagavallemma KP, Wani SP, Lacroix S, Padmaja VV, Vineela C, Rao MB, Sahrawat KL (2004) Vermicomposting: recycling wastes into valuable organic fertilizer. Global theme on agroecosystems report no. 8, ICRISAT, Patancheru, Andhra Pradesh, India

    Google Scholar 

  • Narasimha G (2013) Impact of organic manure amendment on soil physicochemical, biological and enzymatic properties. Biotechnol Indian J 7(4):154–158

    CAS  Google Scholar 

  • Neilsen GH, Hogue EJ, Neilsen D, Zebarth BJ (1998) Evaluation of organic wastes as soil amendments for cultivation of carrot and chard on irrigated sandy soils. Can J Soil Sci 78(1):217–225

    Article  CAS  Google Scholar 

  • Novais SV, Zenero MDO, Junior EFF, de Lima RP, Cerri CEP (2017) Mitigation of greenhouse gas emissions from tropical soils amended with poultry manure and sugar cane straw biochars. Agric Sci 8(09):887–903

    CAS  Google Scholar 

  • O’Neill B, Grossman J, Tsai MT, Gomes JE, Lehmann J, Peterson J, Neves E, Thies JE (2009) Bacterial community composition in Brazilian anthrosols and adjacent soils characterized using culturing and molecular identification. Microb Ecol 58(1):23–35

    Article  Google Scholar 

  • Ouni Y, Lakhdar A, Scelza R, Scotti R, Abdelly C, Barhoumi Z, Rao MA (2013) Effects of two composts and two grasses on microbial biomass and biological activity in a salt-affected soil. Ecol Eng 60:363–369

    Article  Google Scholar 

  • Parihar CM, Rana KS, Jat ML, Jat SL, Parihar MD, Kantwa SR, Singh DK, Sharma S (2012) Carbon footprint and economic sustainability of pearl millet-mustard system under different tillage and nutrient management practices in moisture stress conditions. Afr J Microbiol Res 6(23):5052–5061

    Article  CAS  Google Scholar 

  • Rahman MM (2010) Carbon sequestration options in soils under different crops and their management practices. Agriculturists 8(1):90–101

    Google Scholar 

  • Rahman MM (2013) Nutrient-use and carbon-sequestration efficiencies in soils from different organic wastes in rice and tomato cultivation. Commun Soil Sci Plant Anal 44(9):1457–1471

    Article  CAS  Google Scholar 

  • Rahman F, Rahman MM, Rahman GKMM, Saleque MA, Hossain AS, Miah MG (2016) Effect of organic and inorganic fertilizers and rice straw on carbon sequestration and soil fertility under a rice–rice cropping pattern. Carbon Manage 7(1–2):41–53

    Article  CAS  Google Scholar 

  • Ram K, Meena RS (2014) Evaluation of pearl millet and mungbean intercropping systems in Arid Region of Rajasthan (India). Bangladesh J Bot 43(3):367–370

    Article  Google Scholar 

  • Rawls WJ, Pachepsky YA, Ritchie JC, Sobecki TM, Bloodworth H (2003) Effect of soil organic carbon on soil water retention. Geoderma 116(1–2):61–76

    Article  CAS  Google Scholar 

  • Rice C, McVay K (2002) Carbon sequestration: frequently asked question. Kansas State University. Agricultural Experiment Station and Cooperative Extension Service. MF-2564. https://www.coffey.k-state.edu/cropslivestock/crops/conservation/Carbon%20Sequestration%20Top%20Ten.pdf

  • Rivenshield A, Bassuk NL (2007) Using organic amendments to decrease bulk density and increase macroporosity in compacted soils. Arboricult Urban For 33(2):140

    Google Scholar 

  • Robertson M (2014) Sustainability principles and practice. Routledge, New York

    Book  Google Scholar 

  • Rosenstock TS, Lamanna C, Chesterman S, Bell P, Arslan A, Richards M, Rioux J, Akinleye AO, Champalle C, Cheng Z, Corner-Dolloff C, Dohn J, English W, Eyrich AS, Girvetz EH, Kerr A, Lizarazo M, Madalinska A, McFatridge S, Morris KS, Namoi N, Poultouchidou N, Ravina da Silva M, Rayess S, Ström H, Tully KL, Zhou W (2016) The scientific basis of climate-smart agriculture: a systematic review protocol. CCAFS working paper no 138, Copenhagen, Denmark: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS)

    Google Scholar 

  • Santos VB, Araújo AS, Leite L, Nunes LA, Melo WJ (2012) Soil microbial biomass and organic matter fractions during transition from conventional to organic farming systems. Geoderma 170:227–231

    Article  CAS  Google Scholar 

  • Schjønning P, McBride RA, Keller T, Obour PB (2017) Predicting soil particle density from clay and soil organic matter contents. Geoderma 286:83–87

    Article  CAS  Google Scholar 

  • Schulz H, Glaser B (2012) Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. J Plant Nutr Soil Sci 175(3):410–422

    Article  CAS  Google Scholar 

  • Scotti R, Conte P, Berns AE, Alonzo G, Rao MA (2013) Effect of organic amendments on the evolution of soil organic matter in soils stressed by intensive agricultural practices. Curr Org Chem 17(24):2998–3005

    Article  CAS  Google Scholar 

  • Seiter S, Horwath WR (2004) Strategies for managing soil organic matter to supply plant nutrients. In: Magdoff F, Weil RR (eds) Soil organic matter in sustainable agriculture. CRC Press, Boca Raton, pp 269–293

    Google Scholar 

  • Shackley S, Sohi S, Haszeldine S, Manning D, Masek O (2009) Biochar, reducing and removing CO2 while improving soils: a significant and sustainable response to climate change. UK Biochar Research Centre, School of Geo Sciences, University of Edinburgh

    Google Scholar 

  • Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X, Zhang W, Zhang F (2011) Phosphorus dynamics: from soil to plant. Plant Physiol 156(3):997–1005

    Article  CAS  Google Scholar 

  • Sihag SK, Singh MK, Meena RS, Naga S, Bahadur SR, Gaurav YRS (2015) Influences of spacing on growth and yield potential of dry direct seeded rice (Oryza sativa L.) cultivars. Ecoscan 9(1–2):517–519

    Google Scholar 

  • Singh B, Singh BP, Cowie AL (2010) Characterization and evaluation of biochar for their application as a soil amendment. Soil Res 48(7):516–525

    Article  CAS  Google Scholar 

  • Sivapalan K, Fernando V, Thenabadu MW (1985) N-mineralization in polyphenol-rich plant residues and their effect on nitrification of applied ammonium sulphate. Soil Biol Biochem 17(4):547–551

    Article  CAS  Google Scholar 

  • Smith SR, Jasim S (2009) Small-scale home composting of biodegradable household waste: overview of key results from a 3-year research programme in West London. Waste Manag Res 27(10):941–950

    Article  CAS  Google Scholar 

  • Soderstorm BO, Hedlund K, Jackson LE, Kattere T, Lugato E, Thomsen IK, Jorgensen HB (2014) What are the effects of agricultural management on soil organic carbon (SOC) stock? Environ Evid 3:1–8

    Article  Google Scholar 

  • Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. In: Sparks DL (ed) Advances in agronomy. Academic, Burlington, pp 47–82

    Google Scholar 

  • Song W, Guo M (2012) Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J Anal Appl Pyrolysis 94:138–145

    Article  CAS  Google Scholar 

  • Sparkes J, Stoutjesdijk P (2011) Biochar: implications for agricultural productivity. Aust Bur Agric Res Econ Sci 13:23–25

    Google Scholar 

  • Sparling GP, McLay CDA, Tang C, Raphael C (1999) Effect of short-term legume residue decomposition on soil acidity. Soil Res 37(3):561–574

    Article  Google Scholar 

  • Swer H, Dkhar MS, Kayang H (2011) Fungal population and diversity in organically amended agricultural soils of Meghalaya, India. J Org Syst 6(2):3–12

    Google Scholar 

  • Tejada M, Hernandez MT, Garcia C (2009) Soil restoration using composted plant residues: effects on soil properties. Soil Till Res 102(1):109–117

    Article  Google Scholar 

  • Tipayarom D, Oanh NK (2007) Effects from open rice straw burning emission on air quality in the Bangkok Metropolitan region. Sci Asia 33(3):339–345

    Article  CAS  Google Scholar 

  • Tisdall JM, Oades J (1982) Organic matter and water-stable aggregates in soils. Eur J Soil Sci 33(2):141–163

    Article  CAS  Google Scholar 

  • Tomich TP, Brodt S, Ferris H, Galt R, Horwath WR, Kebreab E, Leveau JHJ, Liptzin D, Lubell M, Merel P, Michelmore R, Rosenstock T, Scow K, Six J, Williams N, Yang L (2011) Agroecology: a review from a global-change perspective. Annu Rev Environ Resour 36:193–222

    Article  Google Scholar 

  • USDE & NETL (United States Department of Energy and National Energy Technology Laboratory) (2007) Carbon sequestration technology and program plan. http://www.netl.doe.gov/technologies/carbon_seq/refshelf/project%20portfolio/2007/2007Roadmap.pdf

  • Van Antwerpen R, Meyer JH (1998) Soil degradation II: effect of trash and inorganic fertilizer application on soil strength. Proc S Afr Sug Technol Ass 72:152–158

    Google Scholar 

  • Van-Camp L, Bujarrabal B, Gentile AR, Jones RJ, Montanarella L, Olazabal C, Selvaradjou SK (2004) Reports of the technical working groups established under the thematic strategy for soil protection. EUR 21319 EN/1, pp 872. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • Varma D, Meena RS, Kumar S, Kumar E (2017) Response of mungbean to NPK and lime under the conditions of Vindhyan region of Uttar Pradesh. Leg Res 40(3):542–545

    Google Scholar 

  • Verma JP, Jaiswal DK, Meena VS, Meena RS (2015) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547

    Article  Google Scholar 

  • Verma SK, Singh SB, Prasad SK, Meena RN, Meena RS (2015b) Influence of irrigation regimes and weed management practices on water use and nutrient uptake in wheat (Triticum aestivum L. Emend. Fiori and Paol.). Bangladesh J Bot 44(3):437–442

    Article  Google Scholar 

  • Warnock DD, Lehmann J, Kuyper TW, Rillig MC (2007) Mycorrhizal responses to biochar in soil–concepts and mechanisms. Plant Soil 300(1–2):9–20

    Article  CAS  Google Scholar 

  • Wolf B, Snyder G (2003) Sustainable soils: the place of organic matter in sustaining soils and their productivity. Food Products Press, New York

    Book  Google Scholar 

  • Wong MTF, Gibbs P, Nortcliff S, Swift RS (2000) Measurement of the acid neutralizing capacity of agroforestry tree prunings added to tropical soils. J Agric Sci 134(3):269–276

    Article  Google Scholar 

  • Wright AL, Hons FM, Lemon RG, McFarland ML, Nichols RL (2008) Microbial activity and soil C sequestration for reduced and conventional tillage cotton. Appl Soil Ecol 38(2):168–173

    Article  Google Scholar 

  • Wu W, Yang M, Feng Q, McGrouther K, Wang H, Lu H, Chen Y (2012) Chemical characterization of rice straw-derived biochar for soil amendment. Biomass Bioenergy 47:268–276

    Article  CAS  Google Scholar 

  • Xu X, Cao X, Zhao L (2013) Comparison of rice husk-and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: role of mineral components in biochars. Chemosphere 92(8):955–961

    Article  CAS  Google Scholar 

  • Yadav GS, Babu S, Meena RS, Debnath C, Saha P, Debbaram C, Datta M (2017a) Effects of godawariphosgold and single supper phosphate on groundnut (Arachis hypogaea) productivity, phosphorus uptake, phosphorus use efficiency and economics. Indian J Agric Sci 87(9):1165–1169

    CAS  Google Scholar 

  • Yadav GS, Datta R, Imran Pathan S, Lal R, Meena RS, Babu S, Das A, Bhowmik S, Datta M, Saha P (2017b) Effects of conservation tillage and nutrient management practices on soil fertility and productivity of rice (Oryza sativa L.)–Rice system in North Eastern region of India. Sustainability 9(10):1816

    Article  CAS  Google Scholar 

  • Yadav GS, Das A, Lal R, Babu S, Meena RS, Saha P, Singh R, Datta M (2018) Energy budget and carbon footprint in a no-till and mulch based rice–mustard cropping system. J Clean Prod 191:144–157

    Article  Google Scholar 

  • Yuan JH, Xu RK (2011) The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use Manag 27(1):110–115

    Article  Google Scholar 

  • Yuan JH, Xu RK (2012) Effects of biochars generated from crop residues on chemical properties of acid soils from tropical and subtropical China. Soil Res 50(7):570–578

    Article  CAS  Google Scholar 

  • Yuan JH, Xu RK, Zhang H (2011) The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol 102(3):3488–3497

    Article  CAS  Google Scholar 

  • Zaccardelli M, De Nicola F, Villecco D, Scotti R (2013) The development and suppressive activity of soil microbial communities under compost amendment. J Soil Sci Plant Nutr 13(3):730–742

    Google Scholar 

  • Zhang H, Ding W, Yu H, He X (2015) Linking organic carbon accumulation to microbial community dynamics in a sandy loam soil: result of 20 years compost and inorganic fertilizers repeated application experiment. Biol Fertil Soils 51(2):137–150

    Article  CAS  Google Scholar 

  • Zhao L, Cao X, Mašek O, Zimmerman A (2013) Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J Hazard Mater 256:1–9

    Google Scholar 

  • Zimmerman AR (2010) Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ Sci Technol 44(4):1295–1301

    Article  CAS  Google Scholar 

  • Zuber SM, Behnke GD, Nafziger ED, Villamil MB (2018) Carbon and Nitrogen content of soil organic matter and microbial biomass under long-term crop rotation and tillage in Illinois, USA. Agriculture 8(3):37

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. M. Mustafizur Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rahman, G.K.M.M. et al. (2020). Biochar and Organic Amendments for Sustainable Soil Carbon and Soil Health. In: Datta, R., Meena, R., Pathan, S., Ceccherini, M. (eds) Carbon and Nitrogen Cycling in Soil. Springer, Singapore. https://doi.org/10.1007/978-981-13-7264-3_3

Download citation

Publish with us

Policies and ethics