Bone Health pp 35-52 | Cite as

Ancient Human Bone Microstructure Case Studies from Medieval England

  • Meg M. Walker
  • Emma M. Street
  • Rosie Pitfield
  • Justyna J. MiszkiewiczEmail author
  • Sharon L. Brennan-Olsen
  • Patrick Mahoney


This chapter discusses two case studies using limb bone microstructure samples from a medieval (eleventh to sixteenth centuries) English skeletal collection in Canterbury. The site represents low and high socio-economic status (SES) groups. Firstly, the effect of SES on skeletal growth is investigated by combining dental indicators of childhood physiological stress and products of bone remodelling in 17 adults. Linear enamel hypoplasia (LEH) is used as a proxy for childhood ill health, and femur mid-shaft osteon population density (OPD) represents adult bone density. A statistically significant and strongly positive (r = 0.929, p = 0.003) correlation between LEH and OPD was achieved in the high SES group only. We propose a preliminary medieval human skeletal growth model suggesting that individuals of higher SES are more likely to develop higher adult bone density despite their experiences of developmental disturbances in early ontogeny. Secondly, we use samples from the same skeletal collection to investigate the relationship between histomorphometric variability and cortical bone dimensions. The entire cross-section of the mid-shaft radius was examined in seven age-matched individuals. Significant negative correlations were found between OPD and the area and width of the cortical cross-section. Osteon area was significantly and positively correlated with cortical area. Results not only suggest that cortical bone size must be considered when evaluating histomorphometry but also extends current understanding of the ways in which Haversian systems develop. This chapter demonstrates the applicability of medieval human skeletal samples in furthering our current investigations into bone health and understanding the effects of lifestyle on skeletal growth.


Medieval skeletons Linear enamel hypoplasia Osteons Bone remodelling Histology Femur Radius 


  1. 1.
    Larsen SC. Bioarchaeology: interpreting behaviour from the human skeleton. Cambridge: University Press; 1997.CrossRefGoogle Scholar
  2. 2.
    Miszkiewicz JJ, Mahoney P. Human bone and dental histology in an archaeological context. In: Errickson D, Thompson T, editors. Human remains: another dimension: the application of imaging to the study of human remains. Amsterdam: Elsevier; 2017. p. 29–43.CrossRefGoogle Scholar
  3. 3.
    Miszkiewicz JJ, Mahoney P, Miszkiewicz JJ, Mahoney P. Ancient human bone microstructure in medieval England: comparisons between two socio-economic groups. Anat Rec. 2016;299(1):42–59. Scholar
  4. 4.
    Pitfield R, Miszkiewicz JJ, Mahoney P. Cortical histomorphometry of the human humerus during ontogeny. Calcif Tissue Int. 2017;101(2):148–58. Scholar
  5. 5.
    Stout SD, Lueck R. Bone remodeling rates and skeletal maturation in three archaeological skeletal populations. Am J Phys Anthropol. 1995;98(2):161–71. Scholar
  6. 6.
    Cho H, Stout SD. Age-associated bone loss and intraskeletal variability in the Imperial Romans. J Anthropol Sci. 2011;89:109–25. Scholar
  7. 7.
    Mulhern DM, Van Gerven DP. Patterns of femoral bone remodeling dynamics in a medieval Nubian population. Am J Phys Anthropol. 1997;104(1):133–46.<133::AID-AJPA9>3.0.CO;2-S.CrossRefPubMedGoogle Scholar
  8. 8.
    Robling AG, Stout SD. Histomorphology, geometry, and mechanical loading in past populations. In: Agarwal SC, Stout SD, editors. Bone loss and osteoporosis. Boston: Springer; 2003. p. 189–205.CrossRefGoogle Scholar
  9. 9.
    Brickley MB, Agarwal SC. Techniques for the investigation of age-related bone loss and osteoporosis in archaeological bone. In: Agarwal SC, Stout SD, editors. Bone loss and osteoporosis. Boston: Springer; 2003. p. 157–72.CrossRefGoogle Scholar
  10. 10.
    Miszkiewicz JJ. Linear enamel hypoplasia and age-at-death at Medieval (11th–16th Centuries) St. Gregory’s Priory and cemetery, Canterbury, UK. Int J Osteoarchaeol. 2015;25(1):79–87. Scholar
  11. 11.
    Goodman AH, Rose JC. Assessment of systemic physiological perturbations from dental enamel hypoplasias and associated histological structures. Am J Phys Anthropol. 1990;33(Suppl 11):59–110. Scholar
  12. 12.
    Robling AG, Castillo AB, Turner CH. Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng. 2006;8:455–98. Scholar
  13. 13.
    Masterson EE, Fitzpatrick AL, Enquobahrie DA, Mancl LA, Eisenberg DT, Conde E, Hujoel PP. Dental enamel defects predict adolescent health indicators: a cohort study among the Tsimane’ of Bolivia. Am J Hum Biol. 2018;30(3):e23107. Scholar
  14. 14.
    Renthal NE, Ma NS. Normal bone physiology 101. In: Pitts S, Gordon CM, editors. A practical approach to adolescent bone health. Cham: Springer; 2018. p. 11–25.CrossRefGoogle Scholar
  15. 15.
    Miszkiewicz JJ, Mahoney P. Histomorphometry and cortical robusticity of the adult human femur. J Bone Miner Metab. 2018. Scholar
  16. 16.
    Anderson T, Wakely J, Carter A. Medieval example of metastatic carcinoma: a dry bone, radiological, and SEM study. Am J Phys Anthropol. 1992;89(3):309–23. Scholar
  17. 17.
    Hicks M, Hicks A. St Gregory’s Priory, Northgate, Canterbury: excavations 1988-1991, The archaeology of Canterbury new series volume II. Canterbury: Canterbury Archaeological Trust Limited; 2001.Google Scholar
  18. 18.
    Anderson T, Andrews J. A recently excavated odontome from medieval Canterbury, Kent. Int J Osteoarchaeol. 1993;3(2):99–104. Scholar
  19. 19.
    Miszkiewicz JJ. Investigating histomorphometric relationships at the human femoral midshaft in a biomechanical context. J Bone Miner Metab. 2016;34(2):179–92. Scholar
  20. 20.
    Mahoney P, Miszkiewicz JJ, Pitfield R, Schlecht SH, Deter C, Guatelli-Steinberg D. Biorhythms, deciduous enamel thickness, and primary bone growth: a test of the Havers-Halberg Oscillation hypothesis. J Anat. 2016;228(6):919–28. Scholar
  21. 21.
    Mahoney P, Miszkiewicz JJ, Chapple S, Le Luyer M, Schlecht SH, Stewart TJ, Griffiths RA, Deter C, Guatelli-Steinberg D. The biorhythm of human skeletal growth. J Anat. 2018;232(1):26–38. Scholar
  22. 22.
    Buikstra JE, Ubelaker DH. Standards for data collection from human skeletal remains, Arkansas archaeological survey research series no. 44. Fayetteville: Arkansas Archeological Survey; 1994.Google Scholar
  23. 23.
    Brent J. Canterbury in the olden time. 2nd ed. London: Simpkin, Marshall & Company; 1879.Google Scholar
  24. 24.
    Hicks MJ, Anderson T. Excavations: Canterbury sites, 22. St. Gregory’s Priory, (A) the cemetery. In: Canterbury’s archaeology, 1988 – 1989. Canterbury: Canterbury Archaeological Trust; 1989. p. 15–6.Google Scholar
  25. 25.
    Bayard T. Sweet herbs and sundry flowers: medieval gardens and the gardens of the cloisters. New York: The Metropolitan Museum of Art; 1997.Google Scholar
  26. 26.
    Dyer C. Everyday life in medieval England. 2nd ed. London: Hambledon and London Publishers; 2000.Google Scholar
  27. 27.
    Riancho JA, Brennan-Olsen SL. The epigenome at the crossroad between social factors, inflammation, and osteoporosis risk. Clin Rev Bone Miner Metab. 2017;15(2):59–68. Scholar
  28. 28.
    Evans GW, Kantrowitz E. Socioeconomic status and health: the potential role of environmental risk exposure. Annu Rev Public Health. 2002;23(1):303–31. Scholar
  29. 29.
    Hillson S, Bond S. Relationship of enamel hypoplasia to the pattern of tooth crown growth: a discussion. Am J Phys Anthropol. 1997;104(1):89–103.<89::AID-AJPA6>3.0.CO;2-8.CrossRefPubMedGoogle Scholar
  30. 30.
    Guatelli-Steinberg D. Macroscopic and microscopic analyses of linear enamel hypoplasia in Plio-Pleistocene South African hominins with respect to aspects of enamel development and morphology. Am J Phys Anthropol. 2003;120(4):309–22. Scholar
  31. 31.
    Goodman AH, Armelagos GJ. The chronological distribution of enamel hypoplasia in human permanent incisor and canine teeth. Arch Oral Biol. 1985;30(6):503–7. Scholar
  32. 32.
    King T, Humphrey LT, Hillson S. Linear enamel hypoplasias as indicators of systemic physiological stress: evidence from two known age-at-death and sex populations from postmedieval London. Am J Phys Anthropol. 2005;128(3):547–59. Scholar
  33. 33.
    Goodman AH, Martinez C, Chavez A. Nutritional supplementation and the development of linear enamel hypoplasias in children from Tezonteopan, Mexico. Am J Clin Nutr. 1991;53(3):773–81. Scholar
  34. 34.
    Moggi-Cecchi J, Pacciani E, Pinto-Cisternas J. Enamel hypoplasia and age at weaning in 19th-century Florence, Italy. Am J Phys Anthropol. 1994;93(3):299–306. Scholar
  35. 35.
    Neiburger EJ. Enamel hypoplasias: poor indicators of dietary stress. Am J Phys Anthropol. 1990;82(2):231–2. Scholar
  36. 36.
    Blakey ML, Leslie TE, Reidy JP. Frequency and chronological distribution of dental enamel hypoplasia in enslaved African Americans: a test of the weaning hypothesis. Am J Phys Anthropol. 1994;95(4):371–83. Scholar
  37. 37.
    Reitsema LJ, McIlvaine BK. Reconciling “stress” and “health” in physical anthropology: what can bioarchaeologists learn from the other subdisciplines? Am J Phys Anthropol. 2014;155(2):181–5. Scholar
  38. 38.
    Geber J. Skeletal manifestations of stress in child victims of the Great Irish Famine (1845–1852): prevalence of enamel hypoplasia, Harris lines, and growth retardation. Am J Phys Anthropol. 2014;155(1):149–61. Scholar
  39. 39.
    Martin RB. Toward a unifying theory of bone remodeling. Bone. 2000;26(1):1–6. Scholar
  40. 40.
    Crowder C, Stout S. Bone histology: an anthropological perspective. Florida: CRC Press; 2011.Google Scholar
  41. 41.
    Hassett BR. Evaluating sources of variation in the identification of linear hypoplastic defects of enamel: a new quantified method. J Archaeol Sci. 2012;39(2):560–5. Scholar
  42. 42.
    Bartlett R. England under the Norman and Angevin kings 1075 – 1225. Oxford: Clarendon Press; 2000.Google Scholar
  43. 43.
    Tatton-Brown T. The beginnings of St. Gregory’s Priory and St. John’s Hospital in Canterbury. In: Eales R, Sharpe R, editors. Canterbury and the Norman conquest: churches, saints and scholars 1066-1109. London: Hambledon Continuum; 1995.Google Scholar
  44. 44.
    Bhote T. Medieval feasts and banquets: food, drink, and celebration in the middle ages. New York: The Rosen Publishing Group; 2004.Google Scholar
  45. 45.
    Reitsema LJ, Crews DE, Polcyn M. Preliminary evidence for medieval Polish diet from carbon and nitrogen stable isotopes. J Archaeol Sci. 2010;37(7):1413–23. Scholar
  46. 46.
    Collí CM, Sosa TS, Tiesler V, Cucina A. Linear enamel hypoplasia at Xcambó, Yucatán, during the Maya Classic period: an evaluation of coastal marshland impact on ancient human populations. J Comp Hum Biol. 2009;60(4):343–58. Scholar
  47. 47.
    Roberts CA, Manchester K. The archaeology of disease. 3rd ed. Ithaca: Cornell University Press; 2007.Google Scholar
  48. 48.
    Gosman JH. Growth and development: morphology, mechanisms, and abnormalities. In: Crowder C, Stout S, editors. Histology: an anthropological perspective. Florida: CRC Press; 2011. p. 23–44.CrossRefGoogle Scholar
  49. 49.
    Miszkiewicz JJ. Histology of a Harris line in a human distal tibia. J Bone Miner Metab. 2015;33(4):462–6. Scholar
  50. 50.
    Steckel RH. Stature and the standard of living. J Econ Lit. 1995;33(4):1903–40.Google Scholar
  51. 51.
    Evans HL, Ayala AG, Romsdahl MM. Prognostic factors in chondrosarcoma of bone a clinicopathologic analysis with emphasis on histologic grading. Cancer. 1977;40:818–31.<818::AID-CNCR2820400234>3.0.CO;2-B.CrossRefPubMedGoogle Scholar
  52. 52.
    Hutchison AJ, Whitehouse RW, Boulton HF, Adams JE, Mawer EB, Freemont TJ, Gokal R. Correlation of bone histology with parathyroid hormone, vitamin D3, and radiology in end-stage renal disease. Kidney Int. 1993;44(5):1071–7. Scholar
  53. 53.
    Schultz M. Light microscopic analysis of macerated pathologically changed bones. In: Crowder C, Stout S, editors. Bone histology an anthropological perspective. Boca Raton: CRC Press; 2012. p. 253–96.Google Scholar
  54. 54.
    Robling AG, Stout SD. Histomorphometry of human cortical bone: applications to age estimation. In: Katzenberg MA, Saunders SR, editors. Biological anthropology of the human skeleton. 2nd ed. Hoboken: Wiley; 2008. p. 149–82.CrossRefGoogle Scholar
  55. 55.
    Van Oers RFM, Ruimerman R, Tanck E, Hilbers PA, Huiskes R. A unified theory for osteonal and hemi-osteonal remodelling. Bone. 2008;42(2):250–9. Scholar
  56. 56.
    Britz HM, Thomas CD, Clement JG, Cooper DM. The relation of femoral osteon geometry to age, sex, height, and weight. Bone. 2009;45(1):77–83. Scholar
  57. 57.
    Goliath JR. Variation in osteon circularity and its impact on estimating age at death [Master’s thesis]. Ohio State University; 2010.Google Scholar
  58. 58.
    Stout S, Crowder C. Bone remodeling histomorphology and histomorphometry. In: Crowder C, Stout S, editors. Bone histology an anthropological perspective. Boca Raton: CRC Press; 2012. p. 1–22.Google Scholar
  59. 59.
    Hosseini HS, Dünki A, Fabech J, Stauber M, Vilayphiou N, Pahr D, Pretterklieber M, Wandel J, van Rietbergen B, Zysset PK. Fast estimation of Colles’ fracture load of the distal section of the radius by homogenized finite element analysis based on HR-pQCT. Bone. 2017;97:65–75. Scholar
  60. 60.
    Gocha TP, Agnew AM. Spatial variation in osteon population density at the human femoral midshaft: histomorphometric adaptations to habitual load environment. J Anat. 2016;228(5):733–45. Scholar
  61. 61.
    Fahy GE, Deter C, Pitfield R, Miszkiewicz JJ, Mahoney P. Bone deep: variation in stable isotope ratios and histomorphometric measurements of bone remodelling within adult humans. J Archaeol Sci. 2017;87:10–6. Scholar
  62. 62.
    Goldman HM, Bromage TG, Thomas CD, Clement JG. Preferred collagen fiber orientation in the human mid-shaft femur. Anat Rec A Discov Mol Cell Evol Biol. 2003;272(1):434–45. Scholar
  63. 63.
    Goldman HM, Bromage TG, Boyde A, Thomas CD, Clement JG. Intrapopulation variability in mineralization density at the human femoral mid-shaft. J Anat. 2003;203(2):243–55.CrossRefGoogle Scholar
  64. 64.
    Goldman HM, Thomas CD, Clement JG, Bromage TG. Relationship among microstructural properties of bone at the human midshaft femur. J Anat. 2005;206(2):127–39. Scholar
  65. 65.
    Thomas CDL, Feik SA, Clement JG. Regional variation of intracortical porosity in the midshaft of the human femur and tibia. J Anat. 2005;206(2):115–25. Scholar
  66. 66.
    McFarlin SC, Terranova CJ, Zihlman AL, Enlow DH, Bromage TG. Regional variability in secondary remodeling within long bone cortices of catarrhine primates: the influence of bone growth history. J Anat. 2008;213(3):308–24. Scholar
  67. 67.
    Caccia G, Magli F, Tagi VM, Porta DGA, Cummaudo M, Marquez-Grant N, Cattaneo C. Histological determination of the human origin from dry bone: a cautionary note for subadults. Int J Legal Med. 2016;130(1):299–307. Scholar
  68. 68.
    Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR, Parfitt AM. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR histomorphometry nomenclature committee. J Bone Miner Res. 2013;28(1):2–17. Scholar
  69. 69.
    Van Oers RFM, Ruimerman R, van Rietbergen B, Hilbers PAJ, Huiskes R. Relating osteon diameter to strain. Bone. 2008;43(3):476–82. Scholar
  70. 70.
    Stout S, Paine R. Bone remodeling rates: a test on an algorithm for estimating missing osteons. Am J Phys Anthropol. 1994;93(1):123–9. Scholar
  71. 71.
    Frost HM. Secondary osteon population densities: an algorithm for estimating the missing osteons. Am J Phys Anthropol. 1987;30(S8):239–54. Scholar
  72. 72.
    Jantzen C, Cieslak LK, Barzanji AF, Johansen PB, Rasmussen SW, Schmidt TA. Colles’ fractures and osteoporosis—a new role for the Emergency Department. Injury. 2016;47(4):930–3. Scholar
  73. 73.
    O’neill TW, Cooper C, Finn JD, Lunt M, Purdie D, Reid DM, Rowe R, Woolf AD, Wallace WA. Incidence of distal forearm fracture in British men and women. Osteoporos Int. 2001;12(7):555–8.CrossRefGoogle Scholar
  74. 74.
    Johnson NA, Jeffery J, Stirling E, Thompson J, Dias JJ. Effects of deprivation, ethnicity, gender and age on distal radius fracture incidence and surgical intervention rate. Bone. 2018;121:1–8. Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Meg M. Walker
    • 1
  • Emma M. Street
    • 2
  • Rosie Pitfield
    • 2
  • Justyna J. Miszkiewicz
    • 1
    Email author
  • Sharon L. Brennan-Olsen
    • 3
    • 4
  • Patrick Mahoney
    • 2
  1. 1.School of Archaeology and Anthropology, Australian National UniversityCanberraAustralia
  2. 2.School of Anthropology and Conservation, University of KentCanterburyUK
  3. 3.Department of Medicine-Western HealthUniversity of MelbourneMelbourneAustralia
  4. 4.Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western HealthSt AlbansAustralia

Personalised recommendations