Advertisement

Bone Health pp 17-34 | Cite as

Skeletal Health in Medieval Societies: Insights from Ancient Bone Collagen Stable Isotopes and Dental Histology

  • Justyna J. MiszkiewiczEmail author
  • Tahlia J. Stewart
  • Chris A. Deter
  • Geraldine E. Fahy
  • Patrick Mahoney
Chapter

Abstract

Human skeletal remains retrieved from medieval European archaeological sites are the most direct surviving evidence for bone and dental health, disease, and lifestyles of populations ruled by feudalism. Because the Middle Ages is a relatively recent period in human history characterised by phases of rapid demographic increase and decline (e.g. the Black Death pandemic), the surviving skeletal data can be interpreted alongside historical records. Consequently, medieval human remains form a valuable biocultural source of socio-economic status (SES) and skeletal health relationships that have been of utility in anthropology and can benefit clinical medicine. Multiple studies have investigated the many different variables associated with medieval lifestyles, using both standard gross anatomical examination of the human skeleton and microscopic indicators of bone and dental growth. Here, we provide selected examples of publications that demonstrate the effects of medieval SES on the human skeleton. We also undertake a short analysis of medieval English bone collagen stable isotope data to reconstruct SES-specific diet and of medieval English teeth to reconstruct episodes of childhood stress related to SES and weaning age within the context of historical textual evidence.

Keywords

Medieval populations Bones Teeth Lifestyle Diet Protein 

References

  1. 1.
    Agarwal SC, Glencross BA. Social bioarchaeology. Chichester: Wiley; 2011.CrossRefGoogle Scholar
  2. 2.
    Larsen SC. Bioarchaeology: interpreting behaviour from the human skeleton. Cambridge: University Press; 1997.CrossRefGoogle Scholar
  3. 3.
    Larsen CS. Bioarchaeology in perspective: from classifications of the dead to conditions of the living. Am J Phys Anthropol. 2018;165(4):865–78.  https://doi.org/10.1002/ajpa.23322.CrossRefPubMedGoogle Scholar
  4. 4.
    Roberts CA. Recording and analysis of data III: the “hard sciences”. In: Roberts CA, editor. Human remains in archaeology: a handbook. York: Council for British Archaeology; 2009. p. 191–217.Google Scholar
  5. 5.
    Miszkiewicz JJ, Mahoney P. Human bone and dental histology in an archaeological context. In: Errickson D, Thompson T, editors. Human remains: another dimension: the application of imaging to the study of human remains. Amsterdam: Elsevier; 2017. p. 29–43.CrossRefGoogle Scholar
  6. 6.
    Rewekant A. Do environmental disturbances of an individual’s growth and development influence the later bone involution processes? A study of two mediaeval populations. Int J Osteoarchaeol. 2001;11(6):433–43.  https://doi.org/10.1002/oa.584.CrossRefGoogle Scholar
  7. 7.
    Mahoney P, Miszkiewicz JJ, Pitfield R, Schlecht SH, Deter C, Guatelli-Steinberg D. Biorhythms, deciduous enamel thickness, and primary bone growth: a test of the Havers-Halberg Oscillation hypothesis. J Anat. 2016;228(6):919–28.  https://doi.org/10.1111/joa.12450.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hillson S. Teeth. Cambridge: University press; 2005.CrossRefGoogle Scholar
  9. 9.
    Meyer C, Nicklisch N, Held P, Fritsch B, Alt KW. Tracing patterns of activity in the human skeleton: an overview of methods, problems, and limits of interpretation. J Comp Hum Biol. 2011;62(3):202–17.  https://doi.org/10.1016/j.jchb.2011.03.003.CrossRefGoogle Scholar
  10. 10.
    Daniell C. Death and burial in medieval England 1066–1550. London: Routledge; 2005.CrossRefGoogle Scholar
  11. 11.
    Robb J, Bigazzi R, Lazzarini L, Scarsini C, Sonego F. Social “status” and biological “status”: a comparison of grave goods and skeletal indicators from Pontecagnano. Am J Phys Anthropol. 2001;115(3):213–22.  https://doi.org/10.1002/ajpa.1076.CrossRefPubMedGoogle Scholar
  12. 12.
    Miszkiewicz JJ, Mahoney P. Ancient human bone microstructure in medieval England: comparisons between two socio-economic groups. Anat Rec. 2016;299(1):42–59.  https://doi.org/10.1002/ar.23285.CrossRefGoogle Scholar
  13. 13.
    Roberts CA, Manchester K. The archaeology of disease. Ithaca: Cornell University Press; 2007.Google Scholar
  14. 14.
    Schlecht SH. Understanding entheses: bridging the gap between clinical and anthropological perspectives. Anat Rec. 2012;295(8):1239–51.  https://doi.org/10.1002/ar.22516.CrossRefGoogle Scholar
  15. 15.
    Katzenberg MA, Grauer AL. Biological anthropology of the human skeleton. 3rd ed. Hoboken: Wiley; 2018.CrossRefGoogle Scholar
  16. 16.
    Robling AG, Castillo AB, Turner CH. Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng. 2006;8:455–98.  https://doi.org/10.1146/annurev.bioeng.8.061505.095721.CrossRefPubMedGoogle Scholar
  17. 17.
    Kohli N, Ho S, Brown SJ, Sawadkar P, Sharma V, Snow M, García-Gareta E. Bone remodelling in vitro: where are we headed?:-A review on the current understanding of physiological bone remodelling and inflammation and the strategies for testing biomaterials in vitro. Bone. 2018;110:38–46.  https://doi.org/10.1016/j.bone.2018.01.015.CrossRefPubMedGoogle Scholar
  18. 18.
    Rogers J, Waldron T. DISH and the monastic way of life. Int J Osteoarchaeol. 2001;11(5):357–65.  https://doi.org/10.1002/oa.574.CrossRefGoogle Scholar
  19. 19.
    Webb D. Medieval European Pilgramage C. 700-c. 1500. London: Red Globe Press; 2002.CrossRefGoogle Scholar
  20. 20.
    Henisch BA. Fast and feast: food in medieval society. London: University of Pennsylvania Press; 1977.Google Scholar
  21. 21.
    Fazeli PK, Klibanski A. Effects of anorexia nervosa on bone metabolism. Endocr Rev. 2018;39(6):895–910.  https://doi.org/10.1210/er.2018-00063.CrossRefPubMedGoogle Scholar
  22. 22.
    Stock JT. Hunter-gatherer postcranial robusticity relative to patterns of mobility, climatic adaptation, and selection for tissue economy. Am J Phys Anthropol. 2006;131(2):194–204.  https://doi.org/10.1002/ajpa.20398.CrossRefPubMedGoogle Scholar
  23. 23.
    Reitsema LJ, Crews DE, Polcyn M. Preliminary evidence for medieval Polish diet from carbon and nitrogen stable isotopes. J Archaeol Sci. 2010;37(7):1413–23.  https://doi.org/10.1016/j.jas.2010.01.001.CrossRefGoogle Scholar
  24. 24.
    Curtis EM, Harvey NC, Cooper C. The burden of osteoporosis. In: Harvey NC, Cooper C, editors. Osteoporosis: a life course epidemiology approach to skeletal health. Boca Raton: CRC Press; 2018. p. 17–36.Google Scholar
  25. 25.
    Brennan-Olsen SL, Williams LJ, Holloway KL, Hosking SM, Stuart AL, Dobbins AG, Pasco JA. Small area-level socioeconomic status and all-cause mortality within 10 years in a population-based cohort of women: data from the Geelong Osteoporosis Study. Prev Med Rep. 2015;2:505–11.  https://doi.org/10.1016/j.pmedr.2015.05.011.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Holloway KL, Sajjad MA, Mohebbi M, Kotowicz MA, Livingston PM, Khasraw M, Hakkennes S, Dunning TL, Brumby S, Page RS, Pedler D. The epidemiology of hip fractures across western Victoria, Australia. Bone. 2018;108:1–9.  https://doi.org/10.1016/j.bone.2017.12.007.CrossRefPubMedGoogle Scholar
  27. 27.
    Agarwal SC, Stout SD. Bone loss and osteoporosis: an anthropological perspective. New York: Kluwer Academic; 2003.CrossRefGoogle Scholar
  28. 28.
    Mays SA. Age-dependent cortical bone loss in a medieval population. Int J Osteoarchaeol. 1996;6(2):144–54.  https://doi.org/10.1002/(SICI)1099-1212(199603)6:2<144::AID-OA261>3.0.CO;2-G.CrossRefGoogle Scholar
  29. 29.
    Borrè A, Boano R, Di Stefano M, Castiglione A, Ciccone G, Isaia GC, Panattoni GL, Faletti C. X-ray, CT and DXA study of bone loss on medieval remains from North-West Italy. Radiol Med. 2015;120(7):674–82.  https://doi.org/10.1007/s11547-015-0507-3.CrossRefPubMedGoogle Scholar
  30. 30.
    Mays S, Turner-Walker G, Syversen U. Osteoporosis in a population from medieval Norway. Am J Phys Anthropol. 2006;131(3):343–51.  https://doi.org/10.1002/ajpa.20445.CrossRefGoogle Scholar
  31. 31.
    Curate F, Lopes C, Cunha E. A 14th–17th century osteoporotic hip fracture from the Santa Clara-a-Velha Convent in Coimbra (Portugal). Int J Osteoarchaeol. 2010;20(5):591–6.  https://doi.org/10.1002/oa.1076.CrossRefGoogle Scholar
  32. 32.
    Marklein KE, Crews DE. Frail or hale: skeletal frailty indices in medieval London skeletons. PLoS One. 2017;12(5):e0176025.  https://doi.org/10.1371/journal.pone.0176025.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kanis JA, Johnell O, De Laet C, Jonsson B, Oden A, Ogelsby AK. International variations in hip fracture probabilities: implications for risk assessment. J Bone Miner Res. 2002;17(7):1237–44.  https://doi.org/10.1359/jbmr.2002.17.7.1237.CrossRefPubMedGoogle Scholar
  34. 34.
    Reale B, Marchi D, Borgognini Tarli SM. A case of diffuse idiopathic skeletal hyperostosis (DISH) from a medieval necropolis in southern Italy. Int J Osteoarchaeol. 1999;9(5):369–73.  https://doi.org/10.1002/(SICI)1099-1212(199909/10)9:5<369::AID-OA486>3.0.CO;2-9.CrossRefGoogle Scholar
  35. 35.
    Sarzi-Puttini P, Atzeni F. New developments in our understanding of DISH (diffuse idiopathic skeletal hyperostosis). Curr Opin Rheumatol. 2004;16(3):287–92.CrossRefGoogle Scholar
  36. 36.
    Jankauskas R. The incidence of diffuse idiopathic skeletal hyperostosis and social status correlations in Lithuanian skeletal materials. Int J Osteoarchaeol. 2003;13(5):289–93.  https://doi.org/10.1002/oa.697.CrossRefGoogle Scholar
  37. 37.
    Harvey B. Living and dying in England 1100-1540: the monastic experience. Oxford: University Press; 1993.Google Scholar
  38. 38.
    Vercellotti G, Stout SD, Boano R, Sciulli PW. Intrapopulation variation in stature and body proportions: social status and sex differences in an Italian medieval population (Trino Vercellese, VC). Am J Phys Anthropol. 2011;145(2):203–14.  https://doi.org/10.1002/ajpa.21486.CrossRefPubMedGoogle Scholar
  39. 39.
    Bhote T. Medieval feasts and banquets: food, drink, and celebration in the middle ages. New York: Rosen Publishing Group; 2003.Google Scholar
  40. 40.
    Dunn A. The Peasant’s revolt: England’s failed revolution of 1381. Stroud: Tempus Publishing Limited; 2004.Google Scholar
  41. 41.
    Dyer C. English diet in the later middle ages. In: Aston TH, Cross PR, Dyer C, Thirsk J, editors. Social relations and ideas: essays in honour of R.H. Hilton. Cambridge: Cambridge University Press; 1983. p. 191–216.Google Scholar
  42. 42.
    Bishop M. The pelican book of the middle ages. Harmondsworth: Penguin; 1983.Google Scholar
  43. 43.
    Fahy GE, Deter C, Pitfield R, Miszkiewicz JJ, Mahoney P. Bone deep: variation in stable isotope ratios and histomorphometric measurements of bone remodelling within adult humans. J Archaeol Sci. 2017;87:10–6.  https://doi.org/10.1016/j.jas.2017.09.009.CrossRefGoogle Scholar
  44. 44.
    de Boer HH, Van der Merwe AE. Diagnostic dry bone histology in human paleopathology. Clin Anat. 2016;29(7):831–43.  https://doi.org/10.1002/ca.22753.CrossRefPubMedGoogle Scholar
  45. 45.
    Miszkiewicz JJ, Mahoney P. Histomorphometry and cortical robusticity of the adult human femur. J Bone Miner Metab. 2018;  https://doi.org/10.1007/s00774-017-0899-3.CrossRefGoogle Scholar
  46. 46.
    Ambrose SH, Krigbaum J. Bone chemistry and bioarchaeology. J Anthropol Archaeol. 2003;22(3):193–9.  https://doi.org/10.1016/S0278-4165(03)00033-3.CrossRefGoogle Scholar
  47. 47.
    Curto A, Maurer AF, Barrocas-Dias C, Mahoney P, Fernandes T, Fahy GE. Did military orders influence the general population diet? Stable isotope analysis from Medieval Tomar, Portugal. Archaeol Anthropol Sci. 2018;  https://doi.org/10.1007/s12520-018-0637-3.
  48. 48.
    Kaupová S, Velemínský P, Stránská P, Bravermanová M, Frolíková D, Tomková K, Frolík J. Dukes, elites, and commoners: dietary reconstruction of the early medieval population of Bohemia (9th–11th Century AD, Czech Republic). Archaeol Anthropol Sci. 2018;  https://doi.org/10.1007/s12520-018-0640-8.CrossRefGoogle Scholar
  49. 49.
    Buikstra JE, Ubelaker DH. Standards for data collection from human skeletal remains, Arkansas archaeological survey research series no. 44. Fayetteville: Arkansas Archeological Survey; 1994.Google Scholar
  50. 50.
    Longin R. New method of collagen extraction for radiocarbon dating. Nature. 1971;230(5291):241–2.CrossRefGoogle Scholar
  51. 51.
    Brown TA, Nelson DE, Vogel JS, Southon JR. Improved collagen extraction by modified Longin method. Radiocarbon. 1988;30(2):171–7.  https://doi.org/10.1017/S0033822200044118.CrossRefGoogle Scholar
  52. 52.
    Richards MP, Hedges RE. Stable isotope evidence for similarities in the types of marine foods used by Late Mesolithic humans at sites along the Atlantic coast of Europe. J Archaeol Sci. 1999;26(6):717–22.  https://doi.org/10.1006/jasc.1998.0387.CrossRefGoogle Scholar
  53. 53.
    Pasiakos SM. Metabolic advantages of higher protein diets and benefits of dairy foods on weight management, glycemic regulation, and bone. J Food Sci. 2015;80(Suppl 1):A2–7.  https://doi.org/10.1111/1750-3841.12804.CrossRefPubMedGoogle Scholar
  54. 54.
    Alexy U, Remer T, Manz F, Neu CM, Schoenau E. Long-term protein intake and dietary potential renal acid load are associated with bone modeling and remodeling at the proximal radius in healthy children. Am J Clin Nutr. 2005;82(5):1107–14.  https://doi.org/10.1093/ajcn/82.5.1107.CrossRefPubMedGoogle Scholar
  55. 55.
    Amanzadeh J, Gitomer WL, Zerwekh JE, Preisig PA, Moe OW, Pak CY, Levi M. Effect of high protein diet on stone-forming propensity and bone loss in rats. Kidney Int. 2003;64(6):2142–9.  https://doi.org/10.1046/j.1523-1755.2003.00309.x.CrossRefPubMedGoogle Scholar
  56. 56.
    Dubois-Ferrière V, Rizzoli R, Ammann P. A low protein diet alters bone material level properties and the response to in vitro repeated mechanical loading. Biomed Res Int. 2014;2014:185075.  https://doi.org/10.1155/2014/185075.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Miszkiewicz JJ. Linear enamel hypoplasia and age-at-death at Medieval (11th-16th Centuries) St. Gregory’s Priory and Cemetery, Canterbury, UK. Int J Osteoarchaeol. 1994;25(1):79–87.  https://doi.org/10.1002/oa.2265.CrossRefGoogle Scholar
  58. 58.
    Lee PC. The meanings of weaning: growth, lactation, and life history. Evol Anthropol. 1996;5(3):87–98.  https://doi.org/10.1002/(SICI)1520-6505(1996)5:3<87::AID-EVAN4>3.0.CO;2-T.CrossRefGoogle Scholar
  59. 59.
    Sellen DW. Comparison of infant feeding patterns reported for nonindustrial populations with current recommendations. J Nutr. 2001;131(10):2707–15.  https://doi.org/10.1093/jn/131.10.2707.CrossRefPubMedGoogle Scholar
  60. 60.
    Hawkes K, O’Connell JF, Jones NB, Alvarez H, Charnov EL. Grandmothering, menopause, and the evolution of human life histories. Proc Natl Acad Sci U S A. 1998;95(3):1336–9.CrossRefGoogle Scholar
  61. 61.
    Kaplan H, Hill K, Lancaster J, Hurtado AM. A theory of human life history evolution: diet, intelligence, and longevity. Evol Anthropol. 2000;9(4):156–85.  https://doi.org/10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7.CrossRefGoogle Scholar
  62. 62.
    Katzenberg MA, Herring DA, Saunders SR. Weaning and infant mortality: evaluating the skeletal evidence. Am J Phys Anthropol. 1996;101(S23):177–99.  https://doi.org/10.1002/(SICI)1096-8644(1996)23+<177::AID-AJPA7>3.0.CO;2-2.CrossRefGoogle Scholar
  63. 63.
    Davies DP, O’Hare B. Weaning: a worry as old as time. Curr Paediatr. 2004;14(2):83–96.  https://doi.org/10.1016/j.cupe.2003.11.006.CrossRefGoogle Scholar
  64. 64.
    Kennedy GE. From the ape’s dilemma to the weanling’s dilemma: early weaning and its evolutionary context. J Hum Evol. 2005;48(2):123–45.  https://doi.org/10.1016/j.jhevol.2004.09.005.CrossRefPubMedGoogle Scholar
  65. 65.
    Black RE, Brown KH, Becker S, Alim AA, Merson MH. Contamination of weaning foods and transmission of enterotoxigenic Escherichia coli diarrhoea in children in rural Bangladesh. Trans R Soc Trop Med Hyg. 1982;76(2):259–64.CrossRefGoogle Scholar
  66. 66.
    Walker AF. The contribution of weaning foods to protein–energy malnutrition. Nutr Res Rev. 1990;3(1):25–47.  https://doi.org/10.1079/NRR19900005.CrossRefPubMedGoogle Scholar
  67. 67.
    Motarjemi Y, Käferstein F, Moy G, Quevedo F. Contaminated weaning food: a major risk factor for diarrhoea and associated malnutrition. Bull World Health Organ. 1993;71(1):79–92.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Cummins AG, Thompson FA. Postnatal changes in mucosal immune response: a physiological perspective of breast feeding and weaning. Immunol Cell Biol. 1997;75(5):419–29.  https://doi.org/10.1038/icb.1997.67.CrossRefPubMedGoogle Scholar
  69. 69.
    Rowland MG, Barrell RA, Whitehead RG. Bacterial contamination in traditional Gambian weaning foods. Lancet. 1978;1(8056):136–8.CrossRefGoogle Scholar
  70. 70.
    Goodman AH, Rose JC. Assessment of systemic physiological perturbations from dental enamel hypoplasias and associated histological structures. Am J Phys Anthropol. 1990;33(S11):59–110.  https://doi.org/10.1002/ajpa.1330330506.CrossRefGoogle Scholar
  71. 71.
    Wright LE. Stresses of conquest: a study of Wilson bands and enamel hypoplasias in the Maya of Lamanai. Belize. Am J Hum Biol. 1990;2(1):25–35.  https://doi.org/10.1002/ajhb.1310020104.CrossRefPubMedGoogle Scholar
  72. 72.
    FitzGerald CM, Saunders S, Bondioli L, Macchiarelli R. Health of infants in an imperial Roman skeletal sample: perspective from dental microstructure. Am J Phys Anthropol. 2006;130(2):179–89.  https://doi.org/10.1002/ajpa.20275.CrossRefPubMedGoogle Scholar
  73. 73.
    Witzel C, Kierdorf U, Schultz M, Kierdorf H. Insights from the inside: histological analysis of abnormal enamel microstructure associated with hypoplastic enamel defects in human teeth. Am J Phys Anthropol. 2008;136(4):400–14.  https://doi.org/10.1002/ajpa.20822.CrossRefPubMedGoogle Scholar
  74. 74.
    Wilson IF, Shroff FR. The nature of the striae of Retzius as seen with the optical microscope. Aust Dent J. 1970;15(3):162–71.CrossRefGoogle Scholar
  75. 75.
    Sabel N. Enamel of primary teeth – morphological and chemical aspects. Swedish Dental Journal Supplement 222. Gothenburg: University of Gothenburg; 2012.Google Scholar
  76. 76.
    Bowman JE. Life history, growth and dental development in young primates: a study using captive rhesus macaques [PhD thesis]. University of Cambridge; 1991.Google Scholar
  77. 77.
    Dirks W, Reid DJ, Jolly CJ, Phillips-Conroy JE, Brett FL. Out of the mouths of baboons: stress, life history, and dental development in the awash National Park hybrid zone, Ethiopia. Am J Phys Anthropol. 2002;118(3):239–52.  https://doi.org/10.1002/ajpa.10089.CrossRefPubMedGoogle Scholar
  78. 78.
    Dirks W, Humphrey LT, Dean MC, Jeffries TE. The relationship of accentuated lines in enamel to weaning stress in juvenile baboons (Papio hamadryas anubis). Folia Primatol (Basel). 2010;81(4):207–23.  https://doi.org/10.1159/000321707.CrossRefGoogle Scholar
  79. 79.
    Austin C, Smith TM, Bradman A, Hinde K, Joannes-Boyau R, Bishop D, Hare DJ, Doble P, Eskenazi B, Arora M. Barium distributions in teeth reveal early-life dietary transitions in primates. Nature. 2013;498(7453):216–9.  https://doi.org/10.1038/nature12169.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Rose JC, Armelagos GJ, Lallo JW. Histological enamel indicator of childhood stress in prehistoric skeletal samples. Am J Phys Anthropol. 1978;49(4):511–6.  https://doi.org/10.1002/ajpa.1330490411.CrossRefPubMedGoogle Scholar
  81. 81.
    Fildes VA. Breasts, bottles and babies. Edinburgh: University Press; 1986.Google Scholar
  82. 82.
    Goldberg G. Women, work, and life cycle in a medieval economy. Women in work and Yorkshire c. 1300-1520. Oxford: Clarendon; 1992.Google Scholar
  83. 83.
    Mahoney P. Two dimensional patterns of human enamel thickness on deciduous (dm1, dm2) and permanent first (M1) mandibular molars. Arch Oral Biol. 2010;55(2):115–26.  https://doi.org/10.1016/j.archoralbio.2009.11.014.CrossRefPubMedGoogle Scholar
  84. 84.
    Mahoney P. Human deciduous mandibular molar incremental enamel development. Am J Phys Anthropol. 2012;147(4):637–51.  https://doi.org/10.1002/ajpa.22029.CrossRefPubMedGoogle Scholar
  85. 85.
    Mahoney P. Intraspecific variation in M1 enamel development in modern humans: implications for human evolution. J Hum Evol. 2008;55(1):131–47.  https://doi.org/10.1016/j.jhevol.2008.02.004.CrossRefPubMedGoogle Scholar
  86. 86.
    FitzGerald CM, Saunders SR. Test of histological methods of determining chronology of accentuated striae in deciduous teeth. Am J Phys Anthropol. 2005;127(3):277–90.  https://doi.org/10.1002/ajpa.10442.CrossRefPubMedGoogle Scholar
  87. 87.
    Waldron HA. Counting the dead. Chichester: Wiley; 1994.Google Scholar
  88. 88.
    Abrams ET, Miller EM. The roles of the immune system in women’s reproduction: evolutionary constraints and life history trade-offs. Am J Phys Anthropol. 2011;146(Suppl 53):134–54.  https://doi.org/10.1002/ajpa.21621.CrossRefPubMedGoogle Scholar
  89. 89.
    Bossù M, Bartoli A, Orsini G, Luppino E, Polimeni A. Enamel hypoplasia in coeliac children: a potential clinical marker of early diagnosis. Eur J Paediatr Dent. 2007;8(1):31–7.PubMedGoogle Scholar
  90. 90.
    Hanawalt B. Growing up in Medieval London: the experience of childhood in history. Oxford: University Press; 1993.Google Scholar
  91. 91.
    Fildes VA. The culture and biology of breastfeeding: an historical review of Western Europe. In: Stuart-Macadam P, Dettwyler K, editors. Breastfeeding: biocultural perspectives. New York: Aldine De Gruyter; 1995. p. 101–26.Google Scholar
  92. 92.
    Mahoney P, Schmidt CW, Deter C, Remy A, Slavin P, Johns SE, Miszkiewicz JJ, Nystrom P. Deciduous enamel 3D microwear texture analysis as an indicator of childhood diet in medieval Canterbury, England. J Archaeol Sci. 2016;66:128–36.  https://doi.org/10.1016/j.jas.2016.01.007.CrossRefGoogle Scholar
  93. 93.
    Mays S, Richards M, Fuller B. Bone stable isotope evidence for infant feeding in mediaeval England. Antiquity. 2002;76:654–6.  https://doi.org/10.1017/S0003598X00091067.CrossRefGoogle Scholar
  94. 94.
    Burt NM. Stable isotope ratio analysis of breastfeeding and weaning practices of children from Medieval Fishergate House York. Am J Phys Anthropol. 2013;152(3):407–16.  https://doi.org/10.1002/ajpa.22370.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Justyna J. Miszkiewicz
    • 1
    Email author
  • Tahlia J. Stewart
    • 1
  • Chris A. Deter
    • 2
  • Geraldine E. Fahy
    • 2
  • Patrick Mahoney
    • 2
  1. 1.School of Archaeology and AnthropologyAustralian National UniversityCanberraAustralia
  2. 2.School of Anthropology and ConservationUniversity of KentCanterburyUK

Personalised recommendations