Skip to main content

Evolution of Malware and Its Detection Techniques

  • Conference paper
  • First Online:
Information and Communication Technology for Sustainable Development

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 933))

Abstract

In today’s world, information is one of the most valuable assets, but there is a major threat to it by the evolving second-generation sophisticated malware, because it can enter the networks, quietly take the confidential data/information from the computational devices, and can cripple the infrastructures, etc. To detect these malware, time-to-time various techniques are proposed. These methods range from the early day signature-based detection to machine/deep learning techniques. Therefore, to understand the evolution of malware and its detection technique, this paper presents an overview of the evolution of malware and it’s detection techniques. It discusses in details the various type of second-generation malware and the popular detection techniques used to detect it, viz. signature matching, heuristic methods, normalization, and machine/deep learning techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Internet Security Threat Report (ISTR): Technical report. Symantec Corporation, April 2012. Date last accessed 31 May 2018. http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_2011_21239364.en-us.pdf

  2. The Need for Speed: 2013 Incident Response Survey. Technical report, FireEye (2013). Date last accessed 31 May 2018

    Google Scholar 

  3. Internet Security Threat Report (ISTR). Technical report, Symantec Corporation, April 2017. Date last accessed 31 May 2018. http://www.symantec.com/content/dam/symantec/docs/reports/istr-22-2017-en.pdf

  4. McAfee Labs Threats Report: Technical report, McAfee, June 2014. Date last accessed 31 May 2018. https://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q2-2014.pdf

  5. Internet Security Threat Report (ISTR): Technical report, Symantec Corporation, April 2014. Date last accessed 31 May 2018. https://www.symantec.com/content/dam/symantec/docs/reports/istr-22-2017-en.pdf

  6. Daly , M.K.: Advanced persistent threat. USENIX 4 (2009)

    Google Scholar 

  7. Quick Heal Quarterly Threat Report Q2 2015: Technical report, Quick Heal, February 2015. Date last accessed 31 May 2018. www.quickheal.co.in/resources/threat-reports

  8. Internet Security Threat Report (ISTR): Technical report, Symantec Corporation (2016). Date last accessed 31 May 2018

    Google Scholar 

  9. Sharma, A., Sahay, S.K.: An effective approach for classification of advanced malware with high accuracy. Int. J. Secur. Appl. 10(4), 249–266 (2016)

    Google Scholar 

  10. Sahay, S.K., Sharma, A.: Grouping the executables to detect malware with high accuracy. Procedia Comput. Sci. Proc. 78, 667–674 (2016)

    Google Scholar 

  11. Feizollah, A., Anuar, N.B., Salleh, R., Suarez-Tangil, G., Furnell, S.: Androdialysis: analysis of android intent effectiveness in malware detection. Comput. Secur. 65, 121–134 (2017)

    Article  Google Scholar 

  12. Das, S., Liu, Y., Zhang, W., Chandramohan, M.: Semantics-based online malware detection: towards efficient real-time protection against malware. IEEE Trans. Inform. Forens. Secur. 11(2), 289–302 (2016)

    Article  Google Scholar 

  13. Saracino, A., Sgandurra, D., Dini, G., Martinelli, F.: Madam: effective and efficient behavior-based android malware detection and prevention. IEEE Trans.Depend.Sec. Comput. 15(1), 83–97 (2017)

    Article  Google Scholar 

  14. Sharma, A., Sahay, S.K., Kumar, A.: Improving the detection accuracy of unknown malware by partitioning the executables in groups. In: Advanced Computing and Communication Technologies, pp. 421–431. Springer, Berlin (2016)

    Google Scholar 

  15. Sharma, A., Sahay, K, S.: An investigation of the classifiers to detect android malicious apps. In: Proceedings of ICICT Information and Communication Technology, vol. 625, pp. 207–217. Springer, Berlin (2017)

    Google Scholar 

  16. Sharma, A., Sahay, S.K.: Evolution and detection of polymorphic and metamorphic malwares: a survey. Int. J. Comput. Appl. 90(2), 7–11 (2014)

    Google Scholar 

  17. Security software–Statistics & Facts: https://www.statista.com/topics/2208/security-software (2016). Date last accessed 21 Mar 2018

  18. You, I., Yim, K.: Malware obfuscation techniques: a brief survey. In: 2010 International Conference on Broadband, Wireless Computing, Communication and Applications, Nov 2010, pp. 297–300

    Google Scholar 

  19. Stallings, W.: Network Security Essentials: Applications and Standards. Pearson Education India (2007)

    Google Scholar 

  20. Szor, P.: The Art of Computer Virus Research and Defense. Pearson Education (2005)

    Google Scholar 

  21. Beaucamps, P.: Advanced polymorphic techniques. Int. J. Comput. Sci. 2(3), 194–205 (2007)

    Google Scholar 

  22. You, I., Yim, K.: Malware obfuscation techniques: a brief survey. In: 2010 International conference on Broadband, Wireless Computing, Communication and Applications, pp. 297–300. IEEE (2010)

    Google Scholar 

  23. Shah, A.: Approximate disassembly using dynamic programming. Ph.D. thesis, Citeseer (2010)

    Google Scholar 

  24. Rad, B.B., Masrom, M., Ibrahim, S.: Camouflage in malware: from encryption to metamorphism. Int. J. Comput. Sci. Network Secur. 12(8), 74–83 (2012)

    Google Scholar 

  25. Rad, B.B., Masrom, M., Ibrahim, S.: Evolution of computer virus concealment and anti-virus techniques: a short survey. arXiv preprint arXiv:1104.1070 (2011)

  26. Szor, P., Ferrie, P.: Hunting for metamorphic. In: Virus Bulletin Conference, pp. 123–144 (2001)

    Google Scholar 

  27. Austin, T.H., Filiol, E., Josse, S., Stamp, M.: Exploring hidden markov models for virus analysis: a semantic approach. In: 46th Hawaii International Conference on System Sciences (HICSS), pp. 5039–5048. IEEE (2013)

    Google Scholar 

  28. Wong, W., Stamp, M.: Hunting for metamorphic engines. J. Comput. Virol. 2(3), 211–229 (2006)

    Article  Google Scholar 

  29. Griffin, K., Schneider, S., Hu, X., Chiueh, T.C.: Automatic generation of string signatures for malware detection. In: Recent Advances in Intrusion Detection, pp. 101–120. Springer, Berlin (2009)

    Google Scholar 

  30. Tran, N.P., Lee, M.: High performance string matching for security applications. In: 2013 International Conference on ICT for Smart Society (ICISS), pp. 1–5. IEEE (2013)

    Google Scholar 

  31. Ddcreateur: Antivirus 2004, [database on the internet] (March 2014), http://files.codes-ources.com/fichier_fullscreen.aspx?id=21418&f=virussignatur-es.txt&lang=en

  32. Grosso, N.D.: It’s time to rethink your corporate malware strategy, 24 Feb, 2002. https://www.sans.org/reading-room/whitepapers/malicious/its-time-rethink-corporate-malware-strategy-124

  33. Yanfang Ye, Tao Li, D.A.S.S.I.: A survey on malware detection using data mining techniques. ACM Comput. Surv. (CSUR) 50(3), 41:1–41:40 (2017)

    Google Scholar 

  34. Inc, D.: 3% to 5% of enterprise assets are compromised by bot-driven targeted attack malware, 2 Mar 2009. https://www.prnewswire.com/news-releases/3-to-5-of-enterprise-assets-are-compromised-by-bot-driven-targeted-attack-malware-61634867.html

  35. Harley, D., Lee, A.: Heuristic analysis–detecting unknown viruses. Technical report (2007). Date last accessed 31 May 2018

    Google Scholar 

  36. Mathur, K., Hiranwal, S.: A survey on techniques in detection and analyzing malware executables. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(4), 422–428 (2013)

    Google Scholar 

  37. Govindaraju, A.: Exhaustive statistical analysis for detection of metamorphic malware (2010)

    Google Scholar 

  38. Xu, M., Wu, L., Qi, S., Xu, J., Zhang, H., Ren, Y., Zheng, N.: A similarity metric method of obfuscated malware using function-call graph. J. Comput. Virol. Hack. Techniq. 9(1), 35–47 (2013)

    Article  Google Scholar 

  39. Xu, J.Y., Sung, A.H., Chavez, P., Mukkamala, S.: Polymorphic malicious executable scanner by api sequence analysis. In: Fourth International Conference on Hybrid Intelligent Systems (HIS’04), pp. 378–383. IEEE (2004)

    Google Scholar 

  40. Mihai Christodorescu, Somesh Jha, S.A.S.D.S., Bryant, R.E.: Semantics-aware malware detection. In: Proceedings of the 2005 IEEE Symposium on Security and Privacy (SP ’05), pp. 32–46. ACM, May 2005

    Google Scholar 

  41. Christodorescu, M., Kinder, J., Jha, S., Katzenbeisser, S., Veith, H.: Malware normalization. Technical report, University of Wisconsin (2005). http://pages.cs.wisc.edu/~mihai/publications /Malware%20Normalization/Malware%20Normalization.pdf

  42. Armoun, S.E., Hashemi, S.: A general paradigm for normalizing metamorphic malwares. In: 2012 10th International Conference on Frontiers of Information Technology (FIT), pp. 348–353. IEEE (2012)

    Google Scholar 

  43. Mitchell, T.M.: Machine Learning. McGraw-Hill, Boston (1997)

    MATH  Google Scholar 

  44. Moskovitch, R., Elovici, Y., Rokach, L.: Detection of unknown computer worms based on behavioral classification of the host. Comput. Stat. Data Anal. 52(9), 4544–4566 (2008)

    Article  MathSciNet  Google Scholar 

  45. Alazab, M., Venkatraman, S., Watters, P., Alazab, M.: Zero-day malware detection based on supervised learning algorithms of API call signatures. In: Proceedings of the Ninth Australasian Data Mining Conference, vol. 121, pp. 171–182. Australian Computer Society, Inc. (2011)

    Google Scholar 

  46. Siddiqui, M., Wang, M.C., Lee, J.: A survey of data mining techniques for malware detection using file features. In: Proceedings of the 46th Annual Southeast Regional Conference on xx, pp. 509–510. ACM (2008)

    Google Scholar 

  47. Jacob, G., Debar, H., Filiol, E.: Behavioral detection of malware: from a survey towards an established taxonomy. J. Comput. Virol. 4(3), 251–266 (2008)

    Article  Google Scholar 

  48. Grosse, K., Papernot, N., Manoharan, P., Backes, M., McDaniel, P.: Adversarial Perturbations Against Deep Neural Networks for Malware Classification (2016). https://arxiv.org/abs/1606.04435?context=cs

  49. Yin, W., Kann, K., Yu, M., Schutze, H.: Comparative Study of CNN and RNN for Natural Language Processing (2017). https://arxiv.org/abs/1702.01923

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay K. Sahay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sahay, S.K., Sharma, A., Rathore, H. (2020). Evolution of Malware and Its Detection Techniques. In: Tuba, M., Akashe, S., Joshi, A. (eds) Information and Communication Technology for Sustainable Development. Advances in Intelligent Systems and Computing, vol 933. Springer, Singapore. https://doi.org/10.1007/978-981-13-7166-0_14

Download citation

Publish with us

Policies and ethics