Skip to main content

Natural Compounds Extracted from Medicinal Plants and Their Applications

  • Chapter
  • First Online:
Natural Bio-active Compounds

Abstract

Plant natural products have played an important role in the lives of human beings for their use as a source of food and medicine. The medicinal properties in plants typically result from the different combinations of these natural compounds known as phytochemicals. Generally, these phytochemicals are classified into primary and secondary compounds. Primary compounds include chlorophyll, proteins, and sugars, while secondary compounds include terpenoids, alkaloids, flavonoids, and phenolic. Many fruits, vegetables, and herbs contain a great variety of phytochemical such as phenolic compounds (phenolic acids, flavonoids, quinones, coumarins, lignans, stilbenes, tannins), nitrogen compounds (alkaloids, amines, betalains), vitamins (A, C, D, E), and terpenes (including carotenoids). Different phytochemicals have different pharmacological activities, i.e., terpenoids have antibacterial, anti-inflammatory, anticancer, antimalarial, and antiviral activities. Alkaloids mostly have anesthetics properties. Phenolic compounds play important role in neutralizing free radicals. Flavonoids, one of the large groups of phenolic compounds, have various clinical properties such as anti-atherosclerotic, anti-inflammatory, antitumor, and antiviral. Due to this the phytochemicals are considered as a rich source of natural antioxidants and achieve an appreciable role in the development of modern drug for diseases, i.e., tumor, hepatic diseases, and arthritis. Apart from medicine, these natural compounds are also used as flavoring agents, fragrances, and functional additives by the cosmetic and pharmaceutical industries. Many of these well-known and traditionally used natural compounds extracted from tea, wine, fruit, vegetables, and spices are already being introduced commercially, both as medicine and additives in food supplements. Thus, natural compounds become an alternate health-care system to resolve the health problems of the world in today’s era. Therefore, the aim of this chapter is to provide an overview on the various types of phytochemicals and their medicinal importance, which may be helpful for the researchers to design new drugs against different disorders.

Sunbal Khalil Chaudhari and Mohd Sayeed Akhtar have equally contributed for this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aherne SA, O’Brien NM (2002) Dietary flavonols: chemistry, food content, and metabolism. Nutrition 18:75–81

    Article  CAS  PubMed  Google Scholar 

  • Andrae-Marobela K, Ghislain FW, Okatch H, Majinda R (2013) Polyphenols: a diverse class of multi-target anti-HIV-1 agents. Curr Drug Metab 7:392

    Article  Google Scholar 

  • Angerhofer CK, Guinaudeau H, Wongpanich V, Pezzuto JM, Cordell GA (1999) Antiplasmodial and cytotoxic activity of natural bisbenzylisoquinoline alkaloids. J Nat Prod 62:59–66

    Article  CAS  PubMed  Google Scholar 

  • Arts ICW, Hollman PCH (2005) Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr 81:317–325

    Article  Google Scholar 

  • Atmani D, Nassima C, Dina A, Meriem B, Nadjet D, Hania B (2009) Flavonoids in human health: from structure to biological activity. Curr Nutr Food Sci 5:225–237

    Article  CAS  Google Scholar 

  • Beckman CH (2000) Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants. Physiol Mol Plant Pathol 57:101–110

    Article  CAS  Google Scholar 

  • Biavatti MW, Vieira PC, da Silva MFGF, Fernandes JB, Victor SR, Pagnocca FC, Albuquerque S, Caracelli I, Zukerman-Schpector J (2002) Biological activity of quinoline alkaloids from Raulinoa echinata and X-ray structure of flindersiamine. J Braz Chem Soc 13:66–70

    Article  CAS  Google Scholar 

  • Bokesch HR, Pannell LK, McKee TC, Boyd MR (2000) Coscinamides A, B and C, three new bis-indole alkaloids from the marine sponge Cosinoderma sp. Tetrahedron Lett 41:6305–6308

    Article  CAS  Google Scholar 

  • Bringmann G, Lang G, Muhlbacher J, Schaumann K, Steffens S, Rytik PG, Hentschel U, Morschhäuser J, Müller WE (2003) Sorbicillactone a: a structurally unprecedented bioactive novel-type alkaloid from a sponge-derived fungus. Prog Mol Subcell Biol 37:231–253

    Article  CAS  PubMed  Google Scholar 

  • Buckingham J (2010) Dictionary of alkaloids, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  • Cheynier V (2005) Polyphenols in foods are more complex than often thought. Am J Clin Nutri 81:S223–S229

    Article  Google Scholar 

  • Chung HS, Woo WS (2001) A quinolone alkaloid with antioxidant activity from the aleurone layer of anthocyanin-pigmented rice. J Nat Prod 64:1579–1580

    Article  CAS  PubMed  Google Scholar 

  • Cordell GA (1983) Introduction to alkaloids: a biogenic approach. Wiley-Interscience, New York, p 1055

    Google Scholar 

  • Correche ER, Andujar SA, Kurdelas RR, Gomez Lechon MJ, Freile ML, Enriz RD (2008) Antioxidant and cytotoxic activities of canadine: biological effects and structural aspects. Bioorg Med Chem 16:3641–3651

    Article  CAS  PubMed  Google Scholar 

  • Costa MA, Zia ZQ, Davin LB, Lewis NG (1999) Toward engineering the metabolic pathways of cancer-preventing lignans in cereal grains and other crops. In: Romeo JT (ed) Recent advances in phytochemistry, phytochemicals in human health protection, nutrition, and plant defense, vol 33. Kluwer Academic, New York, pp 67–87

    Chapter  Google Scholar 

  • Cronemberger S, Calixto N, Moraes MN, Castro ID, Lana PC, Loredo AF (2012) Efficiency of one drop of 2% pilocarpine to reverse the intraocular pressure peak at 6:00 A.M. in early glaucoma. Vision Pan. Am J Ophthalmol 11:14–16

    Google Scholar 

  • Dai J, Mumper R (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das M, Vedasiromoni JR, Chauhan SPS, Ganguly DK (1997) Effect of green tea (Camellia sinensis) extract on the rat diaphragm. J Ethnopharmacol 57:197–201

    Article  CAS  PubMed  Google Scholar 

  • De Luca L (2006) Naturally occurring and synthetic imidazoles: their chemistry and their biological activities. Curr Med Chem 13:1–23

    PubMed  Google Scholar 

  • Eagleson M (1994) Concise encyclopedia chemistry, 1st edn. Walter de Gruyter, Berlin

    Google Scholar 

  • Frick S, Kramell R, Schmidt J, Fist AJ, Kutchan TM (2005) Comparative qualitative and quantitative determination of alkaloids in narcotic and condiment Papaver somniferum. J Nat Prod 68:666–673

    Article  CAS  PubMed  Google Scholar 

  • Gehm BD, McAndrews JM, Pei YC, Jameson JL (1997) Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor. Proc Natl Acad Sci U S A 94:14138–14143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georgiev MI (2013) Coming back to nature: plants as a vital source of pharmaceutically important metabolites-part II A. Curr Med Chem 20:975

    CAS  PubMed  Google Scholar 

  • Gibson EL, Wardel J, Watts CJ (1998) Fruit and vegetable consumption, nutritional knowledge and beliefs in mothers and children. Appetite 31:205–228

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Coloma A, Guadano A, Gutierrez C, Cabrera R, de La Pena E, de La Fuente G et al (1998) Antifeedant delphinium diterpenoid alkaloids. Structure-activity relationships. J Agric Food Chem 46:286–290

    Article  CAS  PubMed  Google Scholar 

  • Goto S, Okutomi T, Suma Y, Kera J, Soma G, Takeuchi S (1996) Induction of tumor necrosis factor by a camptothecin derivative, irinotecan, in mice and human mononuclear cells. Anticancer Res 16:2507–2511

    CAS  PubMed  Google Scholar 

  • Graefe EU, Wittig J, Mueller S (2001) Pharmacokinetics and bioavailability of quercetin glycosides in humans. J Clin Pharmacol 41:492–499

    Article  CAS  PubMed  Google Scholar 

  • Graf BA, Milbury PE, Blumberg JB (2005) Flavonols, flavones, flavanones and human health: epidemiological evidence. J Med Food 8:281–290

    Article  CAS  PubMed  Google Scholar 

  • Gul W, Hamann MT (2005) Indole alkaloid marine natural products: an established source of cancer drug leads with considerable promise for control of parasitic, neurological and other diseases. Life Sci 78:442–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gyamfi MA, Aniya Y (2002) Antioxidant properties of Thonningianin A, isolated from the African medicinal herb, Thonningia sanguinea. Biochem Pharmacol 63:1725–1737

    Article  CAS  PubMed  Google Scholar 

  • Heinonen S, Nurmi T, Liukkonen K (2001) In vitro metabolism of plant lignans: new precursors of mammalian lignans enterolactone and enterodiol. J Agric Food Chem 49:3178–3186

    Article  CAS  PubMed  Google Scholar 

  • Heinrich M (2013) Ethnopharmacology and drug discovery. In: Reedijk J (ed) Elsevier reference module in chemistry, molecular sciences and chemical engineering. Elsevier, Oxford

    Google Scholar 

  • Herman A, Herman AP (2013) Caffeine’s mechanisms of action and its cosmetic use. Skin Pharmacol Physiol 26:8–14

    Article  CAS  PubMed  Google Scholar 

  • Kahkonen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, Heinonen M (1999) Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 47:3954–3962

    Article  CAS  PubMed  Google Scholar 

  • Kainsa S, Kumar P, Rani P (2012) Medicinal plants of Asian origin having anticancer potential: short review. Asian J Biomed Pharm Sci 2:1–7

    Google Scholar 

  • Kolak U, Ozturk M, Ozgokce F, Ulubelen A (2006) Norditerpene alkaloids from Delphinium linearilobum and antioxidant activity. Phytochemistry 67:2170–2175

    Article  CAS  PubMed  Google Scholar 

  • Kondratyuk TP, Pezzuto JM (2004) Natural product polyphenols of relevance to human health. Pharm Biol 42:46–63

    Article  CAS  Google Scholar 

  • Lamoral-Theys D, Decaestecker C, Mathieu V, Dubois J, Kornienko A, Kiss R, Evidente A, Pottier L (2010) Lycorine and its derivatives for anticancer drug design. Mini-Rev Med Chem 10:41–50

    Article  CAS  PubMed  Google Scholar 

  • Lanzotti V (2014) Drugs based on natural compounds: recent achievements and future perspectives. Phytochem Rev 13:725–726

    Article  CAS  Google Scholar 

  • Lesschaeve I, Noble AC (2005) Polyphenols: factors influencing their sensory properties and their effects on food and beverage preferences. Am J Clin Nutri 81:S330–S335

    Article  Google Scholar 

  • Li S, Lo CY, Pan MH, Lai CS, Ho CT (2013) Black tea: chemical analysis and stability. Food Funct 4:10–18

    Article  PubMed  Google Scholar 

  • Lohombo-Ekomba ML, Okusa PN, Penge O, Kabongo C, Choudhary MI, Kasende OE (2004) Antibacterial, antifungal, antiplasmodial, and cytotoxic activities of Albertisia villosa. J Ethnopharmacol 93:331–335

    Article  PubMed  Google Scholar 

  • Machado PA, Hilario FF, Carvalho LO, Silveira MLT, Alves RB, Freitas RP, Coimbra ES (2012) Effect of 3-alkylpyridine marine alkaloid analogues in Leishmania species related to American cutaneous Leishmaniasis. Chem Biol Drug Res 80:745–751

    Article  CAS  Google Scholar 

  • Majik MS, Tilve SG (2012) Pyrrolizidine alkaloids pyrrolams A-D: survey on synthetic efforts, biological activities and studies on their stability. Synthesis 44:2373–2681

    Article  CAS  Google Scholar 

  • Manach C, Williamson G, Morand C, Scalbert A, Remesy C (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81:S230–S242

    Article  Google Scholar 

  • Manske RHF (1965) The alkaloids. Chemistry and physiology. Academic Press, New York

    Google Scholar 

  • Marella A, Tanwar OP, Saha R, Ali MR, Srivastava S, Akhter M et al (2013) Quinoline: a versatile heterocyclic. Saudi Pharm J 21:1–12

    Article  PubMed  Google Scholar 

  • Mc-Leod MN (1974) Plant tannins: their role in forage quality. Nutr Abstr Rev 44:803–812

    Google Scholar 

  • McNaught D, Wilkinson A (1997) IUPAC, compendium of chemical terminology. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Meagher E, Thomson C (1999) Vitamin and mineral therapy. In: Morrison G, Hark L (eds) Medical nutrition and disease, 2nd edn. Blackwell Science Inc, Malden, Massachusetts, pp 33–58

    Google Scholar 

  • Meng F, Zuo G, Hao X, Wang G, Xiao H, Zhang J, Xu G (2009) Antifungal activity of the benzo[c]phenanthridine alkaloids from Chelidonium majus Linn. Against resistant clinical yeast isolates. J Ethnopharmacol 125:494–496

    Article  CAS  PubMed  Google Scholar 

  • Molyneux RJ, Nash RJ, Asano N (1996) Alkaloids. In: Pelletier SW (ed) Chemical and biological perspectives, vol 11. Pergamon, Oxford

    Google Scholar 

  • Mueller-Harvey I, McAllan AB (1992) Tannins. Their biochemistry and nutritional properties. In: Morrison IM (ed) Advances in plant cell biochemistry and biotechnology, vol 1. JAI Press Ltd, London, pp 151–217

    Google Scholar 

  • Nassiri M (2013) Simple, one-pot, and three-component coupling reactions of azaarenes (phenanthridine, isoquinoline, and quinoline), with acetylenic esters involving methyl propiolate or ethyl propiolate in the presence of nh-heterocyclic or 1,3-dicarbonyl compounds. Synth Commun 43:157–168

    Article  CAS  Google Scholar 

  • Nibret E, Sporer F, Asres K, Wink M (2009) Antitrypanosomal and cytotoxic activities of pyrrolizidine alkaloid-producing plants of Ethiopia. J Pharm Pharmacol 61:801–808

    Article  CAS  PubMed  Google Scholar 

  • Nielsen IL, Dragsted LO, Ravn-Haren G, Freese R, Rasmussen SE (2003) Absorption and excretion of black currant anthocyanins in humans and Watanabe heritable hyperlipidemic rabbits. J Agric Food Chem 51:2813–2820

    Article  CAS  PubMed  Google Scholar 

  • Palavy K, Priscilla MD (2006) Standardisation of selected Indian medicinal herbal raw material containing polyphenols as major constituents. J Pharmacol Sci 68:506–509

    Google Scholar 

  • Parmar NJ, Pansuriya BR, Barad HA, Kant R, Gupta VK (2012) An improved microwave assisted one-pot synthesis, and biological investigations of some novel aryldiacenyl chromeno fused pyrrolidines. Bioorg Med Chem Lett 22:4075–4079

    Article  CAS  PubMed  Google Scholar 

  • Pelletier SW (1983) The nature and definition of an alkaloids. In: Alkaloids: chemical and biological perspectives. Wiley, New York

    Google Scholar 

  • Rahman S, Akbor MM, Howlader A, Jabbar A (2009) Antimicrobial and cytotoxic activity of the alkaloids of Amlaki (Emblica officinalis). Pak J Biol Sci 12:1152–1155

    Article  CAS  PubMed  Google Scholar 

  • Rao RVK, Ali N, Reddy MN (1978) Occurrence of both sapogenins and alkaloid lycorine in Curculigo orchioides. Indian J Pharm Sci 40:104–105

    CAS  Google Scholar 

  • Saleem M, Kim HJ, Ali MS, Lee YS (2005) An update on bioactive plant lignans. Nat Prod Rep 22:696–716

    Article  CAS  PubMed  Google Scholar 

  • Salunkhe DK, Jadhav SJ, Kadam SS, Chavan JK (1982) Chemical, biochemical, and biological significance of polyphenols in cereals and legumes. Crit Rev Food Sci Nutr 17:277–305

    Article  CAS  PubMed  Google Scholar 

  • Schmeller T, Wink M (1998) Utilization of alkaloids in modern medicine. Springer, Heidelberg, pp 435–459

    Google Scholar 

  • Schofield P, Mbugua DM, Pell AN (2001) Analysis of condensed tannins: a review. Anim Feed Sci Technol 91:21–40

    Article  CAS  Google Scholar 

  • Shao R, Xiao JB (2013) Natural products for treatment of Alzheimer’s disease and relative diseases: understanding their mechanism of action. Curr Neuropharmacol 11:367

    Google Scholar 

  • Singh AK, Chawla R, Rai A, Yadav LDS (2012) NHC-catalysed diastereoselective synthesis of multi-functionalised piperidines via cascade reaction of enals with azalactones. Chem Commun 48:3766–3788

    Article  CAS  Google Scholar 

  • Sotnikova R, Kettmann V, Kostalova D, Taborska E (1997) Relaxant properties of some aporphine alkaloids from Mahonia aquifolium. Methods Find Exp Clin Pharmacol 19:589–597

    CAS  PubMed  Google Scholar 

  • Spencer JP, Abd El Mohsen MM, Minihane AM, Mathers JC (2008) Biomarkers of the intake of dietary polyphenols: strengths, limitations and application in nutrition research. Br J Nutr 99:12–22

    Article  CAS  PubMed  Google Scholar 

  • Stary F (1996) The natural guide to medicinal herbs and plants. Barnes & Noble Inc, New York

    Google Scholar 

  • Surh YJ, Hurh YJ, Kang JY, Lee E, Kong G, Lee SJ (1999) Resveratrol, an antioxidant present in red wine, induces apoptosis in human promyelocytic leukemia (HL60) cells. Cancer Lett 140:1–10

    Article  CAS  PubMed  Google Scholar 

  • Tari C, Fournier N, Briand C, Ducet G, Crevat A (1986) Action of vinca alkaloides on calcium movements through mitochondrial membrane. Pharmacol Res Commun 18:519–528

    Article  CAS  PubMed  Google Scholar 

  • Willför SM, Smeds AI, Holmbom BR (2006) Chromatographic analysis of lignans. J Chromatogr A 1012:64–77

    Article  CAS  Google Scholar 

  • Wirasathien L, Boonarkart C, Pengsuparp T, Suttisri R (2006) Biological activities of alkaloids from Pseuduvaria setosa. Pharm Biol 44:274–278

    Article  CAS  Google Scholar 

  • Wittig J, Herderich M, Graefe EU, Veit M (2001) Identification of quercetin glucuronides in human plasma by high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr B 753:237–243

    Article  CAS  Google Scholar 

  • Wood JG, Rogina B, Lavu S, Howitz KT, Helfand SL, Tatar M, Sinclair DA (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430:686–689

    Article  CAS  PubMed  Google Scholar 

  • Wright AE, Pomponi SA, Cross SS, McCarthy P (1992) A new bis (indole) alkaloid from a deep-water marine sponge of the genus Spongosorites. J Organomet Chem 57:4772–4775

    Article  CAS  Google Scholar 

  • Wright CW, Marshall SJ, Russell PF, Anderson MM, Phillipson JD, Kirby GC, Warhurst DC, Schiff PL (2000) In vitro antiplasmodial, antiamoebic, and cytotoxic activities of some monomeric isoquinoline alkaloids. J Nat Prod 63:1638–1640

    Article  CAS  PubMed  Google Scholar 

  • Xiao JB (2015) Natural polyphenols and diabetes: understanding their mechanism of action. Curr Med Chem 22:2

    Article  CAS  PubMed  Google Scholar 

  • Xiao JB, Jiang HX (2015) A review on the structure-function relationship aspect of polysaccharides from tea materials. Crit Rev Food Nutr 55:930–938

    Article  CAS  Google Scholar 

  • Xiao JB, Muzashvili TS, Georgiev MI (2014) Advance on biotechnology for glycosylation of high-value flavonoids. Biotechnol Adv 32:1145–1156

    Article  CAS  PubMed  Google Scholar 

  • Yui S, Mikami M, Mimaki Y, Sashida Y, Yamazaki M (2001) Inhibition effect of Amaryllidaceae alkaloids, Lycorine and Lycoricidinol on macrophage TNF-α production. Yakugaku Zasshi 121:167–171

    Article  CAS  PubMed  Google Scholar 

  • Zhu YJ, Agbayani R, Jackson MC, Tang CS, Moore PH (2004) Expression of the grapevine stilbene synthase gene VST1 in papaya provides increased resistance against diseases caused by Phytophthora palmivora. Planta 220:241–250

    Article  CAS  PubMed  Google Scholar 

  • Ziegler J, Facchini PJ (2008) Alkaloid biosynthesis: metabolism and trafficking. Annu Rev Plant Biol 59:735–769

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunbal Khalil Chaudhari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saboon, Chaudhari, S.K., Arshad, S., Amjad, M.S., Akhtar, M.S. (2019). Natural Compounds Extracted from Medicinal Plants and Their Applications. In: Akhtar, M., Swamy, M., Sinniah, U. (eds) Natural Bio-active Compounds. Springer, Singapore. https://doi.org/10.1007/978-981-13-7154-7_7

Download citation

Publish with us

Policies and ethics