Skip to main content

Linear Rule Based Ensemble Methods for the Prediction of Number of Faults

  • Chapter
  • First Online:
Book cover Fault Prediction Modeling for the Prediction of Number of Software Faults

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

  • 303 Accesses

Abstract

Software fault prediction models are highly influenced by the use of learning techniques and characteristics of fault datasets .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Remove Percentage filter, http://weka.sourceforge.net/doc.dev/weka/filters/unsupervised/instance/RemovePercentage.html.

References

  1. Aldave, R., Dussault, J.P.: Systematic ensemble learning for regression (2014). arXiv preprint arXiv:1403.7267

  2. Boetticher, G.: The PROMISE repository of empirical software engineering data. http://promisedata.org/repository (2007)

  3. Brown, G.: Diversity in neural network ensembles. Ph.D. thesis, University of Birmingham (2004)

    Google Scholar 

  4. Challagulla, U.V., Bastani, F.B., Yen, I.L.: A unified framework for defect data analysis using the mbr technique. In: Proceeding of 18th IEEE International Conference on Tools with Artificial Intelligence, pp. 39–46 (2006)

    Google Scholar 

  5. Dietterich, T.G.: Ensemble methods in machine learning. International workshop on multiple classifier systems, pp. 1–15. Springer, Berlin, Heidelberg (2000)

    Google Scholar 

  6. Fenton, N.E., Neil, M.: A critique of software defect prediction models. IEEE Trans. Softw. Eng. 25(5), 675–689 (1999)

    Article  Google Scholar 

  7. Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance dilemma. Neural Comput. 4(1), 1–58 (1992)

    Article  Google Scholar 

  8. Holmes, G., Donkin A., Witten, I.H.: Weka: a machine learning workbench. In: Proceedings of the 2nd Australian and New Zealand Conference on Intelligent Information Systems, pp. 357–361 (1994)

    Google Scholar 

  9. Jiang, Y., Cukic, B., Ma, Y.: Techniques for evaluating fault prediction models. Empir. Softw. Eng. 13(5), 561–595 (2008)

    Article  Google Scholar 

  10. Khoshgoftaar, T.M., Geleyn, E., Nguyen, L.: Empirical case studies of combining software quality classification models. In: Proceedings of 3rd International Conference on Quality Software, pp. 40–49 (2003)

    Google Scholar 

  11. LeBlanc, M., Tibshirani, R.: Combining estimates in regression and classification. J. Am. Stat. Assoc. 91(436), 1641–1650 (1996)

    MathSciNet  MATH  Google Scholar 

  12. Lessmann, S., Baesens, B., Mues, C., Pietsch, S.: Benchmarking classification models for software defect prediction: a proposed framework and novel findings. IEEE Trans. Softw. Eng. 34(4), 485–496 (2008)

    Article  Google Scholar 

  13. Mendes-Moreira, J., Soares, C., Jorge, A.M., Sousa, J.F.D.: Ensemble approaches for regression: a survey. ACM Comput. Surv. (CSUR) 45(1), 1–40 (2012)

    Article  Google Scholar 

  14. Menzies, T., Milton, Z., Turhan, B., Cukic, B., Jiang, Y., Bener, A.: Defect prediction from static code features: current results, limitations, new approaches. Autom. Softw. Eng. 17(4), 375–407 (2010)

    Article  Google Scholar 

  15. Merz, C.J.: Classification and regression by combining models. Ph.D. thesis, University of California, Irvine (1998)

    Google Scholar 

  16. Podgurski, A., Yang, C.: Partition testing, stratified sampling, and cluster analysis. Proc. ACM SIGSOFT Softw. Eng. Notes 18, 169–181 (1993)

    Article  Google Scholar 

  17. Rathore, S.S., Kumar, S.: Linear and non-linear heterogeneous ensemble methods to predict the number of faults in software systems. Knowl. Based Syst. 119, 232–256 (2017)

    Article  Google Scholar 

  18. Sun, Z., Song, Q., Zhu, X.: Using coding-based ensemble learning to improve software defect prediction. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(6), 1806–1817 (2012)

    Article  Google Scholar 

  19. Vandecruys, O., Martens, D., Baesens, B., Mues, C., De Backer, M., Haesen, R.: Mining software repositories for comprehensible software fault prediction models. J. Syst. Softw. 81(5), 823–839 (2008)

    Article  Google Scholar 

  20. Wang, T., Zhang, Z., Jing, X., Zhang, L.: Multiple kernel ensemble learning for software defect prediction. Autom. Softw. Eng., 1–22 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Singh Rathore .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rathore, S.S., Kumar, S. (2019). Linear Rule Based Ensemble Methods for the Prediction of Number of Faults. In: Fault Prediction Modeling for the Prediction of Number of Software Faults. SpringerBriefs in Computer Science. Springer, Singapore. https://doi.org/10.1007/978-981-13-7131-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7131-8_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7130-1

  • Online ISBN: 978-981-13-7131-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics