Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 346 Accesses

Abstract

In this chapter, we firstly introduce basic properties and related literatures of lead telluride (PbTe), and then show experimental results obtained in this study. We identified large second harmonic in FFT spectra of the quantum oscillations, and pointed out that this is an evidence for large spin-splitting in PbTe. The simple band structure and distinct spin-splitting caused by strong spin-orbit interaction in PbTe enable us to testify the evaluation of the Zeeman-cyclotron ratio, which has been proposed as a macroscopic index to find how close the system is to the ideal two-band Dirac system. Comparing our data with numerical simulation based on Lifshitz-Kosevich formula, we determined the Zeeman-cyclotron ratio to 0.52 in pristine PbTe. We also pointed out that the effect of Zeeman splitting seriously affects the Landau-level fan diagram analysis, which is widely used to extract the nontrivial Berry’s phase from the quantum oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nikolic PM (1965) Brit J Appl Phys 16:1075. http://stacks.iop.org/0508-3443/16/i=8/a=303

  2. Conklin JB, Johnson LE, Pratt GW (1965) Phys Rev 137:A1282. https://link.aps.org/doi/10.1103/PhysRev.137.A1282

  3. Kuraya T, Fuseya Y (2015) J Phys Conf Ser 603:012025. http://stacks.iop.org/1742-6596/603/i=1/a=012025

  4. Nimtz G, Schlicht B (1983) Narrow-gap lead salts. In: Narrow-gap semiconductors. Springer, Berlin

    Google Scholar 

  5. Lin PJ, Kleinman L (1966) Phys Rev 142:478. https://link.aps.org/doi/10.1103/PhysRev.142.478

  6. Setyawan W, Curtarolo S (2010) Comp Mater Sci 49:299. http://www.sciencedirect.com/science/article/pii/S0927025610002697

  7. Allgaier RS, Scanlon WW (1958) Phys Rev 111:1029. https://link.aps.org/doi/10.1103/PhysRev.111.1029

  8. Allgaier RS (1958) Phys Rev 112:828. https://link.aps.org/doi/10.1103/PhysRev.112.828

  9. Kanai Y, Nii R, Watanabe N (1960) J Phys Soc Jpn 15:1717A. https://doi.org/10.1143/JPSJ.15.1717A

  10. Cuff KF, Ellett MR, Kuglin CD (1961) J Appl Phys 32:2179. https://doi.org/10.1063/1.1777038

  11. Stiles PJ, Burstein E, Langenberg DN (1961) Phys Rev Lett 6:667. https://link.aps.org/doi/10.1103/PhysRevLett.6.667

  12. Stiles PJ, Burstein E, Langenberg DN (1962) Phys Rev Lett 9:257. https://link.aps.org/doi/10.1103/PhysRevLett.9.257

  13. Nii R (1963) J Phys Soc Jpn 18:456. https://doi.org/10.1143/JPSJ.18.456

  14. Burke JR, Houston B, Savage HT (1970) Phys Rev B 2:1977. https://link.aps.org/doi/10.1103/PhysRevB.2.1977

  15. Giraldo-Gallo P, Sangiorgio B, Walmsley P, Silverstein HJ, Fechner M, Riggs SC, Geballe TH, Spaldin NA, Fisher IR (2016) Phys Rev B 94:195141. https://link.aps.org/doi/10.1103/PhysRevB.94.195141

  16. Shoenberg D (1984) Magnetic oscillations in metals. Cambridge University Press, Cambridge

    Book  Google Scholar 

  17. Jensen JD, Houston B, Burke JR (1978) Phys Rev B 18:5567. https://link.aps.org/doi/10.1103/PhysRevB.18.5567

  18. Schilz W (1969) J Phys Chem Solids 30:893. http://www.sciencedirect.com/science/article/pii/0022369769902868

  19. Thompson TE, Aron PR, Chandrasekhar BS, Langenberg DN (1971) Phys Rev B 4:518. https://link.aps.org/doi/10.1103/PhysRevB.4.518

  20. Short NR (1968) J Phys D Appl Phys 1:129. http://stacks.iop.org/0022-3727/1/i=1/a=120

  21. Dimmock JO, Melngailis I, Strauss AJ (1966) Phys Rev Lett 16:1193. https://link.aps.org/doi/10.1103/PhysRevLett.16.1193

  22. Mazelsky R, Lubell MS, Kramer WE (1962) J Chem Phys 37:45. https://doi.org/10.1063/1.1732972

  23. Bylander EG (1966) Mater Sci Eng 1:190. http://www.sciencedirect.com/science/article/pii/0025541666900218

  24. Melngailis I, Calawa AR (1966) Appl Phys Lett 9:304. https://doi.org/10.1063/1.1754761

  25. Golin S (1968) Phys Rev 176:830. https://link.aps.org/doi/10.1103/PhysRev.176.830

  26. Herman F, Skillman S (1963) Atomic structure calculations. Prentice-Hall, New Jersey

    Google Scholar 

  27. Melngailis J, Harman TC, Mavroides JG, Dimmock JO (1971) Phys Rev B 3:370. https://link.aps.org/doi/10.1103/PhysRevB.3.370

  28. Xu S-Y, Liu C, Alidoust N, Neupane M, Qian D, Belopolski I, Denlinger JD, Wang YJ, Lin H, Wray LA, Landolt G, Slomski B, Dil JH, Marcinkova A, Morosan E, Gibson Q, Sankar R, Chou FC, Cava RJ, Bansil A, Hasan MZ (2012) Nat Commun 3:1192. http://dx.doi.org/10.1038/ncomms2191

  29. Fu L (2011) Phys Rev Lett 106:106802. https://link.aps.org/doi/10.1103/PhysRevLett.106.106802

  30. Hsieh TH, Lin H, Liu J, Duan W, Bansil A, Fu L (2012) Nat Commun 3:982. http://dx.doi.org/10.1038/ncomms1969

  31. Hayasaka H, Fuseya Y (2016) J Phys Condens Matter 28:31LT01. http://stacks.iop.org/0953-8984/28/i=31/a=31LT01

  32. Fuseya Y, Zhu Z, Fauqué B, Kang W, Lenoir B, Behnia K (2015) Phys Rev Lett 115:216401. https://link.aps.org/doi/10.1103/PhysRevLett.115.216401

  33. Assaf BA, Phuphachong T, Volobuev VV, Inhofer A, Bauer G, Springholz G, de Vaulchier LA, Guldner Y (2016) Sci Rep 6:20323. http://dx.doi.org/10.1038/srep20323

  34. Phuphachong T, Assaf BA, Volobuev VV, Bauer G, Springholz G, de Vaulchier L-A, Guldner Y (2017) Crystals 7:29. http://www.mdpi.com/2073-4352/7/1/29

  35. Takaoka S, Murase K (1982) J Phys Soc Jpn 51:1857. https://doi.org/10.1143/JPSJ.51.1857

  36. Takaoka S, Murase K (1979) Phys Rev B 20:2823. https://link.aps.org/doi/10.1103/PhysRevB.20.2823

  37. Takaoka S (1978) Investigation of electronic properties under the phase transition in Pb\(_{1-x}\)Ge\(_x\)Te and Pb\(_{1-x}\)Sn\(_x\)Te semiconductors. PhD thesis, Osaka University

    Google Scholar 

  38. Barone P, Rauch T, Sante DD, Henk J, Mertig I, Picozzi S (2013) Phys Rev B 88:045207. https://link.aps.org/doi/10.1103/PhysRevB.88.045207

  39. Nabi Z, Abbar B, Méçabih S, Khalfi A, Amrane N (2000) Comp Mater Sci 18:127. http://www.sciencedirect.com/science/article/pii/S0927025699000993

  40. Samara GA, Drickamer HG (1962) J Chem Phys 37:1159. https://doi.org/10.1063/1.1733240

  41. Mariano AN, Chopra KL (1967) Appl Phys Lett 10:282. https://doi.org/10.1063/1.1754812

  42. Wakabayashi I, Kobayashi H, Nagasaki H, Minomura S (1968) J Phys Soc Jpn 25:227. https://doi.org/10.1143/JPSJ.25.227

  43. Rousse G, Klotz S, Saitta AM, Rodriguez-Carvajal J, McMahon MI, Couzinet B, Mezouar M (2005) Phys Rev B 71:224116. https://link.aps.org/doi/10.1103/PhysRevB.71.224116

  44. Chouteau G, Briggs A (1977) Solid State Commun 21:785. http://www.sciencedirect.com/science/article/pii/0038109877911528

  45. Orbanić F, Novak M, Baćani M, Kokanović I (2017) Phys Rev B 95:035208. https://link.aps.org/doi/10.1103/PhysRevB.95.035208

  46. Roth LM, Argyres PN (1966) Magnetic quantum effects. In: Willardson RK, Beer AC (eds) Semiconductors and semimetals, vol 1. Academic Press, New York

    Google Scholar 

  47. Murakawa H, Bahramy MS, Tokunaga M, Kohama Y, Bel C, Kaneko Y, Nagaosa N, Hwang HY, Tokura Y (2013) Science 342:1490. http://science.sciencemag.org/content/342/6165/1490

  48. Narita S, Takafuji Y (1976) Solid State Commun 20:357. http://www.sciencedirect.com/science/article/pii/0038109876905251

  49. Takafuji Y, Narita S (1982) Jpn J Appl Phys 21:1315. http://stacks.iop.org/1347-4065/21/i=9R/a=1315

  50. Abrikosov AA (1998) Phys Rev B 58:2788. https://link.aps.org/doi/10.1103/PhysRevB.58.2788

  51. Abrikosov AA (2000) Phys Rev B 61:7770. https://link.aps.org/doi/10.1103/PhysRevB.61.7770

  52. Bhattacharya A, Skinner B, Khalsa G, Suslov AV (2016) Nat Commun 7:12974. http://dx.doi.org/10.1038/ncomms12974

  53. Kivelson S, Lee D-H, Zhang S-C (1992) Phys Rev B 46:2223. https://link.aps.org/doi/10.1103/PhysRevB.46.2223

  54. Kravchenko SV, Furneaux JE, Pudalov VM (1994) Phys Rev B 49:2250. https://link.aps.org/doi/10.1103/PhysRevB.49.2250

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuto Akiba .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akiba, K. (2019). Lead Telluride. In: Electronic States of Narrow-Gap Semiconductors Under Multi-Extreme Conditions. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-7107-3_4

Download citation

Publish with us

Policies and ethics