Carbon Nanotubes-Engineered Cementitious Composites

  • Baoguo HanEmail author
  • Siqi Ding
  • Jialiang Wang
  • Jinping Ou


Carbon nanotubes (CNTs) with unique physical properties and morphology characteristics are incorporated into cementitious composites to reinforce/modify their properties/performances. The effects of type and content of multi-walled CNTs on the rheology, mechanical properties/performances, durability and functional/smart properties/performances of fresh and hardened cementitious composites are investigated. The enhancement/modification mechanisms are analyzed through X-ray diffraction, nuclear magnetic resonance, thermogravimetry and scanning electron microscope, and electrochemical impedance spectroscopy tests in combination with theoretical calculation. The feasibility of using self-sensing CNTs-engineered cementitious composites for traffic detection is also verified. Experimental results show that CNTs have an obvious impact on the properties/performances of cementitious composites due to their excellent mechanical/electrical/thermal properties, large aspect ratio, tubular structure, and low density, thus providing the opportunity to develop strong, durable, and smart/multi-functional infrastructures.


Carbon nanotubes Multi-walled Cementitious composites Properties/performances Mechanisms Applications 


  1. 1.
    B.G. Han, S.Q. Ding, S.W. Sun, L.Q. Zhang, J.P. Ou, Chapter 33: Chemical modification of carbon nanotubes/nanofibers for application in cement and concrete field, in Book: Chemical Functionalization of Carbon Nanomaterials: Chemistry and Applications, ed. by V.K. Thakur (Taylor & Francis CRC, 2015), pp. 748–773Google Scholar
  2. 2.
    B.G. Han, S.W. Sun, S.Q. Ding, L.Q. Zhang, S.F. Dong, X. Yu, Chapter 8: Nano carbon materials filled cementitious composites: fabrication, properties and application, in Book: Innovative Developments of Advanced Multifunctional Nanocomposites in Civil and Structural Engineering, ed. by K.J. Loh, S. Nagarajaiah (Elsevier, 2016), pp. 153–181Google Scholar
  3. 3.
    S. Jiang, B.H. Shan, J. Ouyang, W. Zhang, X. Yu, P.G. Li, B.G. Han, Rheological properties of cementitious composites with nano/fiber fillers. Constr. Build. Mater. 158, 786–800 (2018)CrossRefGoogle Scholar
  4. 4.
    R.X. Shen, Q. Cui, Q.H. Li, New Type Fiber Reinforced Cement-Based Composites (China Building Material Industry Publishing House, Beijing, 2004)Google Scholar
  5. 5.
    M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 637–640 (2000)CrossRefGoogle Scholar
  6. 6.
    B.G. Han, L.Q. Zhang, S.Z. Zeng, S.F. Dong, X. Yu, R.W. Yang, J.P. Ou, Nano-core effect in nano-engineered cementitious composites. Compos. A Appl. Sci. Manuf. 95, 100–109 (2017)CrossRefGoogle Scholar
  7. 7.
    A. Peschard, A. Govin, P. Grosseau, B. Guilhot, R. Guyonnet, Effect of polysaccharides on the hydration of cement paste at early ages. Cem. Concr. Res. 34, 2153–2158 (2004)CrossRefGoogle Scholar
  8. 8.
    R. Yu, P. Spiesz, H.J.H. Brouwers, Effect of nano-silica on the hydration and microstructure development of ultra-high performance concrete (UHPC) with a low binder amount. Constr. Build. Mater. 65(9), 140–150 (2014)CrossRefGoogle Scholar
  9. 9.
    H. Madani, A. Bagheri, T. Parhizkar, The pozzolanic reactivity of monodispersed nanosilica hydrosols and their influence on the hydration characteristics of Portland cement. Cem. Concr. Res. 42(12), 1563–1570 (2012)CrossRefGoogle Scholar
  10. 10.
    S. Musso, J.M. Tulliani, G. Ferro, A. Tagliaferro, Influence of carbon nanotubes structure on the mechanical behavior of cement composites. Compos. Sci. Technol. 69(11), 1985–1990 (2009)CrossRefGoogle Scholar
  11. 11.
    E. Lippmaa, M. Mägi, A. Samoson, G. Engelhardt, A.R. Grimmer, Structural studies of silicates by solid-state high-resolution 29Si NMR. J. Am. Chem. Soc. 102(15), 4889–4893 (1980)CrossRefGoogle Scholar
  12. 12.
    J.P. Romualdi, J.A. Mandel, Tensile strength of concrete affected by uniformly distributed and closely spaced short lengths of wire reinforcement. ACI J. Proc. 61, 657–672 (1964)Google Scholar
  13. 13.
    A. Cwirzen, K. Habermehl-Cwirzen, V. Penttala, Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites. Adv. Cem. Res. 20(2), 65–73 (2008)CrossRefGoogle Scholar
  14. 14.
    J. Luo, Fabrication and functional properties of multi-walled carbon nanotube/cement composites. Dissertation for the Doctoral Degree. Harbin Institute of Technology, Harbin, China, 2009Google Scholar
  15. 15.
    L.X. Li, F. Li, The effect of carbonyl, carboxyl and hydroxyl groups on the capacitance of carbon nanotubes. New Carbon Mater. 26(3), 224–228 (2011)CrossRefGoogle Scholar
  16. 16.
    H. Oda, A. Yamashita, S. Minoura, M. Okamoto, T. Morimoto, Modification of the oxygen-containing functional group on activated carbon fiber in electrodes of an electric double-layer capacitor. J. Power Sources 158(2), 1510–1516 (2006)CrossRefGoogle Scholar
  17. 17.
    J.M. Makar, J. Margeson, J. Luh, Carbon nanotube/cement composites-early results and potential applications, in Proceedings of the 3rd International Conference on Construction Materials: Performance, Innovations and Structural Implications, Vancouver, British Columbia, Canada (2005), pp. 1–10Google Scholar
  18. 18.
    Y.W. Bao, Z.Z. Jing, Study on the relationship between flexural strength and tensile strength of brittle materials. China Build. Mater. Acad. 3(3), 1–5 (1991)Google Scholar
  19. 19.
    M.R. Pigott, Theoretical estimation of fracture toughness of fibrous composites. J. Mater. Sci. 5(8), 669–675 (1970)CrossRefGoogle Scholar
  20. 20.
    M. Branner, A. M. Kavi, M.G.Y. Li, Carbon nanotube-fiber reinforced cement and concrete. Patent US 0134942A1, 2008Google Scholar
  21. 21.
    M.S. Konsta-Gdoutos, Z.S. Metaxa, S.P. Shah, Highly dispersed carbon nanotube reinforced cement based materials. Cem. Concr. Res. 40(7), 1052–1059 (2010)CrossRefGoogle Scholar
  22. 22.
    R.K.A. Al-Rub, A.I. Ashour, B.M. Tyson, On the aspect ratio effect of multi-walled carbon nanotube reinforcements on the mechanical properties of cementitious nanocomposite. Constr. Build. Mater. 35(10), 647–655 (2012)CrossRefGoogle Scholar
  23. 23.
    Y.F. Ruan, B.G. Han, X. Yu, W. Zhang, D.N. Wang, Carbon nanotubes reinforced reactive powder concrete. Compos. A Appl. Sci. Manuf. 112, 371–382 (2018)CrossRefGoogle Scholar
  24. 24.
    X. Cui, B.G. Han, Q.F. Zheng, X. Yu, S.F. Dong, L.Q. Zhang, J.P. Ou, Mechanical properties and reinforcing mechanisms of cementitious composites with different types of multiwalled carbon nanotubes. Compos. A Appl. Sci. Manuf. 103, 131–147 (2017)CrossRefGoogle Scholar
  25. 25.
    B.G. Han, X. Yu, J.P. Ou, Chapter 1: Multifunctional and smart carbon nanotube reinforced cement-based materials, in Book: Nanotechnology in Civil Infrastructure: A Paradigm Shift, ed. by K. Gopalakrishnan, B. Birgisson, P. Taylor, N.O. Attoh-Okine (Springer, 2011), pp. 1–47Google Scholar
  26. 26.
    B.G. Han, S.W. Sun, S.Q. Ding, L.Q. Zhang, X. Yu, J.P. Ou, Review of nanocarbon-engineered multifunctional cementitious composites. Compos. A Appl. Sci. Manuf. 70, 69–81 (2015)CrossRefGoogle Scholar
  27. 27.
    B.G. Han, S.Q. Ding, X. Yu, Intrinsic self-sensing concrete and structures: a review. Measurement 59, 110–128 (2015)CrossRefGoogle Scholar
  28. 28.
    B.G. Han, X. Yu. J.P. Ou, Self-sensing Concrete in Smart Structures (Elsevier, 2014)Google Scholar
  29. 29.
    S.W. Sun, X. Yu, B.G. Han, Sensing mechanism of self-monitoring CNTs cementitious composite. J. Test. Eval. 42(1), 1–5 (2014)CrossRefGoogle Scholar
  30. 30.
    B.G. Han, X. Yu, E. Kwon, A self-sensing carbon nanotube/cement composite for traffic monitoring. Nanotechnology 20, 445501 (2009)CrossRefGoogle Scholar
  31. 31.
    B.G. Han, K. Zhang, X. Yu, E. Kwon, J.P. Ou, Electrical characteristics and pressure-sensitive response measurements of carboxyl MWNT/cement composites. Cement Concr. Compos. 34, 794–800 (2012)CrossRefGoogle Scholar
  32. 32.
    B.G. Han, K. Zhang, T. Burnham, E. Kwon, X. Yu, Integration and road tests of a self-sensing CNT concrete pavement system for traffic detection. Smart Mater. Struct. 22, 015020 (2013)CrossRefGoogle Scholar
  33. 33.
    B.G. Han, S.Q. Ding, Y. Yu, X. Yu, S.F. Dong, J.P. Ou, Design and implementation of a multiple traffic parameter detection sensor developed with quantum tunneling composites. IEEE Sens. J. 15(9), 4845–4852 (2015)CrossRefGoogle Scholar
  34. 34.
    B.G. Han, Y.Y. Wang, S.F. Dong, L.Q. Zhang, S.Q. Ding, X. Yu, J.P. Ou, Smart concrete and structures: a review. J. Intell. Mater. Syst. Struct. 26(1), 1303–1345 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Baoguo Han
    • 1
    Email author
  • Siqi Ding
    • 2
  • Jialiang Wang
    • 1
  • Jinping Ou
    • 1
  1. 1.School of Civil EngineeringDalian University of TechnologyDalianChina
  2. 2.Department of Civil and Environmental EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong

Personalised recommendations