Finite Intersections of Prüfer Overrings

  • Bruce OlberdingEmail author
Part of the Trends in Mathematics book series (TM)


This article is motivated by the open question of whether every integrally closed domain is an intersection of finitely many Prüfer overrings. We survey the work of Dan Anderson and David Anderson on this and related questions, and we show that an integrally closed domain that is a finitely generated algebra over a Dedekind domain or a field is a finite intersection of Dedekind overrings. We also discuss how recent work on the intersections of valuation rings has implications for this question.



I thank the referee for the helpful comments.


  1. 1.
    S. Abhyankar, W. Heinzer, P. Eakin, On the uniqueness of the coefficient ring in a polynomial ring. J. Algebra 23, 310–342 (1972)MathSciNetCrossRefGoogle Scholar
  2. 2.
    D.D. Anderson, D.F. Anderson, Locally factorial integral domains. J. Algebra 90, 265–283 (1984)MathSciNetCrossRefGoogle Scholar
  3. 3.
    D.D. Anderson, D.F. Anderson, Finite intersections of PID or factorial overrings. Canad. Math. Bull. 28, 91–97 (1985)MathSciNetCrossRefGoogle Scholar
  4. 4.
    D.D. Anderson, D.F. Anderson, Locally almost factorial integral domains. J. Algebra 105, 395–410 (1987)MathSciNetCrossRefGoogle Scholar
  5. 5.
    A. Fabbri, Integral domains having a unique Kronecker function ring. J. Pure Appl. Algebra 215, 1069–1084 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    C. Finochario, M. Fontana, K.A. Loper, The constructible topology on spaces of valuation domains. Trans. Am. Math. Soc. 365, 6199–6216 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    M. Fontana, E. Houston, T. Lucas, Toward a classification of prime ideals in Prüfer domains. Forum Math. 22, 741–766 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    M. Fontana, J. Huckaba, I. Papick, Prüfer Domains (Marcel Dekker, New York, 1997)zbMATHGoogle Scholar
  9. 9.
    R. Gilmer, Multiplicative Ideal Theory. Queen’s Papers in Pure and Applied Mathematics, vol. 12 (Queen’s University, Kingston, 1968)Google Scholar
  10. 10.
    R. Gilmer, Some questions for further research, Multiplicative Ideal Theory in Commutative Algebra (Springer, New York, 2006), pp. 405–415CrossRefGoogle Scholar
  11. 11.
    R. Gilmer, W. Heinzer, On the complete integral closure of an integral domain. J. Aust. Math. Soc. 6, 351–361 (1966)MathSciNetCrossRefGoogle Scholar
  12. 12.
    W. Heinzer, Noetherian intersections of integral domains. II, in Conference on Commutative Algebra (University of Kansas, Lawrence, 1972). Lecture Notes in Mathematics, vol. 311 (Springer, Berlin, 1973), pp. 107–119Google Scholar
  13. 13.
    W. Heinzer, J. Ohm, Noetherian intersections of integral domains. Trans. Am. Math. Soc. 167, 291–308 (1972)MathSciNetCrossRefGoogle Scholar
  14. 14.
    I. Kaplansky, Commutative Rings (Allyn and Bacon, Boston, 1970)zbMATHGoogle Scholar
  15. 15.
    K.A. Loper, F. Tartarone, A classification of the integrally closed rings of polynomials containing \(\mathbb{Z}[x]\). J. Commut. Algebra 1, 91–157 (2009)MathSciNetCrossRefGoogle Scholar
  16. 16.
    M. Nagata, On Krull’s conjecture concerning valuation rings. Nagoya Math. J. 4, 29–33 (1952)MathSciNetCrossRefGoogle Scholar
  17. 17.
    M. Nagata, Corrections to my paper “On Krull’s conjecture concerning valuation rings”. Nagoya Math. J. 9, 209–212 (1955)MathSciNetCrossRefGoogle Scholar
  18. 18.
    M. Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, vol. 13 (Wiley, New York, 1962)Google Scholar
  19. 19.
    B. Olberding, Overrings of two-dimensional Noetherian domains representable by Noetherian spaces of valuation rings. J. Pure Appl. Algebra 212, 1797–1821 (2008)MathSciNetCrossRefGoogle Scholar
  20. 20.
    B. Olberding, Intersections of valuation overrings of two-dimensional Noetherian domains, Commutative Algebra: Noetherian and non-Noetherian Perspectives (Springer, Berlin, 2010), pp. 335–362Google Scholar
  21. 21.
    B. Olberding, Affine schemes and topological closures in the Zariski-Riemann space of valuation rings. J. Pure Appl. Algebra 219, 1720–1741 (2015)MathSciNetCrossRefGoogle Scholar
  22. 22.
    B. Olberding, On the geometry of Prüfer intersections of valuation rings. Pac. J. Math. 273, 353–368 (2015)CrossRefGoogle Scholar
  23. 23.
    B. Olberding, A principal ideal theorem for compact sets of rank one valuation rings. J. Algebra 489, 399–426 (2017)MathSciNetCrossRefGoogle Scholar
  24. 24.
    B. Olberding, On the topology of valuation-theoretic representations of integrally closed domains. J. Pure Appl. Algebra 222, 2267–2287 (2018)MathSciNetCrossRefGoogle Scholar
  25. 25.
    B. Olberding, F. Tartarone, Integrally closed rings in birational extensions of two-dimensional regular local rings. Math. Proc. Camb. Philos. Soc. 155, 101–127 (2013)MathSciNetCrossRefGoogle Scholar
  26. 26.
    P. Ribenboim, Sur une note de Nagata relative à un problème de Krull. Math. Z. 64, 159–168 (1956)MathSciNetCrossRefGoogle Scholar
  27. 27.
    R. Sharp, Steps in Commutative Algebra (London Mathematical Society Student Texts) (Cambridge University Press, Cambridge, 2001)Google Scholar
  28. 28.
    Stacks Project Authors, The stacks project (2018),
  29. 29.
    I. Swanson, C. Huneke, Integral Closure of Ideals, Rings, and Modules, vol. 336, London Mathematical Society Lecture Note Series (Cambridge University Press, Cambridge, 1994)zbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.New Mexico State UniversityLas CrucesUSA

Personalised recommendations