Skip to main content

In Situ Solid-State NMR Investigation of Catalytic Reactions on Zeolites

  • Chapter
  • First Online:
Solid-State NMR in Zeolite Catalysis

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 103))

Abstract

The design of an efficient catalyst for a specific reaction depends on the understanding of the structure–activity relationship, which requires the fundamental knowledge about the reaction mechanisms. This chapter deals with the development and application of in situ solid-state NMR in the investigation of reactions catalyzed by zeolites. The state of the art of the in situ MAS NMR approaches that are performed at either bath or flow conditions were described. A comprehensive introduction was given to the mechanistic study of the catalytic reactions by in situ NMR with focus on the activation of light alkanes (C1-C3) on metal-modified zeolites as well as methanol-to-hydrocarbons conversion on acidic zeolites. The identification of active intermediates and analysis of the kinetics by in situ NMR enable detailed information about the reaction mechanisms to be obtained. An outlook is discussed on the development of the in situ MAS NMR technique that will contribute to the further advancement in understanding zeolite catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ertl G, Knozinger H, Schüth F, Weitkamp J (2008) Handbook of heterogeneous catalysis, 2nd edn. Wiley, Weinheim

    Google Scholar 

  2. Topsøe H (2003) Developments in operando studies and in situ characterization of heterogeneous catalysts. J Catal 216(1–2):155–164. https://doi.org/10.1016/S0021-9517(02)00133-1

    Article  CAS  Google Scholar 

  3. Fisher IA, Bell AT (1998) In situ infrared study of methanol synthesis from H2/CO over Cu/SiO2 and Cu/ZrO2/SiO2. J Catal 178(1):153–173. https://doi.org/10.1006/jcat.1998.2134

    Article  CAS  Google Scholar 

  4. Lercher JA, Veefkind V, Fajerwerg K (1999) In situ IR spectroscopy for developing catalysts and catalytic processes. Vib Spectrosc 19(1):107–121. https://doi.org/10.1016/S0924-2031(98)00094-0

    Article  CAS  Google Scholar 

  5. Knözinger H, Mestl G (1999) Laser Raman spectroscopy—a powerful tool for in situ studies of catalytic materials. Top Catal 8(1):45–55. https://doi.org/10.1023/a:1019184321666

    Article  Google Scholar 

  6. Wachs IE (1999) In situ raman spectroscopy studies of catalysts. Top Catal 8(1):57–63. https://doi.org/10.1023/a:1019100925300

    Article  CAS  Google Scholar 

  7. Weckhuysen BM, Schoonheydt RA (1999) Recent progress in diffuse reflectance spectroscopy of supported metal oxide catalysts. Catal Today 49(4):441–451. https://doi.org/10.1016/S0920-5861(98)00458-1

    Article  CAS  Google Scholar 

  8. Bañares MA, Martı́nez-Huerta MV, Gao X, Fierro JLG, Wachs IE (2000) Dynamic behavior of supported vanadia catalysts in the selective oxidation of ethane: in situ Raman, UV–Vis DRS and reactivity studies. Catal Today 61(1–4):295–301. http://dx.doi.org/10.1016/S0920-5861(00)00388-6

    Article  Google Scholar 

  9. Singh J, Lamberti C, van Bokhoven JA (2010) Advanced X-ray absorption and emission spectroscopy: in situ catalytic studies. Chem Soc Rev 39(12):4754–4766. https://doi.org/10.1039/C0CS00054J

    Article  CAS  PubMed  Google Scholar 

  10. Sankar G, Thomas JM (1999) In situ combined X-ray absorption spectroscopic and X-ray diffractometric studies of solid catalysts. Top Catal 8(1):1–21. https://doi.org/10.1023/a:1019188422574

    Article  CAS  Google Scholar 

  11. Bruckner A (2010) In situ electron paramagnetic resonance: a unique tool for analyzing structure-reactivity relationships in heterogeneous catalysis. Chem Soc Rev 39(12):4673–4684. https://doi.org/10.1039/B919541F

    Article  PubMed  Google Scholar 

  12. Brückner A, Kubias B, Lücke B (1996) In situ-electron spin resonance: a useful tool for the investigation of vanadium phosphate catalysts (VPO) under working conditions. Catal Today 32(1–4):215–222. https://doi.org/10.1016/S0920-5861(96)00077-6

    Article  Google Scholar 

  13. Haw JF (1994) In situ NMR. In: Bell A, Pines A (eds) NMR techniques in catalysis. Dekker, New York, p 139

    Google Scholar 

  14. Hunger M (2008) In situ flow MAS NMR spectroscopy: state of the art and applications in heterogeneous catalysis. Prog Nucl Mag Res Sp 53(3):105–127. https://doi.org/10.1016/j.pnmrs.2007.08.001

    Article  CAS  Google Scholar 

  15. Derouane EG, He H, Derouane-Abd Hamid SB, Ivanova II (1999) In situ MAS NMR investigations of molecular sieves and zeolite-catalyzed reactions. Catal Lett 58(1):1–19. https://doi.org/10.1023/a:1019044926400

    Article  CAS  Google Scholar 

  16. Zhang W, Xu S, Han X, Bao X (2012) In situ solid-state NMR for heterogeneous catalysis: a joint experimental and theoretical approach. Chem Soc Rev 41(1):192–210. https://doi.org/10.1039/c1cs15009j

    Article  CAS  PubMed  Google Scholar 

  17. Zhang L, Ren Y, Yue B, He H (2012) Recent development in in situ NMR study on heterogeneous catalysis: mechanisms of light alkane functionalisation. Chem Commun 48(18):2370–2384. https://doi.org/10.1039/c2cc16882k

    Article  CAS  Google Scholar 

  18. Ivanova II, Kolyagin YG (2010) Impact of in situ MAS NMR techniques to the understanding of the mechanisms of zeolite catalyzed reactions. Chem Soc Rev 39(12):5018–5050. https://doi.org/10.1039/c0cs00011f

    Article  CAS  PubMed  Google Scholar 

  19. Derouane EG, Fraissard J, Fripiat JJ, Stone WEE (1972) NMR studies in adsorption and heterogeneous catalysis. Catal Rev 7(2):121–212. https://doi.org/10.1080/01614947208062257

    Article  CAS  Google Scholar 

  20. Nagy JB, Engelhardt G, Michel D (1985) High resolution NMR on adsorbate-adsorbent systems. Adv Colloid Interfac 23:67–128. https://doi.org/10.1016/0001-8686(85)80017-8

    Article  CAS  Google Scholar 

  21. Taylor RE, Ryan LM, Tindall P, Gerstein BC (1980) Protonic species in H1.7MoO3. The Journal of Chemical Physics 73 (11):5500–5507. http://dx.doi.org/10.1063/1.440069

    Article  CAS  Google Scholar 

  22. Hunger M, Horvath T (1995) A new MAS NMR probe for in situ investigations of hydrocarbon conversion on solid catalysts under continuous-flow conditions. J Chem Soc, Chem Commun 14:1423–1424. https://doi.org/10.1039/C39950001423

    Article  Google Scholar 

  23. Adrian Carpenter T, Klinowski J, Tilak D, Tennakoon B, Smith CJ, Edwards DC (1986) Sealed capsules for convenient acquisition of variable-temperature controlled-atmosphere magic-angle-spinning NMR spectra of solids. J Magn Reson (1969) 68(3):561–563. https://doi.org/10.1016/0022-2364(86)90347-1

    Article  Google Scholar 

  24. Giammatteo PJ, Hellmuth WW, Gordon Ticehurst F, Cope PW (1987) An easy sealing MAS rotor insert for liquids, gels, and air-sensitive solid samples. J Magn Reson (1969) 71(1):147–150. https://doi.org/10.1016/0022-2364(87)90136-3

    Article  Google Scholar 

  25. Xu T, Haw JF (1997) The development and applications of CAVERN methods for in situ NMR studies of reactions on solid acids. Top Catal 4(1–2):109–118. https://doi.org/10.1023/A:1019163500342

    Article  CAS  Google Scholar 

  26. Munson EJ, Ferguson DB, Kheir AA, Haw JF (1992) Applications of a new CAVERN design to the study of reactions on catalysts using in situ solid-state NMR. J Catal 136(2):504–509

    Article  CAS  Google Scholar 

  27. Munson EJ, Murray DK, Haw JF (1993) Shallow-bed CAVERN design for in situ solid-state NMR STUDIES OF CATALYTIC REACTIONS. J Catal 141(2):733–736. https://doi.org/10.1006/jcat.1993.1179

    Article  CAS  Google Scholar 

  28. Ernst H, Freude D, Mildner T (1994) Temperature-switched MAS NMR: a new method for time-resolved in situ studies of reaction steps in heterogeneous catalysis. Chem Phys Lett 229(3):291–296. https://doi.org/10.1016/0009-2614(94)01045-5

    Article  CAS  Google Scholar 

  29. Ernst H, Freude D, Mildner T, Wolf I (1996) Laser-supported high-temperature MAS NMR for time-resolved in situ studies of reaction steps in heterogeneous catalysis. Solid State Nucl Mag 6(2):147–156. https://doi.org/10.1016/0926-2040(95)01214-1

    Article  CAS  Google Scholar 

  30. Ferguson DB, Haw JF (1995) Transient methods for in situ NMR of reactions on solid catalysts using temperature jumps. Anal Chem 67(18):3342–3348. https://doi.org/10.1021/ac00114a034

    Article  CAS  Google Scholar 

  31. Goguen P, Haw JF (1996) Anin SituNMR probe with reagent flow and magic angle spinning. J Catal 161(2):870–872. https://doi.org/10.1006/jcat.1996.0250

    Article  CAS  Google Scholar 

  32. Haddix GW, Reimer JA, Bell AT (1987) A nuclear magnetic resonance probe for in situ studies of adsorbed species on catalysts. J Catal 106(1):111–115. https://doi.org/10.1016/0021-9517(87)90216-8

    Article  CAS  Google Scholar 

  33. Hunger M, Seiler M, Horvath T (1999) A technique for simultaneous in situ MAS NMR and on-line gas chromatographic studies of hydrocarbon conversions on solid catalysts under flow conditions. Catal Lett 57(4):199–204. https://doi.org/10.1023/a:1019064003201

    Article  CAS  Google Scholar 

  34. Seiler M, Schenk U, Hunger M (1999) Conversion of methanol to hydrocarbons on zeolite HZSM-5 investigated by in situ MAS NMR spectroscopy under flow conditions and on-line gas chromatography. Catal Lett 62(2):139–145. https://doi.org/10.1023/a:1019086603511

    Article  CAS  Google Scholar 

  35. Hunger M, Wang W (2004) Formation of cyclic compounds and carbenium ions by conversion of methanol on weakly dealuminated zeolite H-ZSM-5 investigated via a novel in situ CF MAS NMR/UV-Vis technique. Chem Commun 5:584–585

    Article  Google Scholar 

  36. Wang W, Seiler M, Ivanova II, Weitkamp J, Hunger M (2001) stopped-flow (SF) MAS NMR spectroscopy: a novel NMR technique applied for the study of aniline methylation on a solid base catalyst. Chem Commun 15:1362–1363. https://doi.org/10.1039/b104115k

    Article  CAS  Google Scholar 

  37. Wang W, Seiler M, Ivanova II, Sternberg U, Weitkamp J, Hunger M (2002) Formation and decomposition of N, N, N-Trimethylanilinium cations on zeolite H−Y investigated by in situ stopped-Flow MAS NMR spectroscopy. J Am Chem Soc 124(25):7548–7554. https://doi.org/10.1021/ja012675n

    Article  CAS  PubMed  Google Scholar 

  38. Wang W, Seiler M, Hunger M (2001) Role of surface methoxy species in the conversion of methanol to dimethyl ether on acidic zeolites investigated by in situ stopped-flow MAS NMR spectroscopy. J Phys Chem B 105(50):12553–12558. https://doi.org/10.1021/jp0129784

    Article  CAS  Google Scholar 

  39. Ivanova II, Pomakhina EB, Rebrov AI, Hunger M, Kolyagin YG, Weitkamp J (2001) Surface species formed during aniline methylation on zeolite H–Y investigated by in situ MAS NMR spectroscopy. J Catal 203(2):375–381. https://doi.org/10.1006/jcat.2001.3300

    Article  CAS  Google Scholar 

  40. Isbester PK, Zalusky A, Lewis DH, Douskey MC, Pomije MJ, Mann KR, Munson EJ (1999) NMR probe for heterogeneous catalysis with isolated reagent flow and magic-angle spinning. Catal Today 49(4):363–375. https://doi.org/10.1016/S0920-5861(98)00450-7

    Article  CAS  Google Scholar 

  41. Keeler C, Xiong J, Lock H, Dec S, Tao T, Maciel GE (1999) A new in situ chemical reactor for studying heterogeneous catalysis by NMR: the GRASSHopper. Catal Today 49(4):377–383. https://doi.org/10.1016/S0920-5861(98)00451-9

    Article  CAS  Google Scholar 

  42. Bax A, Szeverenyi NM, Maciel GE (1983) Correlation of isotropic shifts and chemical shift anisotropies by two-dimensional fourier-transform magic-angle hopping nmr spectroscopy. J Magn Reson (1969) 52(1):147–152. https://doi.org/10.1016/0022-2364(83)90267-6

    Article  CAS  Google Scholar 

  43. Szeverenyi NM, Bax A, Maciel GE (1985) Magic-angle hopping as an alternative to magic-angle spinning for solid state NMR. J Magn Reson (1969) 61(3):440–447. https://doi.org/10.1016/0022-2364(85)90184-2

    Article  CAS  Google Scholar 

  44. Hu JZ, Sears JA, Mehta HS, Ford JJ, Kwak JH, Zhu K, Wang Y, Liu J, Hoyt DW, Peden CHF (2012) A large sample volume magic angle spinning nuclear magnetic resonance probe for in situ investigations with constant flow of reactants. Phys Chem Chem Phys 14(7):2137–2143. https://doi.org/10.1039/c1cp22692d

    Article  CAS  PubMed  Google Scholar 

  45. Haw JF, Goguen PW, Xu T, Skloss TW, Song W, Wang Z (1998) In situ NMR investigations of heterogeneous catalysis with samples prepared under standard reaction conditions. Angew Chem Int Ed 37(7):948–949. https://doi.org/10.1002/(SICI)1521-3773(19980420)37:7%3c948:AID-ANIE948%3e3.0.CO;2-L

    Article  CAS  Google Scholar 

  46. Goguen PW, Xu T, Barich DH, Skloss TW, Song W, Wang Z, Nicholas JB, Haw JF (1998) Pulse-quench catalytic reactor studies reveal a carbon-pool mechanism in methanol-to-gasoline chemistry on zeolite HZSM-5. J Am Chem Soc 120(11):2650–2651. https://doi.org/10.1021/ja973920z

    Article  CAS  Google Scholar 

  47. Crabtree RH (1995) Aspects of methane chemistry. Chem Rev 95(4):987–1007

    Article  CAS  Google Scholar 

  48. Periana RA, Taube DJ, Evitt ER, Loffler DG, Wentrcek PR, Voss G, Masuda T (1993) A mercury-catalyzed, high-yield system for the oxidation of methane to methanol. Science 259(5093):340–343

    Article  CAS  PubMed  Google Scholar 

  49. Kao LC, Hutson AC, Sen A (1991) Low-temperature, palladium(Ii)-catalyzed, solution-phase oxidation of methane to a methanol derivative. J Am Chem Soc 113(2):700–701

    Article  CAS  Google Scholar 

  50. Periana RA, Taube DJ, Gamble S, Taube H, Satoh T, Fujii H (1998) Platinum catalysts for the high-yield oxidation of methane to a methanol derivative. Science 280(5363):560–564

    Article  CAS  PubMed  Google Scholar 

  51. Periana RA, Mironov O, Taube D, Bhalla G, Jones CJ (2003) Catalytic, oxidative condensation of CH4 to CH3COOH in one step via CH activation. Science 301(5634):814–818

    Article  CAS  PubMed  Google Scholar 

  52. Choudhary VR, Mondal KC, Mulla SAR (2005) Simultaneous conversion of methane and methanol into gasoline over bifunctional Ga-, Zn-, In-, and/or Mo-modified ZSM-5 zeolites. Angew Chem Int Edit 44(28):4381–4385

    Article  CAS  Google Scholar 

  53. Choudhary VR, Kinage AK, Choudhary TV (1997) Low-temperature nonoxidative activation of methane over H-galloaluminosilicate (MFI) zeolite. Science 275(5304):1286–1288

    Article  CAS  PubMed  Google Scholar 

  54. Kolyagin YG, Ivanova II, Ordomsky VV, Gedeon A, Pirogov YA (2008) methane activation over Zn-modified MFI zeolite: NMR evidence for Zn-methyl surface species formation. J Phys Chem C 112(50):20065–20069

    Article  CAS  Google Scholar 

  55. Kazansky VB, Borovkov VY, Serikh AI, van Santen RA, Anderson BG (2000) Nature of the sites of dissociative adsorption of dihydrogen and light paraffins in ZnHZSM-5 zeolite prepared by incipient wetness impregnation. Catal Lett 66(1):39–47. https://doi.org/10.1023/a:1019031119325

    Article  CAS  Google Scholar 

  56. Pidko EA, Xu J, Mojet BL, Lefferts L, Subbotina IR, Kazansky VB, van Santen RA (2006) Interplay of bonding and geometry of the adsorption complexes of light alkanes within cationic faujasites. Combined spectroscopic and computational study. J Phys Chem B 110 (45):22618–22627. https://doi.org/10.1021/jp0634757

    Article  CAS  PubMed  Google Scholar 

  57. Kazansky VB, Serykh AI, Pidko EA (2004) DRIFT study of molecular and dissociative adsorption of light paraffins by HZSM-5 zeolite modified with zinc ions: methane adsorption. J Catal 225(2):369–373. https://doi.org/10.1016/j.jcat.2004.04.029

    Article  CAS  Google Scholar 

  58. Biscardi JA, Meitzner GD, Iglesia E (1998) Structure and density of active Zn species in Zn/H-ZSM5 propane aromatization catalysts. J Catal 179(1):192–202. https://doi.org/10.1006/jcat.1998.2177

    Article  CAS  Google Scholar 

  59. Kazansky VB, Subbotina IR, Rane N, van Santen RA, Hensen EJM (2005) On two alternative mechanisms of ethane activation over ZSM-5 zeolite modified by Zn2+ and Ga1+ cations. Phys Chem Chem Phys 7(16):3088–3092. https://doi.org/10.1039/b506782k

    Article  CAS  PubMed  Google Scholar 

  60. Kolyagin YG, Ordomsky VV, Khimyak YZ, Rebrov AI, Fajula F, Ivanova II (2006) Initial stages of propane activation over Zn/MFI catalyst studied by in situ NMR and IR spectroscopic techniques. J Catal 238(1):122–133. https://doi.org/10.1016/j.jcat.2005.11.037

    Article  CAS  Google Scholar 

  61. Gabrienko AA, Arzumanov SS, Freude D, Stepanov AG (2010) Propane aromatization on Zn-modified zeolite BEA studied by solid-state NMR in Situ. J Phy Chem C 114(29):12681–12688. https://doi.org/10.1021/jp103580f

    Article  CAS  Google Scholar 

  62. Kolyagin YG, Ivanova II, Pirogov YA (2009) H-1 and C-13 MAS NMR studies of light alkanes activation over MFI zeolite modified by Zn vapour. Solid State Nucl Mag 35(2):104–112. https://doi.org/10.1016/j.ssnmr.2009.01.005

    Article  CAS  Google Scholar 

  63. Barbosa L, Zhidomirov GM, van Santen RA (2000) Theoretical study of methane adsorption on Zn(II) zeolites. Phys Chem Chem Phys 2(17):3909–3918

    Article  CAS  Google Scholar 

  64. Pidko EA, van Santen RA (2007) Activation of light alkanes over zinc species stabilized in ZSM-5 zeolite: a comprehensive DFT study. J Phy Chem C 111(6):2643–2655. https://doi.org/10.1021/jp065911v

    Article  CAS  Google Scholar 

  65. Benco L, Bucko T, Hafner J, Toulhoat H (2005) Periodic DFT calculations of the stability of Al/Si substitutions and extraframework Zn2+ cations in mordenite and reaction pathway for the dissociation of H-2 and CH4. J Phys Chem B 109(43):20361–20369. https://doi.org/10.1021/Jp0530597

    Article  CAS  PubMed  Google Scholar 

  66. Frash MV, van Santen RA (2000) Activation of ethane in Zn-exchanged zeolites: a theoretical study. Phys Chem Chem Phys 2(5):1085–1089

    Article  CAS  Google Scholar 

  67. Xu J, Zheng A, Wang X, Qi G, Su J, Du J, Gan Z, Wu J, Wang W, Deng F (2012) Room temperature activation of methane over Zn modified H-ZSM-5 zeolites: insight from solid-state NMR and theoretical calculations. Chem Sci 3(10):2932–2940. https://doi.org/10.1039/c2sc20434g

    Article  CAS  Google Scholar 

  68. Wang W, Hunger M (2008) Reactivity of surface alkoxy species on acidic zeolite catalysts. Acc Chem Res 41(8):895–904. https://doi.org/10.1021/ar700210f

    Article  CAS  PubMed  Google Scholar 

  69. van Santen RA, Kramer GJ (1995) Reactivity theory of zeolitic broensted acidic sites. Chem Rev 95(3):637–660. https://doi.org/10.1021/cr00035a008

    Article  CAS  Google Scholar 

  70. Corma A (1995) Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem Rev 95(3):559–614. https://doi.org/10.1021/cr00035a006

    Article  CAS  Google Scholar 

  71. Inoue S, Yokoo Y (1972) Reactions of organozinc coordination compounds: IV. Reactions with carbon dioxide in relation to the action of carbonic anhydrase. J Organomet Chem 39(1):11–16. https://doi.org/10.1016/S0022-328X(00)88899-3

    Article  CAS  Google Scholar 

  72. Wu JF, Wang WD, Xu J, Deng F, Wang W (2010) Reactivity of C1 surface species formed in Methane activation on Zn-modified H-ZSM-5 zeolite. Chem—A Eur J 16 (47):14016–14025. https://doi.org/10.1002/chem.201002258

    Article  CAS  Google Scholar 

  73. Anderson MW, Klinowski J (1989) Direct observation of shape selectivity in zeolite ZSM-5 by magic-angle-spinning NMR. Nature 339(6221):200–203

    Article  CAS  Google Scholar 

  74. Munson EJ, Kheir AA, Lazo ND, Haw JF (1992) In situ solid-state NMR study of methanol-to-gasoline chemistry in zeolite HZSM-5. J Phys Chem 96(19):7740–7746. https://doi.org/10.1021/j100198a046

    Article  CAS  Google Scholar 

  75. Wang X, Qi G, Xu J, Li B, Wang C, Deng F (2012) NMR-spectroscopic evidence of intermediate-dependent pathways for acetic acid formation from methane and carbon monoxide over a ZnZSM-5 zeolite catalyst. Angew Chem Int Edit 51(16):3850–3853. https://doi.org/10.1002/anie.201108634

    Article  CAS  Google Scholar 

  76. Luzgin MV, Rogov VA, Arzumanov SS, Toktarev AV, Stepanov AG, Parmon VN (2008) Understanding methane aromatization on a Zn-modified high-silica zeolite. Angew Chem Int Ed 47(24):4559–4562. https://doi.org/10.1002/anie.200800317

    Article  CAS  Google Scholar 

  77. Luzgin MV, Rogov VA, Kotsarenko NS, Shmachkova VP, Stepanov AG (2007) Methane carbonylation with CO on sulfated zirconia: evidence from solid-state NMR for the selective formation of acetic acid. J Phys Chem C 111(28):10624–10629. https://doi.org/10.1021/jp0728757

    Article  CAS  Google Scholar 

  78. Zerella M, Mukhopadhyay S, Bell AT (2003) Synthesis of mixed acid anhydrides from methane and carbon dioxide in acid solvents. Org Lett 5(18):3193–3196. https://doi.org/10.1021/Ol0348856

    Article  CAS  PubMed  Google Scholar 

  79. Luzgin MV, Rogov VA, Arzumanov SS, Toktarev AV, Stepanov AG, Parmon VN (2008) Understanding methane aromatization on a Zn-modified high-silica zeolite. Angew Chem 120(24):4635–4638. https://doi.org/10.1002/ange.200800317

    Article  Google Scholar 

  80. Stepanov AG, Arzumanov SS, Gabrienko AA, Toktarev AV, Parmon VN, Freude D (2008) Zn-promoted hydrogen exchange for methane and ethane on Zn/H-BEA zeolite: in situ 1H MAS NMR kinetic study. J Catal 253(1):11–21. https://doi.org/10.1016/j.jcat.2007.11.002

    Article  CAS  Google Scholar 

  81. Kramer GJ, van Santen RA, Emeis CA, Nowak AK (1993) Understanding the acid behaviour of zeolites from theory and experiment. Nature 363(6429):529–531

    Article  CAS  Google Scholar 

  82. Schoofs B, Martens JA, Jacobs PA, Schoonheydt RA (1999) Kinetics of hydrogen-deuterium exchange reactions of methane and deuterated acid FAU- and MFI-type zeolites. J Catal 183(2):355–367. https://doi.org/10.1006/jcat.1999.2401

    Article  CAS  Google Scholar 

  83. Blaszkowski SR, Jansen APJ, Nascimento MAC, van Santen RA (1994) Density functional theory calculations of the transition states for hydrogen exchange and dehydrogenation of methane by a Broensted zeolitic proton. J Phys Chem 98(49):12938–12944. https://doi.org/10.1021/j100100a021

    Article  CAS  Google Scholar 

  84. Vollmer JM, Truong TN (2000) Mechanisms of hydrogen exchange of methane with H-zeolite Y: an ab Initio embedded cluster study. J Phys Chem B 104(26):6308–6312. https://doi.org/10.1021/jp0008445

    Article  CAS  Google Scholar 

  85. Zheng X, Blowers P (2006) A computational study of methane catalytic reactions on zeolites. J Mol Catal A Chem 246(1–2):1–10. https://doi.org/10.1016/j.molcata.2005.10.009

    Article  CAS  Google Scholar 

  86. Zheng X, Blowers P (2005) A computational study of alkane hydrogen-exchange reactions on zeolites. J Mol Catal A: Chem 242(1–2):18–25. https://doi.org/10.1016/j.molcata.2005.07.029

    Article  CAS  Google Scholar 

  87. Blaszkowski SR, Nascimento MAC, van Santen RA (1996) Activation of C−H and C−C bonds by an acidic zeolite: a density functional study. J Phys Chem 100(9):3463–3472. https://doi.org/10.1021/jp9523231

    Article  CAS  Google Scholar 

  88. Gabrienko AA, Arzumanov SS, Moroz IB, Toktarev AV, Wang W, Stepanov AG (2013) Methane activation and transformation on Ag/H-ZSM-5 zeolite studied with solid-state NMR. J Phys Chem C 117(15):7690–7702. https://doi.org/10.1021/jp4006795

    Article  CAS  Google Scholar 

  89. Luzgin MV, Gabrienko AA, Rogov VA, Toktarev AV, Parmon VN, Stepanov AG (2010) The “Alkyl” and “Carbenium” pathways of methane activation on Ga-modified zeolite BEA: 13C solid-state NMR and GC-MS study of methane aromatization in the presence of higher alkane. J Phys Chem C 114(49):21555–21561. https://doi.org/10.1021/jp1078899

    Article  CAS  Google Scholar 

  90. Arzumanov SS, Moroz IB, Freude D, Haase J, Stepanov AG (2014) Methane activation on in-modified ZSM-5 zeolite. H/D hydrogen exchange of the alkane with Brønsted acid sites. J Phys Chem C 118(26):14427–14432. https://doi.org/10.1021/jp5037316

    Article  CAS  Google Scholar 

  91. Hu JZ, Kwak JH, Wang Y, Peden CHF, Zheng H, Ma D, Bao X (2009) Studies of the active sites for methane dehydroaromatization using ultrahigh-field solid-state 95Mo NMR spectroscopy. J Phys Chem C 113(7):2936–2942. https://doi.org/10.1021/jp8107914

    Article  CAS  Google Scholar 

  92. Ma D, Shu Y, Zhang W, Han, Xiuwen, Xu Y, Bao X (2000) In situ 1H MAS NMR spectroscopic observation of proton species on a Mo-modified HZSM-5 zeolite catalyst for the dehydroaromatization of methane. Angew Chem Int Ed 39(16):2928–2931. https://doi.org/10.1002/1521-3773(20000818)39:16<2928::Aid-anie2928>3.0.Co;2-t

  93. Zheng H, Ma D, Bao X, Hu JZ, Kwak JH, Wang Y, Peden CHF (2008) Direct observation of the active center for methane dehydroaromatization using an ultrahigh field 95Mo NMR spectroscopy. J Am Chem Soc 130(12):3722–3723. https://doi.org/10.1021/ja7110916

    Article  CAS  PubMed  Google Scholar 

  94. Kazansky VB, Senchenya IN (1989) Quantum chemical study of the electronic structure and geometry of surface alkoxy groups as probable active intermediates of heterogeneous acidic catalysts: What are the adsorbed carbenium ions? J Catal 119(1):108–120. https://doi.org/10.1016/0021-9517(89)90139-5

    Article  Google Scholar 

  95. Rigby AM, Kramer GJ, van Santen RA (1997) Mechanisms of Hydrocarbon Conversion in Zeolites: A Quantum Mechanical Study. J Catal 170(1):1–10. https://doi.org/10.1006/jcat.1997.1574

    Article  CAS  Google Scholar 

  96. Olah GA (1972) Stable carbocations. CXVIII. General concept and structure of carbocations based on differentiation of trivalent (classical) carbenium ions from three-center bound penta- of tetracoordinated (nonclassical) carbonium ions. Role of carbocations in electrophilic reactions. J Am Chem Soc 94 (3):808–820. https://doi.org/10.1021/ja00758a020

    Article  CAS  Google Scholar 

  97. Olah GA, Schilling P, Staral JS, Halpern Y, Olah JA (1975) Electrophilic reactions at single bonds. XIV. Anhydrous fluoroantimonic acid catalyzed alkylation of benzene with alkanes and alkane-alkene and alkane-alkylbenzene mixtures. J Am Chem Soc 97 (23):6807–6810. https://doi.org/10.1021/ja00856a034

    Article  CAS  Google Scholar 

  98. Olah GA, White AM (1969) Stable carbonium ions. XCI. Carbon-13 nuclear magnetic resonance spectroscopic study of carbonium ions. J Am Chem Soc 91 (21):5801–5810. https://doi.org/10.1021/ja01049a017

    Article  CAS  Google Scholar 

  99. Corma A, González-Alfaro V, Orchillés AV (1999) The role of pore topology on the behaviour of FCC zeolite additives. Appl Catal A 187(2):245–254. https://doi.org/10.1016/S0926-860X(99)00226-4

    Article  CAS  Google Scholar 

  100. Mirodatos C, Barthomeuf D (1988) Cracking of n-decane on zeolite catalysts: enhancement of light hydrocarbon formation by the zeolite field gradient. J Catal 114(1):121–135. https://doi.org/10.1016/0021-9517(88)90014-0

    Article  CAS  Google Scholar 

  101. Ivanova II, Pomakhina EB, Rebrov AI, Derouane EG (1998) 13C MAS NMR mechanistic study of the initial stages of propane activation over H-ZSM-5 zeolite. Top Catal 6(1):49–59. https://doi.org/10.1023/a:1019139111671

    Article  CAS  Google Scholar 

  102. Ivanova II, Rebrov AI, Pomakhina EB, Derouane EG (1999) 13C MAS NMR mechanistic study of propane conversion into butanes over H-MFI catalyst. J Mol Catal A Chem 141(1–3):107–116. https://doi.org/10.1016/S1381-1169(98)00254-4

    Article  CAS  Google Scholar 

  103. Ono Y (1992) Transformation of Lower Alkanes into Aromatic Hydrocarbons over ZSM-5 Zeolites. Catalysis Reviews 34(3):179–226. https://doi.org/10.1080/01614949208020306

    Article  CAS  Google Scholar 

  104. Derouane EG, Abdul Hamid SB, Ivanova II, Blom N, Højlund-Nielsen P-E (1994) Thermodynamic and mechanistic studies of initial stages in propane aromatisation over Ga-modified H-ZSM-5 catalysts. J Mol Catal 86(1–3):371–400. https://doi.org/10.1016/0304-5102(93)E0176-H

    Article  CAS  Google Scholar 

  105. Derouane EG, He H, Derouane-Abd Hamid SB, Lambert D, Ivanova I (2000) In situ MAS NMR spectroscopy study of catalytic reaction mechanisms. J Mol Catal A: Chem 158(1):5–17. https://doi.org/10.1016/S1381-1169(00)00039-X

    Article  CAS  Google Scholar 

  106. Anunziata OA, Pierella LB (1993) Nature of the active sites in H-ZSM-11 zeolite modified with Zn(2+) and Ga(3+). Catal Lett 19(2):143–151. https://doi.org/10.1007/bf00771749

    Article  CAS  Google Scholar 

  107. Mériaudeau P, Naccache C (1996) Gallium based MFI zeolites for the aromatization of propane. Catal Today 31(3–4):265–273. https://doi.org/10.1016/S0920-5861(96)00017-X

    Article  Google Scholar 

  108. Buckles G, Hutchings GJ, Williams CD (1991) Propane conversion over zeolite catalysts: comments on the role of Ga. Catal Lett 8(2):115–123. https://doi.org/10.1007/bf00764107

    Article  CAS  Google Scholar 

  109. Buckles G, Hutchings GJ, Williams CD (1991) Aromatization of propane over Ga/H-ZSM-5: an explanation of the synergy observed between Ga3+ and H+. Catal Lett 11(1):89–93. https://doi.org/10.1007/bf00866905

    Article  CAS  Google Scholar 

  110. Le van Mao R, Yao J, Dufresne LA, Carli R (1996) Gallium-loaded zeolites and related systems hybrid catalysts containing zeolite ZSM-5 and supported gallium oxide in the aromatization of n-butane. Catal Today 31(3):247–255. https://doi.org/10.1016/S0920-5861(96)00020-X

    Article  Google Scholar 

  111. Biscardi JA, Iglesia E (1999) Reaction pathways and rate-determining steps in reactions of alkanes on H-ZSM5 and Zn/H-ZSM5 catalysts. J Catal 182(1):117–128. https://doi.org/10.1006/jcat.1998.2312

    Article  CAS  Google Scholar 

  112. Le Van Mao R, Dufresne L (1989) Enhancement of the aromatizing activity of ZSM-5 zeolite induced by hydrogen back-spillover: aromatizing the outstream gases of a propane steam-cracker. Appl Catal 52(1):1–18. https://doi.org/10.1016/S0166-9834(00)83368-0

    Article  Google Scholar 

  113. Biscardi JA, Iglesia E (1996) Gallium-loaded zeolites and related systemsstructure and function of metal cations in light alkane reactions catalyzed by modified H-ZSM5. Catal Today 31(3):207–231. https://doi.org/10.1016/S0920-5861(96)00028-4

    Article  CAS  Google Scholar 

  114. Yu SY, Biscardi JA, Iglesia E (2002) Kinetic relevance of hydrogen desorption steps and virtual pressures on catalytic surfaces during reactions of light alkanes. J Phys Chem B 106(37):9642–9648. https://doi.org/10.1021/jp020780t

    Article  CAS  Google Scholar 

  115. Biscardi JA, Iglesia E (1999) Non-oxidative reactions of propane on Zn/Na-ZSM5. Phys Chem Chem Phys 1 (24):5753-5759. https://doi.org/10.1039/a906550d

    Article  CAS  Google Scholar 

  116. Le Van Mao R, Dufresne L, Yao J (1990) Long distance hydrogen back-spillover (LD-HBS) phenomena in the aromatization of light alkanes. Appl Catal 65(1):143–157. https://doi.org/10.1016/S0166-9834(00)81594-8

    Article  Google Scholar 

  117. Shubin AA, Zhidomirov GM, Kazansky VB, van Santen RA (2003) DFT cluster modeling of molecular and dissociative hydrogen adsorption on Zn2+ Ions with distant placing of aluminum in the framework of high-silica zeolites. Catal Lett 90(3):137–142. https://doi.org/10.1023/B:CATL.0000004107.24576.1c

    Article  CAS  Google Scholar 

  118. Barbosa LAMM, van Santen RA (2003) Influence of zeolite framework geometry structure on the stability of the [ZnOZn]2+ cluster by periodical density functional theory. J Phys Chem B 107(19):4532–4536. https://doi.org/10.1021/jp022384g

    Article  CAS  Google Scholar 

  119. Dent AL, Kokes RJ (1970) Intermediates in ethylene hydrogenation over zinc oxide. J Phys Chem 74(20):3653–3662. https://doi.org/10.1021/j100714a018

    Article  CAS  Google Scholar 

  120. Luzgin MV, Stepanov AG, Arzumanov SS, Rogov VA, Parmon VN, Wang W, Hunger M, Freude D (2006) Mechanism studies of the conversion of 13C-labeled n-Butane on zeolite H-ZSM-5 by using 13C magic angle spinning NMR spectroscopy and GC–MS analysis. Chem A Eur J 12(2):457–465. https://doi.org/10.1002/chem.200500382

    Article  Google Scholar 

  121. Luzgin MV, Arzumanov SS, Shmachkova VP, Kotsarenko NS, Rogov VA, Stepanov AG (2003) n-Butane conversion on sulfated zirconia: the mechanism of isomerization and 13C-label scrambling as studied by in situ 13C MAS NMR and ex situ GC-MS. J Catal 220(1):233–239. https://doi.org/10.1016/S0021-9517(03)00243-4

    Article  CAS  Google Scholar 

  122. Stepanov AG, Luzgin MV, Arzumanov SS, Wang W, Hunger M, Freude D (2005) n-Butane conversion on sulfated zirconia: in situ 13C MAS NMR monitoring of the kinetics of the 13C-label scrambling and isomerization. Catal Lett 101(3):181–185. https://doi.org/10.1007/s10562-005-4887-1

    Article  CAS  Google Scholar 

  123. Chang CD, Silvestri AJ (1977) The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts. J Catal 47(2):249–259. https://doi.org/10.1016/0021-9517(77)90172-5

    Article  CAS  Google Scholar 

  124. Koempel H, Liebner W (2007) Lurgi’s methanol to propylene (MTP®) report on a successful commercialisation. In: Fábio Bellot Noronha MS, Eduardo Falabella S-A (eds) Studies in surface science and catalysis, vol 167, pp 261–267. http://dx.doi.org/10.1016/S0167-2991(07)80142-X

    Google Scholar 

  125. Vora BV, Marker TL, Barger PT, Nilsen HR, Kvisle S, Fuglerud T (1997) Economic route for natural gas conversion to ethylene and propylene. In: M. de Pontes RLECPNJHS, Scurrell MS (eds) Studies in surface science and catalysis, vol Volume 107. Elsevier, pp 87–98. http://dx.doi.org/10.1016/S0167-2991(97)80321-7

  126. Stöcker M (1999) Methanol-to-hydrocarbons: catalytic materials and their behavior. Micropor Mesopor Mat 29(1–2):3–48. https://doi.org/10.1016/S1387-1811(98)00319-9

    Article  Google Scholar 

  127. Haw JF, Song W, Marcus DM, Nicholas JB (2003) The mechanism of methanol to hydrocarbon catalysis. Acc Chem Res 36(5):317–326. https://doi.org/10.1021/ar020006o

    Article  CAS  PubMed  Google Scholar 

  128. Olsbye U, Svelle S, Bjørgen M, Beato P, Janssens TVW, Joensen F, Bordiga S, Lillerud KP (2012) Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Angew Chem Int Ed 51(24):5810–5831. https://doi.org/10.1002/anie.201103657

    Article  CAS  Google Scholar 

  129. Hemelsoet K, Van der Mynsbrugge J, De Wispelaere K, Waroquier M, Van Speybroeck V (2013) Unraveling the reaction mechanisms governing methanol-to-olefins catalysis by theory and experiment. ChemPhysChem 14(8):1526–1545. https://doi.org/10.1002/cphc.201201023

    Article  CAS  PubMed  Google Scholar 

  130. Ilias S, Bhan A (2012) Mechanism of the catalytic conversion of methanol to hydrocarbons. ACS Catal 3(1):18–31. https://doi.org/10.1021/cs3006583

    Article  CAS  Google Scholar 

  131. Wang W, Jiang Y, Hunger M (2006) Mechanistic investigations of the methanol-to-olefin (MTO) process on acidic zeolite catalysts by in situ solid-state NMR spectroscopy. Catal Today 113(1–2):102–114. https://doi.org/10.1016/j.cattod.2005.11.015

    Article  CAS  Google Scholar 

  132. Jiang Y, Wang W, Reddy Marthala VR, Huang J, Sulikowski B, Hunger M (2006) Effect of organic impurities on the hydrocarbon formation via the decomposition of surface methoxy groups on acidic zeolite catalysts. J Catal 238(1):21–27. https://doi.org/10.1016/j.jcat.2005.11.029

    Article  CAS  Google Scholar 

  133. Wang W, Buchholz A, Seiler M, Hunger M (2003) Evidence for an initiation of the methanol-to-olefin process by reactive surface methoxy groups on acidic zeolite catalysts. J Am Chem Soc 125(49):15260–15267. https://doi.org/10.1021/ja0304244

    Article  CAS  PubMed  Google Scholar 

  134. Li J, Wei Z, Chen Y, Jing B, He Y, Dong M, Jiao H, Li X, Qin Z, Wang J (2014) A route to form initial hydrocarbon pool species in methanol conversion to olefins over zeolites. J Catal 317(317):277–283

    Article  CAS  Google Scholar 

  135. Lesthaeghe D, Van Speybroeck V, Marin GB, Waroquier M (2006) Understanding the failure of direct C–C coupling in the zeolite-catalyzed methanol-to-olefin process. Angew Chem Int Ed 45(11):1714–1719. https://doi.org/10.1002/anie.200503824

    Article  CAS  Google Scholar 

  136. Marcus DM, McLachlan KA, Wildman MA, Ehresmann JO, Kletnieks PW, Haw JF (2006) Experimental evidence from H/D exchange studies for the failure of direct C–C coupling mechanisms in the methanol-to-olefin process catalyzed by HSAPO-34. Angew Chem Int Ed 45(19):3133–3136. https://doi.org/10.1002/anie.200504372

    Article  CAS  Google Scholar 

  137. Song W, Marcus DM, Fu H, Ehresmann JO, Haw JF (2002) An oft-studied reaction that may never have been: direct catalytic conversion of methanol or dimethyl ether to hydrocarbons on the solid acids HZSM-5 or HSAPO-34. J Am Chem Soc 124(15):3844–3845. https://doi.org/10.1021/ja016499u

    Article  CAS  PubMed  Google Scholar 

  138. Dessau RM, LaPierre RB (1982) On the mechanism of methanol conversion to hydrocarbons over HZSM-5. J Catal 78(1):136–141. https://doi.org/10.1016/0021-9517(82)90292-5

    Article  CAS  Google Scholar 

  139. Dessau RM (1986) On the H-ZSM-5 catalyzed formation of ethylene from methanol or higher olefins. J Catal 99(1):111–116. https://doi.org/10.1016/0021-9517(86)90204-6

    Article  CAS  Google Scholar 

  140. Mole T, Bett G, Seddon D (1983) Conversion of methanol to hydrocarbons over ZSM-5 zeolite: an examination of the role of aromatic hydrocarbons using 13carbon- and deuterium-labeled feeds. J Catal 84(2):435–445. https://doi.org/10.1016/0021-9517(83)90014-3

    Article  CAS  Google Scholar 

  141. Mole T, Whiteside JA, Seddon D (1983) Aromatic co-catalysis of methanol conversion over zeolite catalysts. J Catal 82(2):261–266. https://doi.org/10.1016/0021-9517(83)90192-6

    Article  CAS  Google Scholar 

  142. Langner BE (1982) Reactions of methanol on zeolites with different pore structures. Appl Catal 2(4–5):289–302. https://doi.org/10.1016/0166-9834(82)80075-4

    Article  CAS  Google Scholar 

  143. Dahl I, Kolboe S (1993) On the reaction mechanism for propene formation in the MTO reaction over SAPO-34. Catal Lett 20(3–4):329–336. https://doi.org/10.1007/bf00769305

    Article  CAS  Google Scholar 

  144. Dahl IM, Kolboe S (1994) On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34: I. Isotopic labeling studies of the co-reaction of ethene and methanol. J Catal 149 (2):458–464. http://dx.doi.org/10.1006/jcat.1994.1312

    Article  CAS  Google Scholar 

  145. Dahl IM, Kolboe S (1996) On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34: 2. Isotopic labeling studies of the co-reaction of propene and methanol. J Catal 161(1):304–309. http://dx.doi.org/10.1006/jcat.1996.0188

    Article  CAS  Google Scholar 

  146. Svelle S, Joensen F, Nerlov J, Olsbye U, Lillerud K-P, Kolboe S, Bjørgen M (2006) Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: ethene formation is mechanistically separated from the formation of higher alkenes. J Am Chem Soc 128(46):14770–14771. https://doi.org/10.1021/ja065810a

    Article  CAS  PubMed  Google Scholar 

  147. Bjorgen M, Svelle S, Joensen F, Nerlov J, Kolboe S, Bonino F, Palumbo L, Bordiga S, Olsbye U (2007) Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: on the origin of the olefinic species. J Catal 249(2):195–207. https://doi.org/10.1016/j.jcat.2007.04.006

    Article  CAS  Google Scholar 

  148. Teketel S, Olsbye U, Lillerud K-P, Beato P, Svelle S (2010) Selectivity control through fundamental mechanistic insight in the conversion of methanol to hydrocarbons over zeolites. Micropor Mesopor Mat 136(1–3):33–41. https://doi.org/10.1016/j.micromeso.2010.07.013

    Article  CAS  Google Scholar 

  149. Westgård Erichsen M, Svelle S, Olsbye U (2013) H-SAPO-5 as methanol-to-olefins (MTO) model catalyst: towards elucidating the effects of acid strength. J Catal 298:94. https://doi.org/10.1016/j.jcat.2012.11.004

    Article  CAS  Google Scholar 

  150. Westgård Erichsen M, Svelle S, Olsbye U (2013) The influence of catalyst acid strength on the methanol to hydrocarbons (MTH) reaction. Catal Today 215:216–223. https://doi.org/10.1016/j.cattod.2013.03.017

    Article  CAS  Google Scholar 

  151. Hunger M, Weitkamp J (2001) In situ IR, NMR, EPR, and UV/Vis spectroscopy: tools for New insight into the mechanisms of heterogeneous catalysis. Angew Chem Int Ed 40(16):2954–2971. https://doi.org/10.1002/1521-3773(20010817)40:16%3c2954:AID-ANIE2954%3e3.0.CO;2-%23

    Article  CAS  Google Scholar 

  152. Haw JF (2004) In-situ spectroscopy in heterogeneous catalysis

    Google Scholar 

  153. Hunger M (2005) Applications of in situ spectroscopy in zeolite catalysis. Micropor Mesopor Mat 82(3):241–255. https://doi.org/10.1016/j.micromeso.2005.01.037

    Article  CAS  Google Scholar 

  154. Song W, Nicholas J, Sassi A, Haw J (2002) Synthesis of the heptamethylbenzenium cation in zeolite-β: in situ NMR and theory. Catal Lett 81(1–2):49–53. https://doi.org/10.1023/A:1016003905167

    Article  CAS  Google Scholar 

  155. Munson EJ, Haw JF (1991) NMR observation of trimethyloxonium formation from dimethyl ether on zeolite HZSM-5. J Am Chem Soc 113(16):6303–6305. https://doi.org/10.1021/ja00016a075

    Article  CAS  Google Scholar 

  156. Wu X, Xu S, Zhang W, Huang J, Li J, Yu B, Wei Y, Liu Z (2017) Direct mechanism of the first carbon-carbon bond formation in the methanol-to-hydrocarbons process. Angew Chem Int Ed 56(31):9039–9043. https://doi.org/10.1002/anie.201703902

    Article  CAS  Google Scholar 

  157. Wang C, Chu Y, Xu J, Wang Q, Qi G, Gao P, Zhou X, Deng F (2018) Extra-framework aluminum-assisted initial C−C bond formation in methanol-to-olefins conversion on zeolite H-ZSM-5. Angew Chem Int Ed 57(32):10197–10201. https://doi.org/10.1002/anie.201805609

    Article  CAS  Google Scholar 

  158. Anderson MW, Klinowski J (1990) Solid-state NMR studies of the shape-selective catalytic conversion of methanol into gasoline on zeolite ZSM-5. J Am Chem Soc 112(1):10–16. https://doi.org/10.1021/ja00157a004

    Article  CAS  Google Scholar 

  159. Haw JF, Nicholas JB, Song W, Deng F, Wang Z, Xu T, Heneghan CS (2000) Roles for cyclopentenyl cations in the synthesis of hydrocarbons from methanol on zeolite catalyst HZSM-5. J Am Chem Soc 122(19):4763–4775. https://doi.org/10.1021/ja994103x

    Article  CAS  Google Scholar 

  160. Song W, Nicholas JB, Haw JF (2001) A persistent carbenium Ion on the methanol-to-olefin catalyst HSAPO-34: acetone shows the way. J Phys Chem B 105(19):4317–4323. https://doi.org/10.1021/jp0041407

    Article  CAS  Google Scholar 

  161. Wang  C, Chu  Y, Zheng A, Xu J, Wang Q, Gao P, Qi G, Gong Y, Deng F (2014) New Insight into the hydrocarbon-pool chemistry of the methanol-to-olefins conversion over zeolite H-ZSM-5 from GC-MS, solid-state NMR spectroscopy, and DFT calculations. Chemistry A Eur J 20 (39):12432–12443. https://doi.org/10.1002/chem.201403972

    Article  CAS  Google Scholar 

  162. Wang C, Yi X, Xu J, Qi G, Gao P, Wang W, Chu Y, Wang Q, Feng N, Liu X, Zheng A , Deng F (2015) Mechanistic study of the formation of ethene via carbocations in methanol conversion over H-ZSM-5 zeolite. Chem Euro J 21(34):12061–12068. https://doi.org/10.1002/chem.201501355

    Article  CAS  Google Scholar 

  163. Sun X, Mueller S, Shi H, Haller GL, Sanchez-Sanchez M, van Veen AC, Lercher JA (2014) On the impact of co-feeding aromatics and olefins for the methanol-to-olefins reaction on HZSM-5. J Catal 314:21–31. https://doi.org/10.1016/j.jcat.2014.03.013

    Article  CAS  Google Scholar 

  164. Wang J, Wei Y, Li J, Xu S, Zhang W, He Y, Chen J, Zhang M, Zheng A, Deng F, Guo X, Liu Z (2016) Direct observation of methylcyclopentenyl cations (MCP+) and olefin generation in methanol conversion over TON zeolite. Catal Sci Technol 6(1):89–97. https://doi.org/10.1039/C5CY01420D

    Article  Google Scholar 

  165. Zhang M, Xu S, Li J, Wei Y, Gong Y, Chu Y, Zheng A, Wang J, Zhang W, Wu X, Deng F, Liu Z (2016) Methanol to hydrocarbons reaction over Hβ zeolites studied by high resolution solid-state NMR spectroscopy: carbenium ions formation and reaction mechanism. J Catal 335:47–57. https://doi.org/10.1016/j.jcat.2015.12.007

    Article  CAS  Google Scholar 

  166. Xu T, Barich DH, Goguen PW, Song W, Wang Z, Nicholas JB, Haw JF (1998) Synthesis of a benzenium ion in a zeolite with use of a catalytic flow reactor. J Am Chem Soc 120(16):4025–4026. https://doi.org/10.1021/ja973791m

    Article  CAS  Google Scholar 

  167. Li J, Wei Y, Chen J, Tian P, Su X, Xu S, Qi Y, Wang Q, Zhou Y, He Y, Liu Z (2012) Observation of heptamethylbenzenium cation over SAPO-type molecular sieve DNL-6 under real MTO conversion conditions. J Am Chem Soc 134(2):836–839. https://doi.org/10.1021/ja209950x

    Article  CAS  PubMed  Google Scholar 

  168. Ono Y, Mori T (1981) Mechanism of methanol conversion into hydrocarbons over ZSM-5 zeolite. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 77 (9):2209–2221. https://doi.org/10.1039/f19817702209

    Article  CAS  Google Scholar 

  169. Thursfield A, Anderson MW (1996) H, 2H, and 13C solid-state NMR studies of methanol adsorbed on a series of acidic microporous zeotype materials. J Phys Chem 100(16):6698–6707. https://doi.org/10.1021/jp9530919

    Article  CAS  Google Scholar 

  170. Anderson MW, Occelli ML, Klinowski J (1992) Carbon-13 and proton magic-angle-spinning NMR studies of the conversion of methanol over offretite/erionite intergrowths. J Phys Chem 96(1):388–392. https://doi.org/10.1021/j100180a072

    Article  CAS  Google Scholar 

  171. Salehirad F, Anderson MW (1998) Solid-state NMR study of methanol conversion over ZSM-23, SAPO-11 and SAPO-5 molecular sieves. Part 2. Journal of the Chemical Society, Faraday Transactions 94 (18):2857–2866. https://doi.org/10.1039/a803754j

    Article  CAS  Google Scholar 

  172. Olah GA, Molnár A (2003) Hydrocarbon chemistry, 2nd edn. Wiley, New York

    Book  Google Scholar 

  173. Luzgin MV, Romannikov VN, Stepanov AG, Zamaraev KI (1996) Interaction of olefins with carbon monoxide on zeolite H-ZSM-5. NMR observation of the friedel–crafts acylation of alkenes at ambient Temperature. J Am Chem Soc 118(44):10890–10891. https://doi.org/10.1021/ja9615381

    Article  CAS  Google Scholar 

  174. Li T, Tsumori N, Souma Y, Xu Q (2003) Highly active and stable performance of catalytic vapor phase Koch-type carbonylation of tert-butyl alcohol over H-zeolites. Chem Commun 16:2070–2071. https://doi.org/10.1039/b304353c

    Article  CAS  Google Scholar 

  175. Jiang Y, Hunger M, Wang W (2006) On the reactivity of surface methoxy species in acidic zeolites. J Am Chem Soc 128(35):11679–11692. https://doi.org/10.1021/ja061018y

    Article  CAS  PubMed  Google Scholar 

  176. Li B, Xu J, Han B, Wang X, Qi G, Zhang Z, Wang C, Deng F (2013) Insight into dimethyl ether carbonylation reaction over mordenite zeolite from in-situ solid-state NMR spectroscopy. J Phys Chem C 117(11):5840–5847. https://doi.org/10.1021/jp400331m

    Article  CAS  Google Scholar 

  177. Liu Y, Müller S, Berger D, Jelic J, Reuter K, Tonigold M, Sanchez‐Sanchez M, Lercher JA (2016) Formation mechanism of the first carbon–carbon bond and the first olefin in the methanol conversion into hydrocarbons. Angew Chem Int Ed

    Google Scholar 

  178. Tajima N, Tsuneda T, Toyama F, Hirao K (1998) A new mechanism for the first carbon−carbon bond formation in the MTG process: a theoretical study. J Am Chem Soc 120(32):8222–8229. https://doi.org/10.1021/ja9741483

    Article  CAS  Google Scholar 

  179. Govind N, Andzelm J, Reindel K, Fitzgerald G (2002) Zeolite-catalyzed hydrocarbon formation from methanol: density functional simulations. Int J Mol Sci 3(4):423

    Article  CAS  Google Scholar 

  180. Blaszkowski SR, van Santen RA (1997) Theoretical study of C−C bond formation in the methanol-to-gasoline process. J Am Chem Soc 119(21):5020–5027. https://doi.org/10.1021/ja963530x

    Article  CAS  Google Scholar 

  181. Chowdhury AD, Houben K, Whiting GT, Mokhtar M, Asiri AM, Al‐Thabaiti SA, Basahel SN, Baldus M, Weckhuysen BM (2016) Initial carbon–carbon bond formation during the early stages of the methanol‐to‐olefin process proven by zeolite‐trapped acetate and methyl acetate. Angewandte Chem Int Ed 55(51):15840–15845. https://doi.org/10.1002/anie.201608643

    Article  CAS  PubMed  Google Scholar 

  182. Comas-Vives A, Valla M, Copéret C, Sautet P (2015) Cooperativity between Al sites promotes hydrogen transfer and carbon-carbon bond formation upon dimethyl ether activation on alumina. ACS Cent Sci 1(6):313–319. https://doi.org/10.1021/acscentsci.5b00226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Muller S, Liu Y, Kirchberger FM, Tonigold M, Sanchezsanchez M, Lercher JA (2016) Hydrogen transfer pathways during zeolite catalyzed methanol conversion to hydrocarbons. J Am Chem Soc 138(49):15994–16003

    Article  PubMed  Google Scholar 

  184. Wang C, Wang Q, Xu J, Qi G, Gao P, Wang W, Zou Y, Feng N, Liu X, Deng F (2016) Direct detection of supramolecular reaction centers in the methanol-to-olefins conversion over zeolite H-ZSM-5 by 13C–27Al solid-state NMR spectroscopy. Angew Chem Int Edit 55(7):2507–2511. https://doi.org/10.1002/anie.201510920

    Article  CAS  Google Scholar 

  185. Pourpoint F, Trébosc J, Gauvin RM, Wang Q, Lafon O, Deng F, Amoureux JP (2012) Measurement of aluminum-carbon distances using S-RESPDOR NMR experiments. ChemPhysChem 13(16):3605–3615. https://doi.org/10.1002/cphc.201200490

    Article  CAS  PubMed  Google Scholar 

  186. Sullivan RF, Egan CJ, Langlois GE, Sieg RP (1961) A new reaction that occurs in the hydrocracking of certain aromatic hydrocarbons. J Am Chem Soc 83(5):1156–1160. https://doi.org/10.1021/ja01466a036

    Article  CAS  Google Scholar 

  187. McCann DM, Lesthaeghe D, Kletnieks PW, Guenther DR, Hayman MJ, Van Speybroeck V, Waroquier M, Haw JF (2008) A complete catalytic cycle for supramolecular methanol-to-olefins conversion by linking theory with experiment. Angew Chem Int Ed 47(28):5179–5182. https://doi.org/10.1002/anie.200705453

    Article  CAS  PubMed  Google Scholar 

  188. Bjørgen M, Olsbye U, Petersen D, Kolboe S (2004) The methanol-to-hydrocarbons reaction: insight into the reaction mechanism from [12C] benzene and [13C] methanol coreactions over zeolite H-beta. J Catal 221(1):1–10. https://doi.org/10.1016/S0021-9517(03)00284-7

    Article  CAS  Google Scholar 

  189. Ilias S, Bhan A (2014) The mechanism of aromatic dealkylation in methanol-to-hydrocarbons conversion on H-ZSM-5: what are the aromatic precursors to light olefins? J Catal 311:6–16. https://doi.org/10.1016/j.jcat.2013.11.003

    Article  CAS  Google Scholar 

  190. Arstad B, Kolboe S, Swang O (2004) Theoretical study of protonated xylenes: ethene elimination and H C-scrambling reactions. J Phys Org Chem 17(11):1023–1032. https://doi.org/10.1002/poc.830

    Article  CAS  Google Scholar 

  191. Kiricsi I, Förster H, Tasi G, Nagy JB (1999) Generation, characterization, and transformations of unsaturated carbenium ions in zeolites. Chem Rev 99(8):2085–2114. https://doi.org/10.1021/cr9600767

    Article  CAS  PubMed  Google Scholar 

  192. Wang C, Xu J, Qi G, Gong Y, Wang W, Gao P, Wang Q, Feng N, Liu X, Deng F (2015) Methylbenzene hydrocarbon pool in methanol-to-olefins conversion over zeolite H-ZSM-5. J Catal 332:127–137. https://doi.org/10.1016/j.jcat.2015.10.001

    Article  CAS  Google Scholar 

  193. Miyake K, Hirota Y, Ono K, Uchida Y, Tanaka S, Nishiyama N (2016) Direct and selective conversion of methanol to para-xylene over Zn ion doped ZSM-5/silicalite-1 core-shell zeolite catalyst. J Catal 342:63–66. https://doi.org/10.1016/j.jcat.2016.07.008

    Article  CAS  Google Scholar 

  194. Schulz H (2010) “Coking” of zeolites during methanol conversion: basic reactions of the MTO-MTP- and MTG processes. Catal Today 154(3):183–194. https://doi.org/10.1016/j.cattod.2010.05.012

    Article  CAS  Google Scholar 

  195. Wang C, Sun X, Xu J, Qi G, Wang W, Zhao X, Li W, Wang Q, Deng F (2017) Impact of temporal and spatial distribution of hydrocarbon pool on methanol conversion over H-ZSM-5. J Catal 354:138–151. https://doi.org/10.1016/j.jcat.2017.08.003

    Article  CAS  Google Scholar 

  196. Arstad B, Nicholas JB, Haw JF (2004) Theoretical study of the methylbenzene side-chain hydrocarbon pool mechanism in methanol to olefin catalysis. J Am Chem Soc 126(9):2991–3001. https://doi.org/10.1021/ja035923j

    Article  CAS  PubMed  Google Scholar 

  197. De Wispelaere K, Hemelsoet K, Waroquier M, Van Speybroeck V (2013) Complete low-barrier side-chain route for olefin formation during methanol conversion in H-SAPO-34. J Catal 305:76–80. https://doi.org/10.1016/j.jcat.2013.04.015

    Article  CAS  Google Scholar 

  198. Arstad B, Kolboe S (2001) The reactivity of molecules trapped within the SAPO-34 cavities in the methanol-to-hydrocarbons reaction. J Am Chem Soc 123(33):8137–8138. https://doi.org/10.1021/ja010668t

    Article  CAS  PubMed  Google Scholar 

  199. Xu S, Zheng A, Wei Y, Chen J, Li J, Chu Y, Zhang M, Wang Q, Zhou Y, Wang J, Deng F, Liu Z (2013) Direct observation of cyclic carbenium ions and their role in the catalytic cycle of the methanol-to-olefin reaction over chabazite zeolites. Angew Chem Int Ed 52(44):11564–11568. https://doi.org/10.1002/anie.201303586

    Article  CAS  Google Scholar 

  200. Maly T, Debelouchina GT, Bajaj VS, Hu K-N, Joo C-G, Mak–Jurkauskas ML, Sirigiri JR, van der Wel PCA, Herzfeld J, Temkin RJ, Griffin RG (2008) Dynamic nuclear polarization at high magnetic fields. J Chem Phys 128(5):052211. http://dx.doi.org/10.1063/1.2833582

    Article  PubMed  Google Scholar 

  201. Bowers CR, Weitekamp DP (1987) Parahydrogen and synthesis allow dramatically enhanced nuclear alignment. J Am Chem Soc 109(18):5541–5542. https://doi.org/10.1021/ja00252a049

    Article  CAS  Google Scholar 

  202. Kovtunov KV, Zhivonitko VV, Skovpin IV, Barskiy DA, Koptyug IV (2013) Parahydrogen-induced polarization in heterogeneous catalytic processes. In: Kuhn TL (ed) Hyperpolarization methods in NMR spectroscopy. Springer, Berlin, Heidelberg, pp 123–180. https://doi.org/10.1007/128-2012-371

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Xu .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, J., Wang, Q., Li, S., Deng, F. (2019). In Situ Solid-State NMR Investigation of Catalytic Reactions on Zeolites. In: Solid-State NMR in Zeolite Catalysis. Lecture Notes in Chemistry, vol 103. Springer, Singapore. https://doi.org/10.1007/978-981-13-6967-4_6

Download citation

Publish with us

Policies and ethics