Skip to main content

Solid-State NMR Characterization of Framework Structure of Zeolites and Zeotype Materials

  • Chapter
  • First Online:
Solid-State NMR in Zeolite Catalysis

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 103))

Abstract

This chapter introduces the application of solid-state NMR to characterize the framework structure of zeolite and zeotype materials. Zeolites are inorganic crystallites containing pores and cavities of molecular dimensions with well-defined structures. The framework of zeolite is composed of tetrahedra (TO4, T = Si, Al, B, P, etc.), which can be comprehensively characterized by the well-established and robust solid-state NMR techniques. Chemical environment of the metal or non-metal elements in zeolites and zeotype materials could be studied by the multi-nuclear MAS NMR spectroscopy including 29Si, 27Al, 31P, 17O NMR. Additionally, the detailed information about coordination, connectivity, and framework ordering can be obtained from multi-nuclear and two-dimensional NMR spectroscopy as well as distance constraints’ measurement. Moreover, the structure features and communication of cages and channels in porous materials can be extracted by 129Xe NMR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tao YS, Kanoh H, Abrams L, Kaneko K (2006) Mesopore-modified zeolites: preparation, characterization, and applications. Chem Rev 106(3):896–910. https://doi.org/10.1021/cr040204o

    Article  CAS  PubMed  Google Scholar 

  2. Corma A (2003) State of the art and future challenges of zeolites as catalysts. J Catal 216(1–2):298–312. https://doi.org/10.1016/s0021-9517(02)00132-x

    Article  CAS  Google Scholar 

  3. Barthomeuf D (1996) Basic zeolites: characterization and uses in adsorption and catalysis. Catal Rev Sci Eng 38(4):521–612. https://doi.org/10.1080/01614949608006465

    Article  Google Scholar 

  4. Li S, Deng F (2013) Chapter one—Recent advances of solid-state NMR studies on zeolites. In: Graham AW (ed) Annual reports on NMR spectroscopy, vol 78. Academic Press, pp 1–54. https://doi.org/10.1016/B978-0-12-404716-7.00001-8

    Google Scholar 

  5. Klinowski J (1991) Solid-state NMR-studies of molecular-sieve catalysts. Chem Rev 91(7):1459–1479. https://doi.org/10.1021/cr00007a010

    Article  CAS  Google Scholar 

  6. Haouas M, Taulelle F, Martineau C (2016) Recent advances in application of 27Al NMR spectroscopy to materials science. Prog Nucl Magn Reson Spectrosc 94–95:11–36. https://doi.org/10.1016/j.pnmrs.2016.01.003

    Article  CAS  PubMed  Google Scholar 

  7. Li SH, Huang SJ, Shen WL, Zhang HL, Fang HJ, Zheng AM, Liu SB, Deng F (2008) Probing the spatial proximities among acid sites in dealuminated H–Y zeolite by solid-state NMR spectroscopy. J Phys Chem C 112(37):14486–14494. https://doi.org/10.1021/jp803494n

    Article  CAS  Google Scholar 

  8. Hu W, Luo Q, Su YC, Chen L, Yue Y, Ye CH, Deng F (2006) Acid sites in mesoporous Al-SBA-15 material as revealed by solid-state NMR spectroscopy. Microporous Mesoporous Mater 92(1–3):22–30. https://doi.org/10.1016/j.micromeso.2005.12.013

    Article  CAS  Google Scholar 

  9. Shannon RD, Gardner KH, Staley RH, Bergeret G, Gallezot P, Auroux A (1985) The nature of the nonframework aluminum species formed during the dehydroxylation of H–Y. J Phys Chem 89(22):4778–4788. https://doi.org/10.1021/j100268a025

    Article  CAS  Google Scholar 

  10. Jiao J, Altwasser S, Wang W, Weitkamp J, Hunger M (2004) state of aluminum in dealuminated, nonhydrated zeolites Y investigated by multinuclear solid-state NMR spectroscopy. J Phys Chem B 108(38):14305–14310. https://doi.org/10.1021/jp040081b

    Article  CAS  Google Scholar 

  11. Comotti A, Bracco S, Valsesia P, Ferretti L, Sozzani P (2007) 2D multinuclear NMR, hyperpolarized xenon and gas storage in organosilica nanochannels with crystalline order in the walls. J Am Chem Soc 129(27):8566–8576. https://doi.org/10.1021/ja071348y

    Article  CAS  PubMed  Google Scholar 

  12. Gan ZH (2000) Isotropic NMR spectra of half-integer quadrupolar nuclei using satellite transitions and magic-angle spinning. J Am Chem Soc 122(13):3242–3243. https://doi.org/10.1021/ja9939791

    Article  CAS  Google Scholar 

  13. Christiansen SC, Zhao DY, Janicke MT, Landry CC, Stucky GD, Chmelka BF (2001) Molecularly ordered inorganic frameworks in layered silicate surfactant mesophases. J Am Chem Soc 123(19):4519–4529. https://doi.org/10.1021/ja004310t

    Article  CAS  PubMed  Google Scholar 

  14. Samoson A, Lippmaa E, Pines A (1988) High-resolution solid-state NMR averaging of 2nd-order effects by means of a double-rotor. Mol Phys 65(4):1013–1018. https://doi.org/10.1080/00268978800101571

    Article  CAS  Google Scholar 

  15. Xu L, Ji X, Li S, Zhou Z, Du X, Sun J, Deng F, Che S, Wu P (2016) Self-assembly of cetyltrimethylammonium bromide and lamellar zeolite precursor for the preparation of hierarchical MWW zeolite. Chem Mater 28(12):4512–4521. https://doi.org/10.1021/acs.chemmater.6b02155

    Article  CAS  Google Scholar 

  16. Medek A, Harwood JS, Frydman L (1995) Multiple-quantum magic-angle spinning NMR: A new method for the study of quadrupolar nuclei in solids. J Am Chem Soc 117(51):12779–12787. https://doi.org/10.1021/ja00156a015

    Article  CAS  Google Scholar 

  17. Yu ZW, Zheng AM, Wang QA, Chen L, Xu J, Amoureux JP, Deng F (2010) Insights into the dealumination of zeolite HY revealed by sensitivity-enhanced Al-27 DQ-MAS NMR spectroscopy at high field. Angew Chem Int Ed 49(46):8657–8661. https://doi.org/10.1002/anie.201004007

    Article  CAS  Google Scholar 

  18. Amoureux JP, Fernandez C, Steuernagel S (1996) Z filtering in MQMAS NMR. J Magn Reson Ser A 123(1):116–118. https://doi.org/10.1006/jmra.1996.0221

    Article  CAS  Google Scholar 

  19. van Bokhoven JA, Koningsberger DC, Kunkeler P, van Bekkum H, Kentgens APM (2000) Stepwise dealumination of zeolite beta at specific T-sites observed with Al-27 MAS and Al-27 MQ MAS NMR. J Am Chem Soc 122(51):12842–12847. https://doi.org/10.1021/ja002689d

    Article  CAS  Google Scholar 

  20. van Bokhoven JA, Roest AL, Koningsberger DC, Miller JT, Nachtegaal GH, Kentgens APM (2000) Changes in structural and electronic properties of the zeolite framework induced by extraframework Al and La in H-USY and La(x)NaY: A Si-29 and Al-27 MAS NMR and Al-27 MQ MAS NMR study. J Phys Chem B 104(29):6743–6754. https://doi.org/10.1021/jp000147c

    Article  CAS  Google Scholar 

  21. Li SH, Zheng AM, Su YC, Fang HJ, Shen WL, Yu ZW, Chen L, Deng F (2010) Extra-framework aluminium species in hydrated faujasite zeolite as investigated by two-dimensional solid-state NMR spectroscopy and theoretical calculations. Phys Chem Chem Phys 12(15):3895–3903. https://doi.org/10.1039/b915401a

    Article  CAS  PubMed  Google Scholar 

  22. Burkett SL, Davis ME (1994) MECHANISM Of Structure Direction In The Synthesis Of SI-ZSM-5—an investigation by intermolecular H-1-SI-29 CP MAS NMR. J Phys Chem 98(17):4647–4653. https://doi.org/10.1021/j100068a027

    Article  CAS  Google Scholar 

  23. Muller M, Harvey G, Prins R (2000) Comparison of the dealumination of zeolites beta, mordenite, ZSM-5 and ferrierite by thermal treatment, leaching with oxalic acid and treatment with SiCl4 by H-1, Si-29 and Al-27 MAS NMR. Microporous Mesoporous Mater 34(2):135–147. https://doi.org/10.1016/s1387-1811(99)00167-5

    Article  CAS  Google Scholar 

  24. Barrie PJ, Klinowski J (1989) Ordering in the framework of a magnesium aluminophosphate molecular-sieve. J Phys Chem 93(16):5972–5974. https://doi.org/10.1021/j100353a007

    Article  CAS  Google Scholar 

  25. Klinowski J, Ramdas S, Thomas JM, Fyfe CA, Hartman JS (1982) A reexamination of Si, Al ordering in zeolites NaX and NaY. J Chem Soc Faraday Trans 2 78:1025–1050. https://doi.org/10.1039/f29827801025

    Article  CAS  Google Scholar 

  26. Luo Q, Yang J, Hu W, Zhang MJ, Yue Y, Ye CH, Deng F (2005) Unambiguously distinguishing Si 3Si,1Al and Si 3Si,1OH stuctural units in zeolite by H-1/Si-29/Al-27 triple resonance solid state NMR spectroscopy. Solid State Nucl Magn Reson 28(1):9–12. https://doi.org/10.1016/j.ssnmr.2005.02.004

    Article  CAS  PubMed  Google Scholar 

  27. Brouwer DH, Darton RJ, Morris RE, Levitt MH (2005) A solid-state NMR method for solution of zeolite crystal structures. J Am Chem Soc 127(29):10365–10370. https://doi.org/10.1021/ja052306h

    Article  CAS  PubMed  Google Scholar 

  28. Brouwer DH, Kristiansen PE, Fyfe CA, Levitt MH (2005) Symmetry-based Si-29 dipolar recoupling magic angle spinning NMR spectroscopy: a new method for investigating three-dimensional structures of zeolite frameworks. J Am Chem Soc 127(2):542–543. https://doi.org/10.1021/ja043228l

    Article  CAS  PubMed  Google Scholar 

  29. Hammond KD, Dogan F, Tompsett GA, Agarwal V, Conner WC Jr, Grey CP, Auerbach SM (2008) Spectroscopic signatures of nitrogen-substituted zeolites. J Am Chem Soc 130(45):14912–14913. https://doi.org/10.1021/ja8044844

    Article  CAS  PubMed  Google Scholar 

  30. Freeman D, Wells RPK, Hutchings GJ (2001) Methanol to hydrocarbons: enhanced aromatic formation using a composite GaO-H-ZSM-5 catalyst. Chem Commun 18:1754–1755. https://doi.org/10.1039/B104844A

    Article  Google Scholar 

  31. Dogan F, Hammond KD, Tompsett GA, Huo H, Conner WC Jr, Auerbach SM, Grey CP (2009) Searching for microporous, strongly basic catalysts: experimental and calculated 29Si NMR spectra of heavily nitrogen-doped Y zeolites. J Am Chem Soc 131(31):11062–11079. https://doi.org/10.1021/ja9031133

    Article  CAS  PubMed  Google Scholar 

  32. Cadars S, Brouwer DH, Chmelka BF (2009) Probing local structures of siliceous zeolite frameworks by solid-state NMR and first-principles calculations of 29Si–O–29Si scalar couplings. Phys Chem Chem Phys 11(11):1825–1837. https://doi.org/10.1039/b815361b

    Article  CAS  PubMed  Google Scholar 

  33. Luo Q, Deng F, Yuan ZY, Yang J, Zhang MJ, Yue Y, Ye CH (2003) Using trimethylphosphine as a probe molecule to study the acid states in Al-MCM-41 materials by solid-state NMR spectroscopy. J Phys Chem B 107(11):2435–2442. https://doi.org/10.1021/jp0213093

    Article  CAS  Google Scholar 

  34. Kristiansen PE, Carravetta M, Lai WC, Levitt MH (2004) A robust pulse sequence for the determination of small homonuclear dipolar couplings in magic-angle spinning NMR. Chem Phys Lett 390(1–3):1–7. https://doi.org/10.1016/j.cplett.2004.03.075

    Article  CAS  Google Scholar 

  35. Loquet A, Bardiaux B, Gardiennet C, Blanchet C, Baldus M, Nilges M, Malliavin T, Boeckmann A (2008) 3D structure determination of the Crh protein from highly ambiguous solid-state NMR restraints. J Am Chem Soc 130(11):3579–3589. https://doi.org/10.1021/ja078014t

    Article  CAS  PubMed  Google Scholar 

  36. Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420(6911):98–102. https://doi.org/10.1038/nature01070

    Article  CAS  PubMed  Google Scholar 

  37. Franks WT, Wylie BJ, Schmidt HLF, Nieuwkoop AJ, Mayrhofer R-M, Shah GJ, Graesser DT, Rienstra CM (2008) Dipole tensor-based atomic-resolution structure determination of a nanocrystalline protein by solid-state NMR. Proc Natl Acad Sci USA 105(12):4621–4626. https://doi.org/10.1073/pnas.0712393105

    Article  PubMed  Google Scholar 

  38. Li S, Zhang Y, Hong M (2010) 3D 13C-13C-13C correlation NMR for de novo distance determination of solid proteins and application to a human alpha-defensin. J Magn Reson 202 (2):203–210. https://doi.org/10.1016/j.jmr.2009.11.011

    Article  CAS  Google Scholar 

  39. Li S, Su Y, Hong M (2012) Intramolecular 1H-13C distance measurement in uniformly 13C, 15 N labeled peptides by solid-state NMR. Solid State Nucl Magn Reson 45–46:51–58

    Article  Google Scholar 

  40. Franks WT, Zhou DH, Wylie BJ, Money BG, Graesser DT, Frericks HL, Sahota G, Rienstra CM (2005) Magic-angle spinning solid-state NMR spectroscopy of the beta 1 immunoglobulin binding domain of protein G (GB1): N-15 and C-13 chemical shift assignments and conformational analysis. J Am Chem Soc 127(35):12291–12305. https://doi.org/10.1021/ja044497e

    Article  CAS  PubMed  Google Scholar 

  41. Brouwer DH (2008) NMR crystallography of zeolites: refinement of an NMR-solved crystal structure using ab initio calculations of 29Si chemical shift tensors. J Am Chem Soc 130(20):6306–6307. https://doi.org/10.1021/ja800227f

    Article  CAS  PubMed  Google Scholar 

  42. Brouwer DH (2008) A structure refinement strategy for NMR crystallography: an improved crystal structure of silica-ZSM-12 zeolite from 29Si chemical shift tensors. J Magn Reson 194(1):136–146. https://doi.org/10.1016/j.jmr.2008.06.020

    Article  CAS  PubMed  Google Scholar 

  43. Brouwer DH, Enright GD (2008) Probing local structure in zeolite frameworks: ultrahigh-field NMR measurements and accurate first-principles calculations of zeolite 29Si magnetic shielding tensors. J Am Chem Soc 130(10):3095–3105. https://doi.org/10.1021/ja077430a

    Article  CAS  PubMed  Google Scholar 

  44. Zibrowius B, Loffler E, Hunger M (1992) Multinuclear MAS NMR and IR spectroscopic study of silicon incorporation into SAPO-5, SAPO-31, and SAPO-34 molecular-sieves. Zeolites 12(2):167–174. https://doi.org/10.1016/0144-2449(92)90079-5

    Article  CAS  Google Scholar 

  45. Ojo AF, Dwyer J, Dewing J, Karim K (1991) Synthesis and properties of SAPO-37. J Chem Soc Faraday Trans 87(16):2679–2684. https://doi.org/10.1039/ft9918702679

    Article  CAS  Google Scholar 

  46. Lutz W, Kurzhals R, Sauerbeck S, Toufar H, Buhl JC, Gesing T, Altenburg W, Jaeger C (2010) Hydrothermal stability of zeolite SAPO-11. Microporous Mesoporous Mater 132(1–2):31–36. https://doi.org/10.1016/j.micromeso.2009.08.003

    Article  CAS  Google Scholar 

  47. Xu J, Chen L, Zeng D, Yang J, Zhang M, Ye C, Deng F (2007) Crystallization of AlPO4-5 aluminophosphate molecular sieve prepared in fluoride medium: a multinuclear solid-state NMR study. J Phys Chem B 111(25):7105–7113. https://doi.org/10.1021/jp0710133

    Article  CAS  PubMed  Google Scholar 

  48. Longstaffe JG, Chen B, Huang Y (2007) Characterization of the amorphous phases formed during the synthesis of microporous material AlPO4-5. Microporous Mesoporous Mater 98(1–3):21–28. https://doi.org/10.1016/j.micromeso.2006.08.009

    Article  CAS  Google Scholar 

  49. Liu ZQ, Xu WG, Yang GD, Xu RR (1998) New insights into the crystallization mechanism of microporous AlPO4-21(1). Microporous Mesoporous Mater 22(1–3):33–41

    Article  CAS  Google Scholar 

  50. Barrie PJ, Klinowski J (1989) Ordering in the framework of a magnesium aluminophosphate molecular sieve. J Phys Chem 93(16):5972–5974. https://doi.org/10.1021/j100353a007

    Article  CAS  Google Scholar 

  51. Deng F, Yue Y, Xiao T, Du Y, Ye C, An L, Wang H (1995) Substitution of aluminum in aluminophosphate molecular sieve by magnesium: a combined NMR and XRD study. J Phys Chem 99(16):6029–6035. https://doi.org/10.1021/j100016a045

    Article  CAS  Google Scholar 

  52. Fyfe CA, zu Altenschildesche HM, Wong-Moon KC, Grondey H, Chezeau JM (1997) 1D and 2D solid state NMR investigations of the framework structure of As-synthesized AlPO4-14. Solid State Nucl Magn Reson 9(2):97–106. https://doi.org/10.1016/S0926-2040(97)00049-0

    Article  CAS  PubMed  Google Scholar 

  53. Fernandez C, Amoureux JP, Chezeau JM, Delmotte L, Kessler H (1996) 27Al MAS NMR characterization of AlPO4-14 enhanced resolution and information by MQMAS Dr. Hellmut G. Karge on the occasion of his 65th birthday. Microporous Mater 6 (5):331–340. https://doi.org/10.1016/0927-6513(96)00040-5

    Article  CAS  Google Scholar 

  54. Amoureux JP, Trebosc J, Wiench J, Pruski M (2007) HMQC and refocused-INEPT experiments involving half-integer quadrupolar nuclei in solids. J Magn Reson 184(1):1–14. https://doi.org/10.1016/j.jmr.2006.09.009

    Article  CAS  PubMed  Google Scholar 

  55. Yu J, Xu R (2003) Rich structure chemistry in the aluminophosphate family. Acc Chem Res 36(7):481–490. https://doi.org/10.1021/ar0201557

    Article  CAS  PubMed  Google Scholar 

  56. Huang Y, Yan Z (2005) Probing the local environments of phosphorus in aluminophosphate-based mesostructured lamellar materials by solid-state NMR spectroscopy. J Am Chem Soc 127(8):2731–2740. https://doi.org/10.1021/ja040167i

    Article  CAS  PubMed  Google Scholar 

  57. Zhou D, Xu J, Yu J, Chen L, Deng F, Xu R (2006) Solid-state NMR spectroscopy of anionic framework aluminophosphates: A new method to determine the Al/P ratio. J Phys Chem B 110(5):2131–2137. https://doi.org/10.1021/jp056335q

    Article  CAS  PubMed  Google Scholar 

  58. Gougeon RD, Bodart PR, Harris RK, Kolonia DM, Petrakis DE, Pomonis PJ (2000) Solid-state NMR study of mesoporous phosphoro-vanado-aluminas. Phys Chem Chem Phys 2(22):5286–5292. https://doi.org/10.1039/B005598K

    Article  CAS  Google Scholar 

  59. Gerothanassis IP (2010) Oxygen-17 NMR spectroscopy: basic principles and applications (part I). Prog Nucl Magn Res Sp 56(2):95–197

    Article  CAS  Google Scholar 

  60. Gerothanassis IP (2010) Oxygen-17 NMR spectroscopy: basic principles and applications (part II). Prog Nucl Magn Res Sp 57(1):1–110

    Article  CAS  Google Scholar 

  61. Ashbrook SE, Smith ME (2006) Solid state 17O NMR—an introduction to the background principles and applications to inorganic materials. Chem Soc Rev 35(8):718–735

    Article  CAS  Google Scholar 

  62. Wang M, Wu X-P, Zheng S, Zhao L, Li L, Shen L, Gao Y, Xue N, Guo X, Huang W, Gan Z, Blanc F, Yu Z, Ke X, Ding W, Gong X-Q, Grey CP, Peng L (2015) Identification of different oxygen species in oxide nanostructures with 17O solid-state NMR spectroscopy. Sci Adv 1(1). https://doi.org/10.1126/sciadv.1400133

    Article  Google Scholar 

  63. Peng L, Liu Y, Kim N, Readman JE, Grey CP (2005) Detection of Brønsted acid sites in zeolite HY with high-field 17O-MAS-NMR techniques. Nat Mater 4(3):216–219

    Article  CAS  Google Scholar 

  64. Peng L, Huo H, Liu Y, Grey CP (2007) 17O magic angle spinning NMR studies of Brønsted acid sites in zeolites HY and HZSM-5. J Am Chem Soc 129(2):335–346

    Article  CAS  Google Scholar 

  65. Janes N, Oldfield E (1986) Oxygen-17 NMR study of bonding in silicates: the d-orbital controversy. J Am Chem Soc 108(19):5743–5753. https://doi.org/10.1021/ja00279a014

    Article  CAS  PubMed  Google Scholar 

  66. Amoureux JP, Bauer F, Ernst H, Fernandez C, Freude D, Michel D, Pingel UT (1998) 17O multiple-quantum and 1H MAS NMR studies of zeolite ZSM-5. Chem Phys Lett 285(1–2):10–14. https://doi.org/10.1016/s0009-2614(97)01462-0

    Article  CAS  Google Scholar 

  67. Bull LM, Bussemer B, Anupold T, Reinhold A, Samoson A, Sauer J, Cheetham AK, Dupree R (2000) A high-resolution 17O and 29Si NMR study of zeolite siliceous ferrierite and ab initio calculations of NMR parameters. J Am Chem Soc 122(20):4948–4958. https://doi.org/10.1021/ja993339y

    Article  CAS  Google Scholar 

  68. Bull LM, Cheetham AK, Anupold T, Reinhold A, Samoson A, Sauer J, Bussemer B, Lee Y, Gann S, Shore J, Pines A, Dupree R (1998) A high-resolution 17O NMR study of siliceous zeolite faujasite. J Am Chem Soc 120(14):3510–3511. https://doi.org/10.1021/ja9743001

    Article  CAS  Google Scholar 

  69. Timken HKC, Turner GL, Gilson JP, Welsh LB, Oldfield E (1986) Solid-state oxygen-17 nuclear magnetic resonance spectroscopic studies of zeolites and related systems. 1. J Am Chem Soc 108(23):7231–7235. https://doi.org/10.1021/ja00283a017

    Article  CAS  Google Scholar 

  70. Xu Z, Stebbins JF (1998) Oxygen sites in the zeolite stilbite: a comparison of static, MAS, VAS, DAS and triple quantum MAS NMR techniques. Solid State Nucl Magn Reson 11(3–4):243–251. https://doi.org/10.1016/s0926-2040(97)00019-2

    Article  CAS  PubMed  Google Scholar 

  71. Huo H, Peng LM, Gan ZH, Grey CP (2012) Solid-state MAS NMR studies of Bronsted acid sites in zeolite H-mordenite. J Am Chem Soc 134(23):9708–9720. https://doi.org/10.1021/ja301963e

    Article  CAS  PubMed  Google Scholar 

  72. Peng LM, Liu Y, Kim NJ, Readman JE, Grey CP (2005) Detection of Bronsted acid sites in zeolite HY with high-field O-17-MAS-NMR techniques. Nat Mater 4(3):216–219. https://doi.org/10.1038/nmat1332

    Article  CAS  PubMed  Google Scholar 

  73. Peng L, Huo H, Liu Y, Grey CP (2007) O-17 magic angle spinning NMR studies of Bronsted acid sites in zeolites HY and HZSM-5. J Am Chem Soc 129(2):335–346. https://doi.org/10.1021/ja064922z

    Article  CAS  PubMed  Google Scholar 

  74. Peng L, Huo H, Liu Y, Grey CP (2007) 17O magic angle spinning NMR studies of Bronsted acid sites in zeolites HY and HZSM-5. J Am Chem Soc 129(2):335–346. https://doi.org/10.1021/ja064922z

    Article  CAS  PubMed  Google Scholar 

  75. Peng L, Huo H, Gan Z, Grey CP (2008) 17O MQMAS NMR studies of zeolite HY. Microporous Mesoporous Mater 109(1–3):156–162. https://doi.org/10.1016/j.micromeso.2007.04.039

    Article  CAS  Google Scholar 

  76. Demarquay J, Fraissard J (1987) Xe-129 NMR of xenon adsorbed on zeolites—relationship between the chemical-shift and the void space. Chem Phys Lett 136(3–4):314–318. https://doi.org/10.1016/0009-2614(87)80258-0

    Article  CAS  Google Scholar 

  77. Fraissard J, Ito T (1988) Xe-129 NMR-study of adsorbed xenon—a new method for studying zeolites and metal-zeolites. Zeolites 8(5):350–361. https://doi.org/10.1016/s0144-2449(88)80171-4

    Article  CAS  Google Scholar 

  78. Ito T, Fraissard J (1982) Xe-129 NMR-study of xenon adsorbed on Y zeolites. J Chem Phys 76(11):5225–5229. https://doi.org/10.1063/1.442917

    Article  CAS  Google Scholar 

  79. Raftery D (2006) Xenon NMR spectroscopy. Annu Rep NMR Spectrosc 57:205–270. https://doi.org/10.1016/s0066-4103(05)57005-4

    Article  CAS  Google Scholar 

  80. Barrie PJ, Klinowski J (1992) 129Xe NMR as a probe for the study of microporous solids: a critical review. Prog Nucl Magn Reson Spectrosc 24:91–108. https://doi.org/10.1016/0079-6565(92)80006-2

    Article  CAS  Google Scholar 

  81. Bonardet JL, Fraissard J, Gedeon A, Springuel-Huet MA (1999) Nuclear magnetic resonance of physisorbed Xe-129 used as a probe to investigate porous solids. Catal Rev Sci Eng 41(2):115–225. https://doi.org/10.1080/01614949909353779

    Article  CAS  Google Scholar 

  82. Chen F, Chen C-L, Ding S, Yue Y, Ye C, Deng F (2004) A new approach to determination of micropore size by 129Xe NMR spectroscopy. Chem Phys Lett 383(3–4):309–313

    Article  CAS  Google Scholar 

  83. Chen F, Deng F, Cheng MJ, Yue Y, Ye CH, Bao XH (2001) Preferential occupation of xenon in zeolite MCM-22 as revealed by Xe-129 NMR spectroscopy. J Phys Chem B 105(39):9426–9432. https://doi.org/10.1021/jp011710+

    Article  CAS  Google Scholar 

  84. Chen F, Zhang MJ, Han Y, Xiao FS, Yue Y, Ye CH, Deng F (2004) Characterization of microporosity in ordered mesoporous material MAS-7 by 129Xe NMR spectroscopy. J Phys Chem B 108(12):3728–3734. https://doi.org/10.1021/jp031187u

    Article  CAS  Google Scholar 

  85. Liu SB, Fung BM, Yang TC, Hong EC, Chang CT, Shih PC, Tong FH, Chen TL (1994) Effect of cation substitution on the adsorption of xenon on zeolite nay and on the Xe-129 chemical-shifts. J Phys Chem 98(16):4393–4401. https://doi.org/10.1021/j100067a030

    Article  CAS  Google Scholar 

  86. Zeng DF, Yang J, Wang JQ, Xu J, Yang YX, Ye CH, Deng F (2007) Solid-state NMR studies of methanol-to-aromatics reaction over silver exchanged HZSM-5 zeolite. Microporous Mesoporous Mater 98(1–3):214–219. https://doi.org/10.1016/j.micromeso.2006.09.012

    Article  CAS  Google Scholar 

  87. Springuel-Huet M-A, Bonardet J-L, Gédéon A, Fraissard J (1999) 129Xe NMR overview of xenon physisorbed in porous solids. Magn Reson Chem 37(13):S1–S13. https://doi.org/10.1002/(SICI)1097-458X(199912)37:13%3cS1:AID-MRC578%3e3.0.CO;2-X

    Article  CAS  Google Scholar 

  88. Xu J, Zheng AM, Wang XM, Qi GD, Su JH, Du JF, Gan ZH, Wu JF, Wang W, Deng F (2012) Room temperature activation of methane over Zn modified H-ZSM-5 zeolites: insight from solid-state NMR and theoretical calculations. Chem Sci 3(10):2932–2940. https://doi.org/10.1039/c2sc20434g

    Article  CAS  Google Scholar 

  89. Enderle BA, Labouriau A, Ott KC, Gates BC (2002) Nanoclusters in nanocages: platinum clusters and platinum complexes in zeolite LTL probed by Xe-129 NMR spectroscopy. Nano Lett 2(11):1269–1271. https://doi.org/10.1021/nl025697w

    Article  CAS  Google Scholar 

  90. Gedeon A, Bonardet JL, Ito T, Fraissard J (1989) Application of xenon-129 NMR to the study of Ni2+ Y zeolites. J Phys Chem 93(6):2563–2569. https://doi.org/10.1021/j100343a064

    Article  CAS  Google Scholar 

  91. Barskiy DA, Coffey AM, Nikolaou P, Mikhaylov DM, Goodson BM, Branca RT, Lu GJ, Shapiro MG, Telkki V-V, Zhivonitko VV, Koptyug IV, Salnikov OG, Kovtunov KV, Bukhtiyarov VI, Rosen MS, Barlow MJ, Safavi S, Hall IP, Schroeder L, Chekmenev EY (2017) NMR hyperpolarization techniques of gases. Chem Eur J 23(4). https://doi.org/10.1002/chem.201603884

    Article  Google Scholar 

  92. Nossov A, Guenneau F, Springuel-Huet M-A, Haddad E, Montouillout V, Knott B, Engelke F, Fernandez C, Gédéon A (2003) Continuous flow hyperpolarized 129Xe-MAS NMR studies of microporous materials. Phys Chem Chem Phys 5(20):4479–4483. https://doi.org/10.1039/B305793N

    Article  CAS  Google Scholar 

  93. Nagy JB, Aiello R, Giordano G, Katovic A, Testa F, Kónya Z, Kiricsi I (2007) Isomorphous substitution in zeolites. In: Karge HG, Weitkamp J (eds) Characterization II. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 365–478. https://doi.org/10.1007/3829_006

  94. Kessler H, Chezeau JM, Guth JL, Strub H, Coudurier G (1987) N.m.r. and i.r. study of B and B Al substitution in zeolites of the MFI-structure type obtained in non-alkaline fluoride medium. Zeolites 7(4):360–366. https://doi.org/10.1016/0144-2449(87)90040-6

    Article  CAS  Google Scholar 

  95. Chen L, Zhang MJ, Yue Y, Ye CH, Deng F (2004) NMR and theoretical studies of boron-modified mordenite. Microporous Mesoporous Mater 76(1–3):151–156. https://doi.org/10.1016/j.micromeso.2004.08.007

    Article  CAS  Google Scholar 

  96. Arnold A, Steuernagel S, Hunger M, Weitkamp J (2003) Insight into the dry-gel synthesis of gallium-rich zeolite [Ga]Beta. Microporous Mesoporous Mater 62(1):97–106. https://doi.org/10.1016/S1387-1811(03)00397-4

    Article  CAS  Google Scholar 

  97. Occelli ML, Schwering G, Fild C, Eckert H, Auroux A, Iyer PS (2000) Galliosilicate molecular sieves with the faujasite structure. Microporous Mesoporous Mater 34(1):15–22. https://doi.org/10.1016/S1387-1811(99)00151-1

    Article  CAS  Google Scholar 

  98. Ni QZ, Daviso E, Can TV, Markhasin E, Jawla SK, Swager TM, Temkin RJ, Herzfeld J, Griffin RG (2013) High frequency dynamic nuclear polarization. Acc Chem Res 46(9):1933–1941. https://doi.org/10.1021/ar300348n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rossini AJ, Zagdoun A, Lelli M, Lesage A, Copéret C, Emsley L (2013) Dynamic nuclear polarization surface enhanced NMR spectroscopy. Acc Chem Res 46(9):1942–1951. https://doi.org/10.1021/ar300322x

    Article  CAS  PubMed  Google Scholar 

  100. Gunther WR, Michaelis VK, Caporini MA, Griffin RG, Román-Leshkov Y (2014) Dynamic nuclear polarization NMR enables the analysis of Sn-Beta zeolite prepared with natural abundance 119Sn precursors. J Am Chem Soc 136(17):6219–6222. https://doi.org/10.1021/ja502113d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wolf P, Valla M, Rossini AJ, Comas-Vives A, Núñez-Zarur F, Malaman B, Lesage A, Emsley L, Copéret C, Hermans I (2014) NMR signatures of the active sites in Sn-β zeolite. Angew Chem Int Ed 53(38):10179–10183. https://doi.org/10.1002/anie.201403905

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Xu .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, J., Wang, Q., Li, S., Deng, F. (2019). Solid-State NMR Characterization of Framework Structure of Zeolites and Zeotype Materials. In: Solid-State NMR in Zeolite Catalysis. Lecture Notes in Chemistry, vol 103. Springer, Singapore. https://doi.org/10.1007/978-981-13-6967-4_3

Download citation

Publish with us

Policies and ethics