Skip to main content

Deuterium

  • Chapter
  • First Online:
Deuteride Materials
  • 369 Accesses

Abstract

Deuterium is the basis of deuterated compounds. The studies on deuterium element (atom) and elemental deuterium have nearly a hundred years of history. In the past studies, deuterium atom has played an important role in the development of quantum mechanics. As an isotope of hydrogen, deuterium exhibits a significant isotope effect without any radioactive characteristic, which has attracted considerable attention in scientific communities with an emphasis on the nuclear applications. Historically, the demand of war promoted and developed nuclear weapons, which in turn promoted the rapid development of deuterium research. Until the 1990s, the global trend of dearmation changed the world’s theme from the Cold War to peace and started the era of peaceful economic development. Under these global circumstances, the applied research of deuterium shifted to a large extent in the fields of engineering and natural sciences such as energy, materials, and medicine, and showed a huge potential application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Harold Clayton Urey, 1893–1981, was an American physical chemist whose pioneering work on isotopes earned him the Nobel Prize in Chemistry in 1934 for the discovery of deuterium.

  2. 2.

    Frederick Soddy, 1877–1956, was an English radiochemist who explained, with Ernest Rutherford, that radioactivity is due to the transmutation of elements, now known to involve nuclear reactions. He received the Nobel Prize in Chemistry in 1921.

  3. 3.

    Francis William Aston, 1877–1945, was an English chemist and physicist who won the 1922 Nobel Prize in Chemistry for his discovery, by means of his mass spectrograph, of isotopes, in a large number of nonradioactive elements, and for his enunciation of the whole number rule.

  4. 4.

    Otto Stern, 1888–1969, was a German American physicist and Nobel laureate in physics.

  5. 5.

    Christopher Kelk Ingold, 1893–1970, was a British chemist based in Leeds and London, and was regarded as one of the chief pioneers of physical organic chemistry.

  6. 6.

    Antoine-Laurent de Lavoisier, 1743–1794, was a French nobleman and chemist who was central to the eighteenth-century chemical revolution and who had a large influence on both the history of chemistry and the history of biology.

  7. 7.

    John Dalton, 1766–1844, was an English chemist, physicist, and meteorologist. He is best known for proposing the modern atomic theory and for his research into color blindness, sometimes referred to as Daltonism in his honor.

  8. 8.

    E. P. Wigner, 1902–1995, was a Hungarian American theoretical physicist and mathematician. He received half of the Nobel Prize in Physics in 1963 “for his contributions to the theory of the atomic nucleus and the elementary particles, particularly through the discovery and application of fundamental symmetry principles.”

References

  1. Birge RT, Menzel DH (1931) Phys Rev 37:1669–1671

    Article  CAS  Google Scholar 

  2. Urey HC, Hurphy GM (1933) J Chem Phys 1:512–513

    Article  CAS  Google Scholar 

  3. Urey HC, Rittenberg D (1933) J Chem Phys 1:137–143

    Article  CAS  Google Scholar 

  4. Ingold EH, Ingold CK, Whitaker H et al (1934) Nature 661

    Article  Google Scholar 

  5. Christiansen WN, Crabtree RW, Laby TH (1935) Nature 870

    Article  CAS  Google Scholar 

  6. Urey HC, Brickwedde FG, Murphy GM (1932) Phys Rev 40:1–15

    Article  CAS  Google Scholar 

  7. Lewis GN, Macdonald RT (1933) J Chem Phys 1:341–344

    Article  CAS  Google Scholar 

  8. Bleakney W, Gould AJ (1933) Phys Rev 44:265–268

    Article  CAS  Google Scholar 

  9. Edwards AJ, Bell RP, Wolfenden JH (1935) Nature 135:793

    Article  CAS  Google Scholar 

  10. Hall NF, Jones TO (1936) J Am Chem Soc 58:1915

    Article  CAS  Google Scholar 

  11. Johnston HL (1935) J Am Chem Soc 57:2737

    Google Scholar 

  12. Tronstad L, Nordhagen J, Brum J (1935) Nature 136:515

    Article  CAS  Google Scholar 

  13. Morita N, Titani T (1936) Bull Chem Soc Japan 11:403

    Article  CAS  Google Scholar 

  14. Gabbard JL, Dole M (1937) J Am Chem Soc 59:181–185

    Article  CAS  Google Scholar 

  15. Czajka DM, Finkel AJ, Fischer CS et al (1961) Am J Physiol 201:357–362

    Article  Google Scholar 

  16. Friedman I (1970) Science 169:467–470

    Article  CAS  Google Scholar 

  17. Hughes AM, Tolbert BM, Lonberg HK et al (1958) Biochim Biophys Acta 58–61

    Google Scholar 

  18. Bates JW (2003) Comput Phys Commun 151:149–170

    Article  CAS  Google Scholar 

  19. Washburn EW, Urey HC (1932) Proc Nat Acad Sci 18:496–498

    Article  CAS  Google Scholar 

  20. Eyring H (1933) Proc Nat Acad Sci 19:78–81

    Article  CAS  Google Scholar 

  21. Harris L, Jost W, Perse RWB (1933) Proc Nat Acad Sci 19:991–994

    Article  CAS  Google Scholar 

  22. Taylor HS (1931) J Am Chem Soc 53:578–597

    Article  CAS  Google Scholar 

  23. Taylor HS, Gould AJ, Bleakney W (1933) Phys Rev 496–497

    Google Scholar 

  24. Huang Y, Zhang H, Liu X et al (2006) Ship Sci Technol 28:26–29

    Google Scholar 

  25. Zhou J, Wang K, Wang S et al (2002) Ship Sci Technol 24(Supplement):45–48

    Google Scholar 

  26. Gillespie LJ, Downs WR (1939) J Am Chem Soc 2496–2502

    Google Scholar 

  27. Sieverts A, Danz W (1937) Z Phys Chem 46–61

    Google Scholar 

  28. Glueckauf E, Kitt GP (1957) Angew Chem Int Edit 69:567

    Google Scholar 

  29. Ye X, Sang G, Peng L et al (2008) J Isot 40–45

    Google Scholar 

  30. Mayer SW et al (1970) Appl Phys Lett 17:516

    Article  CAS  Google Scholar 

  31. Tuccio SA et al (1979) Chem Phys Lett 65:234

    Article  CAS  Google Scholar 

  32. Marling JB et al (1979) Appl Phys Lett 34:439

    Article  CAS  Google Scholar 

  33. Manuccia TJ et al (1978) Appl Phys Lett 33:915

    Article  Google Scholar 

  34. Manuccia TJ et al (1980) Appl Phys Lett 36:714

    Article  Google Scholar 

  35. Harris AB (1970) Phys Rev B 1881–1902

    Google Scholar 

  36. Mckellar ARW, Clouter MJ (1994) Can J Phys 72:51–56

    Article  CAS  Google Scholar 

  37. Ross M, Ree FH, Young DA (1983) J Chem Phys 79:1487

    Article  CAS  Google Scholar 

  38. Saumon D, Chabbrier G (1991) Phys Rev A44, 5122–A46, 2084

    Google Scholar 

  39. Collins GW, da Silva LB, Celliers P et al (1998) Science 281:1178

    Article  CAS  Google Scholar 

  40. Boriskov GV, Bykov AI et al (2005) Phys Rev B 71:092104

    Article  Google Scholar 

  41. Silvera IF (1980) Rev Mod Phys 52:393

    Article  CAS  Google Scholar 

  42. Cui L, Chen NH, Jeon SJ et al (1994) Phys Rev Lett 72:3048

    Article  CAS  Google Scholar 

  43. Mao HK, Jephcoat AP, Hemley RJ et al (1988) Science 239:1131

    Article  CAS  Google Scholar 

  44. Cui L, Chen NH, Silvera IF (1995) Phys Rev B 51:14987–14997

    Article  CAS  Google Scholar 

  45. Kaxiras E, Broughton J (1992) Europhys Lett 17:151

    Google Scholar 

  46. Ubbelohde AR (1936) Nature 14:845

    Article  Google Scholar 

  47. Eremets MI, Troyan IA (2011) Nat Mater 10:927–931

    Article  CAS  Google Scholar 

  48. Dias RP, Silvera IF (2017) Science 355:715–718

    Article  CAS  Google Scholar 

  49. Wu R, Yang G, Fang J (1988) Mater Rev 20:9–12

    Google Scholar 

  50. Zang Q, Cao M, Xie Y et al (2014) J Atom Mol Phys 31:50–56

    Google Scholar 

  51. Becker EW, Bier K, Henkes W et al (1956) Z Phys 146:333

    Article  Google Scholar 

  52. Sindzingre P, Ceperley DM, Klein ML (1991) Phys Rev Lett 67:1871

    Article  CAS  Google Scholar 

  53. Gerbenev S, Sartakov B, Toennies JP et al (2000) Science 289:1532

    Article  Google Scholar 

  54. Tejeda G, Fernández JM, Montero S et al (2004) Phys Rev Lett 92:223401

    Article  CAS  Google Scholar 

  55. Ekinci Y, Knuth EL, Toennies JP (2006) J Chem Phys 125:133409

    Article  CAS  Google Scholar 

  56. Kornilov O, Toennies JP (2008) J Chem Phys 128:194306

    Article  Google Scholar 

  57. Ditmire T, Donnelly T, Rubenchik AM et al (1996) Phys Rev A 53:3379

    Article  CAS  Google Scholar 

  58. Ditmire T, Zweiback J, Yanovsky VP et al (1999) Nature 398:489

    Article  CAS  Google Scholar 

  59. Eberle U, Felderhoff M, Schüth F (2009) Angew Chem Int Ed 48:6608–6630

    Article  CAS  Google Scholar 

  60. Sherif SA, Zeytinoglu N, Vesiroğlu TN (1997) Int J Hydrogen Energy 22:683–688

    Article  CAS  Google Scholar 

  61. Walker G (2008) Woodhead Publishing, Cambridge

    Google Scholar 

  62. Percheron-Guégan A, Lartigue C, Achard JC (1980) J Alloys Comp 74:l

    Google Scholar 

  63. Joubert JM et al (1999) J Alloys Comp 293:124

    Article  Google Scholar 

  64. Latroehe M, Percheron-Guégan A, Bourée-Vigneron F (1998) J Alloys Comp 265:209

    Article  Google Scholar 

  65. Van Mal HH, Buschow KHJ, Kuijpers FA (1973) J Less-Common Met 32:289

    Article  Google Scholar 

  66. Reilly JJ, Wiswall RH (1968) Inorg Chem 7:2254–2256

    Article  CAS  Google Scholar 

  67. Sing KSW, Everett DH, Haul RAW et al (1985) Pure Appl Chem 57:603–619

    Google Scholar 

  68. Blagojevic N, Storr G, Allen JB et al (1994) Dosimetry and treatment planning for neutron capture therapy

    Google Scholar 

  69. Murray MR, Benitez HH (1967) Science 155:1021–1024

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiping Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, J., Liu, X. (2019). Deuterium. In: Deuteride Materials. Springer, Singapore. https://doi.org/10.1007/978-981-13-6962-9_1

Download citation

Publish with us

Policies and ethics