Axial Shift pp 19-46 | Cite as

Economic Cubism, Economic Surrealism, and Scale Relativity

  • Benjamen GussenEmail author


In the previous chapter, I outlined the main thesis in this monograph, namely, that the Fourth Industrial Revolution is bringing about a new axial shift that will resurrect the legal personality of cities as sovereign polities. This in turn will see cities become the dominant body politic in the twenty-first century. The motivation for this thesis comes from a problematization of scale. This chapter unpacks this problem of scale through a discussion of the principle of scale invariance and its application to economics. The chapter uses cubism and surrealism to explain this principle and its origins.


  1. Ali, Z, ‘Implications of the Foucauldian Decentralization of Economics’ (2011) 5(1) The Journal of Philosophical Economics 148.Google Scholar
  2. Axtell, R, ‘Zipf Distribution of US Firm Size’ (2001) 293 (5536) Science 1818.Google Scholar
  3. Bannard, W, ‘Cubism, Abstract Expressions and David Smith’ (1998) 6 Artforum 22.Google Scholar
  4. Bar-Yam, Yaneer, Dynamics of Complex Systems (Westview Press, 1997).Google Scholar
  5. Berger, John, The Moment of Cubism and Other Essays (Weidenfeld and Nicolson, 1969).Google Scholar
  6. Bohn, Willard, The Rise of Surrealism: Cubism, Dada, and the Pursuit of the Marvelous (State University of New York Press, 2002).Google Scholar
  7. Borrett, Donald S, David Shih and Michael Tomko, ‘Hegelian Phenomenology and Robotics’ (2011) 3 (1) International Journal of Machine Consciousness 219.Google Scholar
  8. Breton, André, ‘Manifeste du Surréalisme’ in Marguerite Bonnet et al. (ed), Oeuvres Complètes (Gallimard Pléiade, 1988).Google Scholar
  9. Buchanan, James and Gordon Tullock, The Calculus of Consent: Logical Foundations of Constitutional Democracy (University of Michigan Press, 1962).Google Scholar
  10. Byers, Nina,‘E Noether’s Discovery of the Deep Connection Between Symmetries and Conservation Laws’ (Proceedings of a Symposium on the Heritage of Emmy Noether, Bar-Ilan University, Israel, December 1996)
  11. Canaday, J, Mainstreams of Modern Art (Holt, Rinehart and Winston, 1959).Google Scholar
  12. Casse, R, Projective Geometry: An Introduction (Oxford University Press, 2006).Google Scholar
  13. Cohen, G A, Karl Marx’s Theory of History (Princeton, 2001).Google Scholar
  14. Cooper, D, Cubism and the Cubist Epoch (Phaidon, 1971).Google Scholar
  15. Cunningham, W, ‘The Relativity of Economic Doctrine’ (1892) 2(5) The Economic Journal 1–16.CrossRefGoogle Scholar
  16. Davis, John B, ‘Heterodox Economics, the Fragmentation of the Mainstream, and Embedded Individual Analysis’ in John T Harvey and Robert F Garnett Jr (eds), Future directions for Heterodox Economics (University of Michigan Press, 2008) 53.Google Scholar
  17. Fama, E F, ‘The Behavior of Stock-Market Prices’ (1965) 38(1) The Journal of Business 34.Google Scholar
  18. Farmer, J Doyne and John Geanakoplos, Beyond Equilibrium and Efficiency (Oxford University Press, 2002).Google Scholar
  19. Finkelstein, Haim N, Surrealism and the Crisis of the Object (Michigan University Microfilms International, 1979).Google Scholar
  20. Friedman, Milton, Essays in Positive Economics (University of Chicago Press, 1953).Google Scholar
  21. Frisch, Ragnar, Theory of Production (Dordrecht, Holland D. Reidel Publishing Company, 1965).Google Scholar
  22. Gauss, Charles E, ‘The Theoretical Backgrounds of Surrealism’ (1943) 2(8) The Journal of Aesthetics and Art Criticism 37.Google Scholar
  23. Golding, J, Cubism: A History and an Analysis (Faber and Faber Limited, 1968).Google Scholar
  24. Grandmont, Jean-Michel, ‘On Endogenous Competitive Business Cycles’ (1985) 53(5) Econometrica 995.Google Scholar
  25. Gussen, B F, ‘On the Problem of Scale: Hayek, Kohr, Jacobs and the Reinvention of the Political State’ (2013) 24(1) Constitutional Political Economy 19.Google Scholar
  26. Gussen, B F and Guergana Stolarova, ‘Economic Cubism: Heterodox Economics Through the Prisms of Complexity and Scale’ in Lynne Chester, Michael Johnson, and Peter Kriesler (eds), Proceedings of the 11th Conference of the Australian Society of Heterodox Economists (Sydney University of New South Wales, 2012) 85.Google Scholar
  27. Henderson, Linda Dalrymple, The Fourth Dimension and Non-Euclidean Geometry in Modern Art (Princeton University Press, 1983).Google Scholar
  28. Klamer, Arjo, ‘Modernism in Economics: An Interpretation Beyond Physics’ (1993) 25 (suppl 1) History of Political Economy 223.Google Scholar
  29. Ladwig, B, Moderne Politische Theorie: Fünfzehn Vorlesungen zur Einführung (Wochenschaustudium, 2009).Google Scholar
  30. Laporte, P, ‘Cubism and Science’ (1949) 7(3) The Journal of Aesthetics and Art Criticism 243.Google Scholar
  31. ———, ‘Cubism and Relativity with a Letter to Albert Einstein’ (1966) 25(3) Art Journal 246.Google Scholar
  32. Lawson, Tony, ‘The Nature of Heterodox Economics’ (2006) 30 Cambridge Journal of Economics 483.Google Scholar
  33. Lee, F, ‘Heterodox Economics’, (2008a) 7(1) The Long Term View 23.Google Scholar
  34. ———, ‘Heterodox Economics’ in Steven N Durlauf and Lawrence E Blume (eds), The New Palgrave Dictionary of Economics (Palgrave Macmillan, 2008b).Google Scholar
  35. ———, ‘The Pluralism Debate in Heterodox Economics’ (2011) 43(4) Review of Radical Political Economics 540.Google Scholar
  36. Mandelbrot, B, Fractals: Form, Chance, and Dimensions (W H Freeman & Co, 1977).Google Scholar
  37. Marx, Karl, Capital (Penguin, 1990).Google Scholar
  38. Miller, Arthur I, Einstein, Picasso: Space, Time, and the Beauty that Causes Havoc (Basic Books, 2002).Google Scholar
  39. ———, ‘Einstein, Picasso’ (2004) 39(6) Physics Education 484.Google Scholar
  40. Newman, M E J, ‘Power Laws, Pareto Distributions and Zipf’s Law’ (2005) 46(5) Contemporary Physics 323.Google Scholar
  41. Nietzsche, Friedrich Wilhelm, The Birth of Tragedy (Ronald Speirs trans, Montana Kessinger Publishing, 2004).Google Scholar
  42. Nottale, Laurent, Fractal Space-Time and Microphysics: Towards a Theory of Scale Relativity (World Scientific, 1993).Google Scholar
  43. ———, Scale Relativity and Fractal Space-Time (London Imperial College Press, 2011).Google Scholar
  44. Parkinson, Gavin, Surrealism, Art and Modern Science (Yale University Press, 2008).Google Scholar
  45. Pocheau, A, ‘From Scale-Invariance to Scale Covariance in Out-of-Equilibrium Systems’ in B Dubrulle, F Graner, and D Scornette (eds), Scale Invariance and Beyond (Springer, 1997) 209.Google Scholar
  46. Potts, Jason, The New Evolutionary Microeconomics: Complexity, Competence and Adaptive Behavior (Edward Elgar, 2000).Google Scholar
  47. Reed, William J, ‘The Pareto, Zipf and Other Power Laws’ (2001) 74(1) Economics Letters 15.Google Scholar
  48. Rubin, W, Picasso und Braque: Die Geburt des Kubismus (München Prestel-Verlag, 1990).Google Scholar
  49. Stanley, H E et al., ‘Scale Invariance and Universality: Organizing Principles in Complex Systems’ (2000) Physica A 60.Google Scholar
  50. Szostak, Rick, Econ-Art: Divorcing Art from Science in Modern Economics (Pluto Press, 1999).Google Scholar
  51. Taylor, C, Hegel (Cambridge University Press, 1975).Google Scholar
  52. Zajdenweber, D, ‘Scale Invariance in Economy and Finance’ in B Dubrulle, F Graner, and D Sornette (eds), Scale Invariance and Beyond (EDP Sciences and Springer, 1997) 185.Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.School of LawSwinburne University of TechnologyMelbourneAustralia

Personalised recommendations