Skip to main content

Abiotic Stresses-Induced Physiological Alteration in Wheat

  • Chapter
  • First Online:
Wheat Production in Changing Environments

Abstract

Wheat is one of the most important cereal crops around the world, and the greater part of the world population depends on it as their essential vital nourishment. However, in agricultural systems, wheat plants face different stress conditions, e.g., salinity, drought, heavy metals, high and low temperature, radiation, and nutritional disorders that restrict their crop productivity. These stressors produce undesired effects on plant growth and development. Exposure to different abiotic stresses during plant life cycle leads to reactive oxygen species excessive accumulation, and consequently oxidation of membrane lipids and proteins occurs. Moreover, these stresses lower the activity of cell physiology including photosynthetic efficiency and protein synthesis that could be due to the osmotic stress and nutritional imbalance. They can also increase synthesis and accumulation of different osmolytes/osmoprotectants. Accumulation of organic solutes and antioxidant molecules can protect plant cells by balancing the osmotic strength of both the plant vacuole and the external environment. Furthermore, when plants expose to adverse conditions, other physiological responses such as phytohormone signaling pathways and developmental signals are triggered to cope with the stress. Changing transcript levels of genes involved in signaling pathways or stress response was also occurred. This chapter documents the different mechanisms underlying abiotic stresses impact on wheat plants based on recent advances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alscher PG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plant. J Exp Bot 53:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Al-Whaibi MH, Siddiqui MH, Basalah MO (2012) Salicylic acid and calcium-induced protection of wheat against salinity. Protoplasma 249:769–778

    Article  CAS  PubMed  Google Scholar 

  • Alzahrani Y, Kuşvuran A, Alharby HF, Kuşvuran S, Rady MM (2018) The defensive role of silicon in wheat against stress conditions induced by drought, salinity or cadmium. Ecotoxicol Environ Saf 154:187–196

    Article  CAS  PubMed  Google Scholar 

  • Amalraj A, Luang S, Kumar MY, Sornaraj P, Eini O, Kovalchuk N et al (2016) Change of function of the wheat stress-responsive transcriptional repressor TaRAP2.1L by repressor motif modification. Plant Biotechnol J 14:820–832

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress and signal transduction. An Rev Plant Physiol Plant Mol Biol 55:373–399

    Article  CAS  Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Hasnain S, Berge O, Mahmood T (2004) Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soils 40:157–162

    CAS  Google Scholar 

  • Basu S, Ramegowda V, Kumar A, Pereira A (2016) Plant adaptation to drought stress. F1000Research 5(F1000 Faculty Rev):1554. https://doi.org/10.12688/f1000research.7678.1

    Article  CAS  Google Scholar 

  • Bharti N, Pandey SS, Barnawal D, Patel VK, Kalra A (2016) Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci Rep 6:34768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434

    Article  CAS  PubMed  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rokville, pp 1158–1249

    Google Scholar 

  • Byrt CS, Platten JD, Spielmeyer W, James RA, Lagudah ES, Dennis ES, Tester M, Munns R (2007) HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol 143:1918–1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byrt CS, Xu B, Krishnan M, Lightfoot DJ, Athman A, Jacobs AK, Watson-Haigh NS, Plett D, Munns R, Tester M, Gilliham M (2014) The Na+ transporter, TaHKT1; 5–D, limits shoot Na+ accumulation in bread wheat. Plant J 80:516–526

    Article  CAS  PubMed  Google Scholar 

  • Cai W, Yang Y, Wang W, Guo G, Liu W, Bi C (2018) Overexpression of a wheat (Triticum aestivum L.) bZIP transcription factor gene, TabZIP6, decreased the freezing tolerance of transgenic Arabidopsis seedlings by down-regulating the expression of CBFs. Plant Physiol Biochem 124:100–111

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Chen M, Xu Z, Chen Y et al (2012) Isolation and functional analysis of the bZIP transcription factor gene TaABP1 from a Chinese wheat landrace. J Integr Agril 11:1580–1591

    Article  CAS  Google Scholar 

  • Carriero G, Brunetti C, Fares S, Hayes F, Hoshika Y, Mills G, Tattini M, Paoletti E (2016) BVOC responses to realistic nitrogen fertilization and ozone exposure in silver birch. Environ Pollut 213:988–995

    Article  CAS  PubMed  Google Scholar 

  • Century K, Reuber TL, Ratcliffe OJ (2012) Regulating the regulators: the future prospects for transcription-factor based agricultural biotechnology products. Plant Physiol 147:20–29

    Article  CAS  Google Scholar 

  • Chakraborty U, Pradhan B (2012) Oxidative stress in five wheat varieties (Triticum aestivum L.) exposed to water stress and study of their antioxidant enzyme defense system, water stress responsive metabolites and H2O2 accumulation. Braz J Plant Physiol 24:117–130

    Article  CAS  Google Scholar 

  • Chang H, Chen D, Kam J, Richardson T, Drenth J, Guo X et al (2016) Abiotic stress upregulated TaZFP34 represses the expression of type-B response regulator and SHY2 genes and enhances root to shoot ratio in wheat. Plant Sci 252:88–102

    Article  CAS  PubMed  Google Scholar 

  • Cha-um S, Yooyongwech S, Supaibulwatana K (2011) Water-deficit tolerant classification in mutant lines of indica rice. Sci Agric 69:135–141

    Article  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu J (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    Article  CAS  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2006) Salt stress signaling and mechanisms of plant salt tolerance. Genet Eng 27:141–177

    Article  CAS  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    Article  PubMed  PubMed Central  Google Scholar 

  • Davière J-M, Achard P (2016) A pivotal role of DELLAs in regulating multiple hormone signals. Mol Plant 9:10–20

    Article  PubMed  CAS  Google Scholar 

  • Demidchik V, Maathuis FJ (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytol 175:387–404

    Article  CAS  PubMed  Google Scholar 

  • Ding W, Fang W, Shi S, Zhao Y, Li X, Xiao K (2016) Wheat WRKY type transcription factor gene TaWRKY1 is essential in mediating drought tolerance associated with an ABA-dependent pathway. Plant Mol Biol Report 34:1111–1126

    Article  CAS  Google Scholar 

  • Dixit S, Kumar Biswal A, Min A et al (2015) Action of multiple intra-QTL genes concerted around a co-localized transcription factor underpins a large effect QTL. Sci Rep 5:15183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobrikova AG, Yotsova E, Börner A, Apostolova EL (2017) The wheat mutant DELLA-encoding gene (Rht-B1c) affects plant photosynthetic responses to cadmium stress. Plant Physiol Biochem 114:10–18

    Article  CAS  PubMed  Google Scholar 

  • Dong W, Wang MC, Xu F, Quan TY, Peng KQ, Xiao LT, Xia GM (2013) Wheat oxophytodienoate reductase gene TaOPR1 confers salinity tolerance via enhancement of abscisic acid signaling and reactive oxygen species scavenging. Plant Physiol 161:1217–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubcovsky J, Santa MG, Epstein E, Luo MC, Dvořák J (1996) Mapping of the K+/Na+ discrimination locus Kna1 in wheat. Theor Appl Genet 92:448–454

    Article  CAS  PubMed  Google Scholar 

  • El-Bassiouny HMS, Bekheta MA (2005) Effect of salt stress on relative water content, lipid peroxidation, polyamines, amino acids and ethylene of two wheat cultivars. Int J Agric Biol 7:363–368

    CAS  Google Scholar 

  • El-Bassiouny HMS, Sadak MS (2015) Impact of foliar application of ascorbic acid and α-tocopherol on antioxidant activity and some biochemical aspects of flax cultivars under salinity stress. Acta Biol Colomb 20(2):209–222

    CAS  Google Scholar 

  • Ergen NZ, Thimmapuram J, Bohnert HJ, Budak H (2009) Transcriptome pathways unique to dehydration tolerant relatives of modern wheat. Funct Integr Genomics 9:377–396. https://doi.org/10.1007/s10142-009-0123-1

    Article  CAS  PubMed  Google Scholar 

  • Eyidogan F, Oz MT, Yucel M, Oktem HA (2012) Signal transduction of phytohormones under abiotic stresses. In: Khan NA, Nazar R, Iqbal N, Anjum NA (eds) Phytohormones and abiotic stress tolerance in plants. Springer, Berlin, pp 1–48

    Google Scholar 

  • Feng Z, Hu E, Wang X, Jiang L, Liu X (2015) Ground-level O3 pollution and its impacts on food crops in China: a review. Environ Pollut 199:42–48

    Article  CAS  PubMed  Google Scholar 

  • Fuhrer J (2009) Ozone risk for crops and pastures in present and future climates. Naturwissenschaften 96:173–194

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124:509–525

    Article  CAS  PubMed  Google Scholar 

  • Gaponenko AK, Shulga OA, Mishutkina YB, Tsarkova EA, Timoshenko AA, Spechenkova NA (2018) Perspectives of use of transcription factors for improving resistance of wheat productive varieties to abiotic stresses by transgenic technologies. Russ J Genet 54(1):27–35

    Article  CAS  Google Scholar 

  • Garmendia I, Gogorcena Y, Aranjuelo I, Goicoechea N (2017) Responsiveness of durum wheat to mycorrhizal inoculation under different environmental scenarios. J Plant Growth Regul 36:855–867

    Article  CAS  Google Scholar 

  • Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci 5:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Gourdji SM, Sibley AM, Lobell DB (2013) Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections. Environ Res Lett 8:1–10

    Article  Google Scholar 

  • Goyal M, Asthir B (2010) Polyamine catabolism influences antioxidative defense mechanism in shoots and roots of five wheat genotypes under high temperature stress. Plant Growth Regul 60:13–25

    Article  CAS  Google Scholar 

  • Harberd NP, Belfield E, Yasumura Y (2009) The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism: how an ‘inhibitor of an inhibitor’ enables flexible response to fluctuating environments. Plant Cell 21:1328–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan TU, Bano A (2016) Effects of putrescine foliar spray on nutrient accumulation, physiology, and yield of wheat. Commun Soil Sci Plant Anal 47(8):931–940

    Article  CAS  Google Scholar 

  • Huang Q, Yan Wang Y, Li B et al (2015) TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis. BMC Plant Biol 15:268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • James RA, Davenport RJ, Munns R (2006) Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2. Plant Physiol 142:1537–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji X, Dong B, Shiran B et al (2011) Control of abscisic acid catabolism and abscisic acid homeostasis is important for reproductive stage stress tolerance in cereals. Plant Physiol 156(2):647–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jusovic M, Velitchkova MY, Misheva SP, Börner A, Apostolova EL, Dobrikova AG (2018) Photosynthetic responses of a wheat mutant (Rht-B1c) with altered DELLA proteins to salt stress. J Plant Growth Regul 37:645–656

    Article  CAS  Google Scholar 

  • Kavi Kishor PB, Sangam S, Amrutha RN, Sri Laxmi P, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    Google Scholar 

  • Keskin BC, Sarikaya AT, Yuksel B, Memon AR (2010) Abscisic acid regulated gene expression in bread wheat. Aust J Crop Sci 4:617–625

    CAS  Google Scholar 

  • Kobayashi F, Maeta E, Terashima A et al (2008) Development of abiotic stress tolerance via bZIP-type transcription factor LIP19 in common wheat. J Exp Bot 59:891–905

    Article  CAS  PubMed  Google Scholar 

  • Kotak S, Larkindale J, Lee U, von Koskull-Döring VE, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316

    Article  CAS  PubMed  Google Scholar 

  • Kumar RR, Sharma SK, Goswami S, Singh GP, Singh R, Singh K, Pathak H, Rai RD (2013) Characterization of differentially expressed stress-associated proteins in starch granule development under heat stress in wheat (Triticum aestivum L.). Indian J Biochem Biophys 50(2):126–138

    CAS  PubMed  Google Scholar 

  • Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25(2):275–294

    Article  CAS  PubMed  Google Scholar 

  • Li B, Liu D, Li Q, Mao X, Li A, Wang J et al (2016a) Overexpression of wheat gene TaMOR improves root system architecture and grain yield in Oryza sativa. J Exp Bot 67:4155–4167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li CH, Meng J, Guo LY, Jiang GM (2016b) Effects of ozone pollution on yield and quality of winter wheat under flixweed competition. Environ Exp Bot 129:77–84

    Article  CAS  Google Scholar 

  • Li C, Song Y, Guo L, Gu X, Muminov MA, Wang T (2018) Nitric oxide alleviates wheat yield reduction by protecting photosynthetic system from oxidation of ozone pollution. Environ Pollut 236:296–303

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Bruce DR, Sissons M, Able AJ, Able JA (2018) Genotype-dependent changes in the phenolic content of durum under water-deficit stress. Cereal Chem 95:59–78

    Article  CAS  Google Scholar 

  • Lopez-Maury L, Marguerat S, Bahler J (2008) Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. Nat Rev Genet 9:583–593

    Article  CAS  PubMed  Google Scholar 

  • Mao X, Chen S, Li A et al (2014) Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis. PLoS One 9:e84359. https://doi.org/10.1371/journal.pone.0084359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta P, Jajoo A, Mathur S, Bharti S (2010) Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves. Plant Physiol Biochem 48:16–20

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Breusegem FV (2004) Abiotic stress series. Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Moghaieb REA, Abdel-Hadi AA, Talaat NB (2011) Molecular markers associated with salt tolerance in Egyptian wheats. Afr J Biotechnol 10(79):18092–18103

    CAS  Google Scholar 

  • Morran S, Eini O, Pyvovarenko T et al (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol J 9:230–249

    Article  CAS  PubMed  Google Scholar 

  • Moschou PN, Paschalidis KA, Roubelakis-Angelakis KA (2008) Plant polyamine catabolism. Plant Signal Behav 3:1061–1066

    Article  PubMed  PubMed Central  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Hare R, James R, Rebetzke G (2000) Genetic variation for improving the salt tolerance of durum wheat. Aust J Agric Res 51:69–74

    Article  CAS  Google Scholar 

  • Nenova V, Kocheva K, Petrov P, Georgiev G, Karceva T, Börner A, Landjeva S (2014) Wheat Rht-B1 dwarfs exhibit better photosynthetic response to water deficit at seedling stage compared to the wild type. J Agron Crop Sci 200:434–443

    Article  CAS  Google Scholar 

  • Nishiyama R, Le DT, Watanabe Y, Matsui A, Tanaka M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2012) Transcriptome analyses of a salt-tolerant cytokinin-deficient mutant reveal differential regulation of salt stress response by cytokinin deficiency. PLoS One 7:e32124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu CF, Wei W, Zhou QY et al (2012) Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ 35:1156–1170

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Foyer C (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Nongpiur RC, Singla-Pareek SL, Pareek A (2016) Genomics approaches for improving salinity stress tolerance in crop plants. Curr Genomics 17:343–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okay S, Derelli E, Unver T (2014) Transcriptome-wide identification of bread wheat WRKY transcription factors in response to drought stress. Mol Gen Genomics 289:765–781

    Article  CAS  Google Scholar 

  • Pang X, Zhang Z, Wen X, Ban Y, Moriguchi T (2007) Polyamines, all-purpose players in response to environment stresses in plants. Plant Stress 1:173–188

    Google Scholar 

  • Pearce S, Saville R, Vaughan SP, Chandler PM, Wilhelm EP, Sparks CA, Al-Kaff N, Korolev A, Boulton MI, Phillips AL, Hedden P, Nicholson P, Thomas SG (2011) Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat. Plant Physiol 157:1820–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14(3):290–295

    Article  CAS  PubMed  Google Scholar 

  • Pellegrineschi A, Reynolds M, Pacheco M, Brito RM, Almeraya R, Yamaguchi-Shinozaki K et al (2004) Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47:493–500

    Article  CAS  PubMed  Google Scholar 

  • Peremarti A, Marè C, Aprile A, Roncaglia E, Cattivelli L, Villegas D et al (2014) Transcriptomic and proteomic analyses of a palegreen durum wheat mutant shows variations in photosystem components and metabolic deficiencies under drought stress. BMC Genomics 15:125. https://doi.org/10.1186/1471-2164-15-125

    Article  PubMed  PubMed Central  Google Scholar 

  • Porcel R, Aroca R, Ruíz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev 32:181–200

    Article  CAS  Google Scholar 

  • Pospisilova J, Vagner M, Malbeck J, Travniakova A, Batkova P (2005) Interactions between abscisic acid and cytokinins during water stress and subsequent rehydration. Biol Plant 49:533–540

    Article  CAS  Google Scholar 

  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends Plant Sci 15:395–401

    Article  CAS  PubMed  Google Scholar 

  • Rajala A, Peltonen-Sainio P (2001) Plant growth regulator effects on spring cereal root and shoot growth. Agron J 93(4):936–943

    Article  CAS  Google Scholar 

  • Rauf M, Munir M, ulHassan M, Ahmad M, Afzal M (2007) Performance of wheat genotypes under osmotic stress at germination and early seedling growth stage. Afr J Biotechnol 6:971–975

    CAS  Google Scholar 

  • Rios JJ, Martínez-Ballesta MC, Ruiz JM, Blasco B, Carvajal M (2017) Silicon mediated improvement in plant salinity tolerance: the role of aquaporins. Front Plant Sci 8:948

    Article  PubMed  PubMed Central  Google Scholar 

  • Rong W, Qi L, Wang A, Ye X, Du L, Liang H et al (2014) The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol J 12:468–479

    Article  CAS  PubMed  Google Scholar 

  • Saeng-ngam S, Takpirom W, Buaboocha T, Chadchawan S (2012) The role of the OsCam1-1 salt stress sensor in ABA accumulation and salt tolerance in rice. J Plant Biol 55:198–208

    Article  CAS  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiological and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–420

    CAS  Google Scholar 

  • Sarkar J, Chakraborty B, Chakraborty U (2018) Plant growth promoting rhizobacteria protect wheat plants against temperature stress through antioxidant signalling and reducing chloroplast and membrane injury. J Plant Growth Regul 37(4):1396–1412

    Article  CAS  Google Scholar 

  • Scarpeci TE, Frea VS, Zanor MI, Valle EM (2017) Overexpression of AtERF019 delays plant growth and senescence, and improves drought tolerance in Arabidopsis. J Exp Bot 68:673–685

    CAS  PubMed  Google Scholar 

  • Sen A, Ozturk I, Yaycili O, Alikamanoglu S (2017) Drought tolerance in irradiated wheat mutants studied by genetic and biochemical markers. J Plant Growth Regul 36:669–679

    Article  CAS  Google Scholar 

  • Sengupta D, Reddy AR (2011) Water deficit as a regulatory switch for legume root responses. Plant Signal Behav 6(6):914–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25(2):333–341

    Article  PubMed  Google Scholar 

  • Shah SH, Houborg R, McCabe MF (2017) Response of chlorophyll, carotenoid and SPAD-502 measurement to salinity and nutrient stress in wheat (Triticum aestivum L.). Agronomy 7:61. https://doi.org/10.3390/agronomy7030061

    Article  CAS  Google Scholar 

  • Shahinnia F, Le Roy J, Laborde B, Sznajder B, Kalambettu P, Mahjourimajd S et al (2016) Genetic association of stomatal traits and yield in wheat grown in low rainfall environments. BMC Plant Biol 16:150. https://doi.org/10.1186/s12870-016-0838-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shakirova FM, Avalbaev AM, Bezrukova MV, Kudoyarova GR (2010) Role of endogenous hormonal system in the realization of the antistress action of plant growth regulators on plants. Plant Stress 4:32–38

    Google Scholar 

  • Shakirova F, Allagulova C, Maslennikova D, Fedorova K, Yuldashev R, Lubyanova A, Bezrukova M, Avalbaev A (2016) Involvement of dehydrins in 24-epibrassinolide-induced protection of wheat plants against drought stress. Plant Physiol Biochem 108:539–548

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. Exp Bot 58:221–227

    Article  CAS  Google Scholar 

  • Shumbe L, Bott R, Havaux M (2014) Dihydroactinidiolide, a high light-induced-carotene derivative that can regulate gene expression and photoacclimation in arabidopsis. Mol Plant 7:1248–1251

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Huerta-Espino J, Sharma R, Joshi AK, Trethowan R (2007) High yielding spring bread wheat germplasm for global irrigated and rainfed production systems. Euphytica 157:351–363

    Article  Google Scholar 

  • Singh RP, Jha P, Jha PN (2017) Bio-inoculation of plant growth-promoting rhizobacterium Enterobacter cloacae ZNP-3 increased resistance against salt and temperature stresses in wheat plant (Triticum aestivum L.). J Plant Growth Regul 36:783–798

    Article  CAS  Google Scholar 

  • Sumithra K, Reddy AR (2004) Changes in proline metabolism of cowpea seedlings under water deficit. J Plant Biol 31:201–204

    CAS  Google Scholar 

  • Sun Y, Xu W, Jia YB, Wang MC, Xia GM (2015) The wheat TaGBF1 gene is involved in the blue-light response and salt tolerance. Plant J 84:1219–1230

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13:178–182

    Article  CAS  PubMed  Google Scholar 

  • Talaat NB (2013) RNAi based simultaneous silencing of all forms of light-dependent NADPH:protochlorophyllide oxidoreductase genes result in the accumulation of protochlorophyllide in tobacco (Nicotiana tabacum). Plant Physiol Biochem 71:31–36

    Article  CAS  PubMed  Google Scholar 

  • Talaat NB (2015) Effective microorganisms improve growth performance and modulate the ROS-scavenging system in common bean (Phaseolus vulgaris L.) plants exposed to salinity stress. J Plant Growth Regul 34:35–46

    Article  CAS  Google Scholar 

  • Talaat NB, Shawky BT (2011) Influence of arbuscular mycorrhizae on yield, nutrients, organic solutes, and antioxidant enzymes of two wheat cultivars under salt stress. J Plant Nutr Soil Sci 174:283–291

    Article  CAS  Google Scholar 

  • Talaat NB, Shawky BT (2012a) Influence of arbuscular mycorrhizae on root colonization, growth and productivity of two wheat cultivars under salt stress. Arch Agron Soil Sci 58(1):85–100

    Article  CAS  Google Scholar 

  • Talaat NB, Shawky BT (2012b) 24-Epibrassinolide ameliorates the saline stress and improves the productivity of wheat (Triticum aestivum L.). Environ Exp Bot 82:80–88

    Article  CAS  Google Scholar 

  • Talaat NB, Shawky BT (2013a) 24-Epibrassinolide alleviates salt induced inhibition of productivity by increasing nutrients and compatible solutes accumulation and enhancing antioxidant system in wheat (Triticum aestivum L.). Acta Physiol Plant 35:729–740

    Article  CAS  Google Scholar 

  • Talaat NB, Shawky BT (2013b) Modulation of nutrient acquisition and polyamine pool in salt-stressed wheat (Triticum aestivum L.) plants inoculated with arbuscular mycorrhizal fungi. Acta Physiol Plant 35:2601–2610

    Article  CAS  Google Scholar 

  • Talaat NB, Shawky BT (2014a) Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity. Environ Exp Bot 98:20–31

    Article  CAS  Google Scholar 

  • Talaat NB, Shawky BT (2014b) Modulation of the ROS-scavenging system in salt-stressed wheat plants inoculated with arbuscular mycorrhizal fungi. J Plant Nutr Soil Sci 177:199–207

    Article  CAS  Google Scholar 

  • Talaat NB, Shawky BT (2015) Plant-microbe interaction and salt stress tolerance in plants. In: Wani SH, Hossain MA (eds) Managing salt tolerance in plants: molecular and genomic perspectives. CRC Press/Taylor & Francis Group, Boca Raton, pp 267–289

    Chapter  Google Scholar 

  • Talaat NB, Shawky BT (2016) Dual application of 24-epibrassinolide and spermine confers drought stress tolerance in maize (Zea mays L.) by modulating polyamine and protein metabolism. J Plant Growth Regul 35:518–533

    Article  CAS  Google Scholar 

  • Talaat NB, Shawky BT (2017) Microbe-mediated induced abiotic stress tolerance responses in plants. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Volume 2. Microbial interactions and agro-ecological impacts. Springer, Singapore, pp 101–134

    Google Scholar 

  • Talaat NB, Ghoniem AE, Abdelhamid MT, Shawky BT (2015a) Effective microorganisms improve growth performance, alter nutrients acquisition and induce compatible solutes accumulation in common bean (Phaseolus vulgaris L.) plants subjected to salinity stress. Plant Growth Regul 75:281–295

    Article  CAS  Google Scholar 

  • Talaat NB, Shawky BT, Ibrahim AS (2015b) Alleviation of drought induced oxidative stress in maize (Zea mays L.) plants by dual application of 24-epibrassinolide and spermine. Environ Exp Bot 113:47–58

    Article  CAS  Google Scholar 

  • Todorova D, Talaat NB, Katerova Z, Alexieva V, Shawky BT (2016) Polyamines and brassinosteroids in drought stress responses and tolerance in plants. In: Ahmad P (ed) Water stress and crop plants: a sustainable approach, vol 2. Wiley, Chichester, pp 608–627

    Chapter  Google Scholar 

  • Tosens T, Niinemets U, Vislap V et al (2012) Developmental changes in mesophyll diffusion conductance and photosynthetic capacity under different light and water availabilities in Populus tremula: how structure constrains function. Plant Cell Environ 35(5):839–856

    Article  CAS  PubMed  Google Scholar 

  • Triantaphylidès C, Havaux M (2009) Singlet oxygen in plants: production, detoxification and signaling. Trends Plant Sci 14:219–228

    Article  PubMed  CAS  Google Scholar 

  • Vaculík M, Pavlovič A, Lux A (2015) Silicon alleviates cadmium toxicity by enhanced photosynthetic rate and modified bundle sheath’s cell chloroplasts ultrastructure in maize. Ecotoxicol Environ Saf 120:66–73

    Article  PubMed  CAS  Google Scholar 

  • Vandenbroucke K, Metzlaff M (2013) Abiotic stress tolerant crops: genes, pathways and bottlenecks. In: Christou P et al (eds) Sustainable food production. Springer, New York, pp 1–17

    Google Scholar 

  • Wang C, Deng P, Chen L et al (2013) A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco. PLoS One 8:e65120. https://doi.org/10.1371/journal.pone.0065120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Li Q, Mao X et al (2016) Wheat transcription factor TaAREB3 participates in drought and freezing tolerances in Arabidopsis. Int J Biol Sci 12:257–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Z, Jiang D, Cao W et al (2003) Relationships of endogenous plant hormones to accumulation of grain protein and starch in winter wheat under different post-anthesis soil water statusses. Plant Growth Regul 41(2):117–127

    Article  CAS  Google Scholar 

  • Yang X, Liang Z, Wen X, Lu C (2008) Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Mol Biol 66:73–86

    Article  CAS  PubMed  Google Scholar 

  • Yao X, Horie T, Xue S, Leung HY, Katsuhara M, Brodsky DE, Wu Y, Schroeder JI (2010) Differential sodium and potassium transport selectivities of the rice OsHKT2;1 and OsHKT2;2 transporters in plant cells. Plant Physiol 152:341–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yildiz-Aktas L, Dagnon S, Gurel A, Gesheva E, Edreva A (2009) Drought tolerance in cotton: Involvement of non-enzymatic ROS scavenging compounds. J Agron Crop Sci 195:247–253

    Article  CAS  Google Scholar 

  • Zhang Z, Yao W, Dong N, Liang H, Liu H, Huang R (2007) A novel ERF transcription activator in wheat and its induction kinetics after pathogen and hormone treatments. J Exp Bot 58:2993–3003

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhang G, Xia N et al (2009) Cloning and characterization of a bZIP transcription factor gene in wheat and its expression in response to stripe rust pathogen infection and abiotic stresses. Physiol Mol Plant Pathol 73:88–94

    Article  CAS  Google Scholar 

  • Zhang L, Liu G, Zhao G et al (2014) Characterization of a wheat R2R3-MYB transcription factor gene, TaMYB19, involved in enhanced abiotic stresses in Arabidopsis. Plant Cell Physiol 55:1802–1812

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Xia C, Zhao G et al (2015) A novel wheat bZIP transcription factor, TabZIP60, confers multiple abiotic stress tolerances in transgenic Arabidopsis. Physiol Plant 153:538–554

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Dong W, Zhang NB, Ai XH, Wang MC, Huang ZG, Xiao LT, Xia GM (2014) A wheat allene oxide cyclase gene enhances salinity tolerance via jasmonate signaling. Plant Physiol 164:1068–1076

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Ai XH, Wang MC, Xiao LT, Xia GM (2016) A putative pyruvate transporter TaBASS2 positively regulates salinity tolerance in wheat via modulation of ABI4 expression. BMC Plant Biol 16:109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng J, Yang Z, Madgwick PJ, Carmo-Silva E, Parry MA, Hu Y-G (2015) TaER expression is associated with transpiration efficiency traits and yield in bread wheat. PLoS One 10:e0128415. https://doi.org/10.1371/journal.pone.0128415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu M, Shabala S, Shabala L, Fan Y, Zhou MX (2015) Evaluating predictive values of various physiological indices for salinity stress tolerance in wheat. J Agron Crop Sci 202(2):115–124. https://doi.org/10.1111/jac12122

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Talaat, N.B. (2019). Abiotic Stresses-Induced Physiological Alteration in Wheat. In: Hasanuzzaman, M., Nahar, K., Hossain, M. (eds) Wheat Production in Changing Environments. Springer, Singapore. https://doi.org/10.1007/978-981-13-6883-7_1

Download citation

Publish with us

Policies and ethics