Skip to main content

Applications of Molecular Markers to Develop Resistance Against Abiotic Stresses in Wheat

  • Chapter
  • First Online:
Book cover Wheat Production in Changing Environments

Abstract

Innovations had come into being in the field of plant breeding with the development and advancement of molecular marker techniques by the end of the twentieth century. Advancement in molecular markers for sequencing techniques has led to improvements in crop production. Amplified fragment length polymorphism (AFLP), restriction fragment length polymorphism, random amplified polymorphic DNA, and microsatellite markers are being used in the fields of molecular characterization, describing hybrid vigor, marker-assisted selection, abiotic stress tolerance, and genetic distance range. Numerous troubles that a user can face throughout marker application gametogenesis have also been discussed. Germplasm characterization and marker-mediated varietal fingerprinting seemed very ordinary and have many prevalent applications with AFLPs and simple sequence repeats (SSRs). SSR markers are known to be applicable and suitable techniques for molecular characterization owing to their low price, simplicity, and the lack of radio-isotope demand. Preventing hybrid vigor seemed very problematic, with a slight victory because of the absence of a simplistic marker technique that may categorically classify the hybrids, community, and offspring. A marker-assisted selection of valuable characters is very effective after molecular characterization, whereas for measurable traits, mainly disease-tolerant genes and quantitative trait loci for abiotic stress resistance, the success is inadequate. It is estimated that the implementation of molecular markers will remain limited in such fields until gene-specific markers exist and the price of the markers study is decreased markedly. This chapter discusses the possible responsibility of molecular markers in developing abiotic stress-resistant wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal P, Jha B (2010) Transcription factors in plants and ABA dependent and independent abiotic stress signalling. Biol Plant 54:201–212

    Article  CAS  Google Scholar 

  • Agarwal PK, Agarwal P, Reddy M, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274

    Article  CAS  PubMed  Google Scholar 

  • Agarwal M, Shrivastava N, Padh H (2008) Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep 27:617–631

    Article  CAS  PubMed  Google Scholar 

  • Akram M (2011) Growth and yield components of wheat under water stress of different growth stages. Bangladesh J Agric Res 36:455–468

    Article  Google Scholar 

  • Alam M, Rabbani MG (2007) Vulnerabilities and responses to climate change for Dhaka. Environ Urban 19:81–97

    Article  Google Scholar 

  • Araki H, Hamada A, Hossain MA, Takahashi T (2012) Waterlogging at jointing and/or after anthesis in wheat induces early leaf senescence and impairs grain filling. Field Crop Res 137:27–36

    Article  Google Scholar 

  • Araus J, Slafer G, Reynolds M, Royo C (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot 89:925–940

    Article  PubMed  PubMed Central  Google Scholar 

  • Asseng S, Ewert F, Martre P, Rötter RP, Lobell D, Cammarano D, Kimball B, Ottman M, Wall G, White JW (2015) Rising temperatures reduce global wheat production. Nat Clim Chang 5:143

    Article  Google Scholar 

  • Atkin OK, Tjoelker MG (2003) Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci 8:343–351

    Article  CAS  PubMed  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543

    Article  CAS  PubMed  Google Scholar 

  • Bagge M, Xia X, Lübberstedt T (2007) Functional markers in wheat. Curr Opin Plant Biol 10:211–216

    Article  CAS  PubMed  Google Scholar 

  • Bailey-Serres J, Lee SC, Brinton E (2012) Waterproofing crops: effective flooding survival strategies. Plant Physiol 160:1698–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates B, Kundzewicz Z, Wu S (2008) Climate change and water. Intergovernmental Panel on Climate Change Secretariat, Geneva

    Google Scholar 

  • Beckmann JS, Weber JL (1992) Survey of human and rat microsatellites. Genomics 12:627–631

    Article  CAS  Google Scholar 

  • Bencze S, Veisz O (2011) Quality of winter wheat in relation to heat and drought shock after anthesis. Czech J Food Sci 29:117–128

    Article  Google Scholar 

  • Bhatnagar-Mathur P, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27:411–424

    Article  CAS  PubMed  Google Scholar 

  • Bilal M, Rashid R, Rehman S, Iqbal F, Ahmed J, Abid M, Ahmed Z, Hayat A (2015) Evaluation of wheat genotypes for drought tolerance. J Green Physiol Genet Genomics 1:11–21

    Google Scholar 

  • Bita C, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273

    Article  PubMed  PubMed Central  Google Scholar 

  • Blears M, De Grandis S, Lee H, Trevors J (1998) Amplified fragment length polymorphism (AFLP): a review of the procedure and its applications. J Ind Microbiol Biotechnol 21:99–114

    Article  CAS  Google Scholar 

  • Bogeat-Triboulot M-B, Brosché M, Renaut J, Jouve L, Le Thiec D, Fayyaz P, Vinocur B, Witters E, Laukens K, Teichmann T (2007) Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions. Plant Physiol 143:876–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyer J, Byrne P, Cassman K, Cooper M, Delmer D, Greene T, Gruis F, Habben J, Hausmann N, Kenny N (2013) The US drought of 2012 in perspective: a call to action. Glob Food Sec 2:139–143

    Article  Google Scholar 

  • Casierra-Posada F, Cutler J (2017) Photosystem II fluorescence and growth in cabbage plants (Brassica oleracea var. capitate) grown under waterlogging stress. Revista UDCA Actualidad & Divulgación Científica 20:321–328

    Article  Google Scholar 

  • Chandler PM, Robertson M (1994) Gene expression regulated by abscisic acid and its relation to stress tolerance. Annu Rev Plant Biol 45:113–141

    Article  CAS  Google Scholar 

  • Chen R-D, Yu L-X, Greer AF, Cheriti H, Tabaeizadeh Z (1994) Isolation of an osmotic stress- and abscisic acid-induced gene encoding an acidic endochitinase from Lycopersicon chilense. Mol Gen Genet MGG 245:195–202

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu J-K (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451

    Article  CAS  PubMed  Google Scholar 

  • Choi H-K, Mun J-H, Kim D-J, Zhu H, Baek J-M, Mudge J, Roe B, Ellis N, Doyle J, Kiss GB (2004) Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci U S A 101:15289–15294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole CT (2003) Genetic variation in rare and common plants. Annu Rev Ecol Evol Syst 34:213–237

    Article  Google Scholar 

  • Collard B, Jahufer M, Brouwer J, Pang E (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Cushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3:117–124

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira ED, Bramley H, Siddique KH, Henty S, Berger J, Palta JA (2013) Can elevated CO2 combined with high temperature ameliorate the effect of terminal drought in wheat? Funct Plant Biol 40:160–171

    Article  CAS  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhanda S, Sethi G (2002) Tolerance to drought stress among selected Indian wheat cultivars. J Agric Sci 139:319–326

    Article  Google Scholar 

  • Dhanda S, Toky O (2010) Interaction of provenance (seed source), fertilizers and salinities in Eucalyptus tereticornis and E. camaldulensis grown in north-west India. Range Manag Agrofor 31:120–124

    Google Scholar 

  • Dhillon T, Pearce S, Stockinger E, Distelfeld A, Li C, Knox AK, Vashegyi I, Vágújfalvi A, Galiba G, Dubcovsky J (2010) Regulation of freezing tolerance and flowering in temperate cereals: the VRN-1 connection. Plant Physiol 153(4):1846–1858. https://doi.org/10.1104/pp.110.159079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubcovsky J, Santa Maria G, Epstein E, Luo M-C, Dvořák J (1996) Mapping of the K+/Na+ discrimination locus Kna1 in wheat. Theor Appl Genet 92:448–454

    Article  CAS  PubMed  Google Scholar 

  • Eagles HA, Bariana HS, Ogbonnaya FC, Rebetzke GJ, Hollamby G, Henry RJ, Henschke P, Carter M (2001) Implementation of markers in Australian wheat breeding. Aust J Agric Res 52:1349–1356

    Article  CAS  Google Scholar 

  • Eskandari H, Kazemi KK (2010) Response of different bread wheat (Triticum aestivum L.) genotypes to post-anthesis water deficit. Not Sci Biol 2:49

    Article  Google Scholar 

  • Farooq M, Bramley H, Palta JA, Siddique KH (2011) Heat stress in wheat during reproductive and grain-filling phases. Crit Rev Plant Sci 30:491–507

    Article  Google Scholar 

  • Farooq M, Hussain M, Siddique KH (2014) Drought stress in wheat during flowering and grain-filling periods. Crit Rev Plant Sci 33:331–349

    Article  CAS  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fracasso A, Trindade LM, Amaducci S (2016) Drought stress tolerance strategies revealed by RNA-Seq in two sorghum genotypes with contrasting WUE. BMC Plant Biol 16:115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fukao T, Bailey-Serres J (2008) Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proc Natl Acad Sci 105:16814–16819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukao T, Xu K, Ronald PC, Bailey-Serres J (2006) A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18:2021–2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fulton TM, Van der Hoeven R, Eannetta NT, Tanksley SD (2002) Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell 14:1457–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gajghate R, Sharma R, Jain N, Singh AM, Kumar M, Kala Y, Singh A (2015) Validation of known molecular markers associated with QTLs for terminal heat tolerance traits in bread wheat. In: Compendium of abstracts of the 2nd international conference on bio-resource and stress management, ANGRAU & PJTSAU, Hyderabad, India, pp 7–10

    Google Scholar 

  • Gale M, Devos K (1998) Plant comparative genetics after 10 years. Science 282:656–659

    Article  CAS  PubMed  Google Scholar 

  • Gamuyao R, Chin JH, Pariasca-Tanaka J, Pesaresi P, Catausan S, Dalid C, Slamet-Loedin I, Tecson-Mendoza EM, Wissuwa M, Heuer S (2012) The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488:535

    Article  CAS  PubMed  Google Scholar 

  • Gómez J, Sánchez-Martínez D, Stiefel V, Rigau J, Puigdomènech P, Pagès M (1988) A gene induced by the plant hormone abscisic acid in response to water stress encodes a glycine-rich protein. Nature 334:262

    Article  PubMed  Google Scholar 

  • Gómez-Cadenas A, Verhey SD, Holappa LD, Shen Q, Ho T-HD, Walker-Simmons M (1999) An abscisic acid-induced protein kinase, PKABA1, mediates abscisic acid-suppressed gene expression in barley aleurone layers. Proc Natl Acad Sci 96:1767–1772

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzali S, Loreti E, Novi G, Poggi A, Alpi A, Perata P (2005) The use of microarrays to study the anaerobic response in Arabidopsis. Ann Bot 96:661–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gourdji SM, Sibley AM, Lobell DB (2013) Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections. Environ Res Lett 8:024041

    Article  Google Scholar 

  • Guóth A, Tari I, Gallé Á, Csiszár J, Pécsváradi A, Cseuz L, Erdei L (2009) Comparison of the drought stress responses of tolerant and sensitive wheat cultivars during grain filling: changes in flag leaf photosynthetic activity, ABA levels, and grain yield. J Plant Growth Regul 28:167–176

    Article  CAS  Google Scholar 

  • Gupta N, Gupta S, Kumar A (2001) Effect of water stress on physiological attributes and their relationship with growth and yield of wheat cultivars at different stages. J Agron Crop Sci 186:55–62

    Article  Google Scholar 

  • Gupta P, Mir R, Mohan A, Kumar J (2008) Wheat genomics: present status and future prospects. Int J Plant Genomics 2008:896451

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamrick J (1989) Isozymes and the analysis of genetic structure in plant populations. In: Isozymes in plant biology. Springer, Dordrecht, pp 87–105

    Chapter  Google Scholar 

  • Hao C, Wang Y, Chao S, Li T, Liu H, Wang L, Zhang X (2017) The iSelect 9 K SNP analysis revealed polyploidization induced revolutionary changes and intense human selection causing strong haplotype blocks in wheat. Sci Rep 7:41247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Hossain MA, da Silva JAT, Fujita M (2012) Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Crop stress and its management: perspectives and strategies. Springer, Dordrecht, pp 261–315

    Chapter  Google Scholar 

  • Hattori Y, Nagai K, Furukawa S, Song X-J, Kawano R, Sakakibara H, Wu J, Matsumoto T, Yoshimura A, Kitano H (2009) The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460:1026

    Article  CAS  PubMed  Google Scholar 

  • He X, Zhang Y, He Z, Wu Y, Xiao Y, Ma C, Xia X (2008) Characterization of phytoene synthase 1 gene (Psy1) located on common wheat chromosome 7A and development of a functional marker. Theor Appl Genet 116:213–221

    Article  CAS  PubMed  Google Scholar 

  • Hirabayashi Y, Mahendran R, Koirala S, Konoshima L, Yamazaki D, Watanabe S, Kim H, Kanae S (2013) Global flood risk under climate change. Nat Clim Chang 3:816

    Article  Google Scholar 

  • Hirschi M, Seneviratne SI, Alexandrov V, Boberg F, Boroneant C, Christensen OB, Formayer H, Orlowsky B, Stepanek P (2011) Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat Geosci 4:17

    Article  CAS  Google Scholar 

  • Holappa LD, Walker-Simmons M (1995) The wheat abscisic acid-responsive protein kinase mRNA, PKABA1, is up-regulated by dehydration, cold temperature, and osmotic stress. Plant Physiol 108:1203–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu H, Xiong L (2014) Genetic engineering and breeding of drought-resistant crops. Annu Rev Plant Biol 65:715–741

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Shabala S, Shabala L, Rengel Z, Wu X, Zhang G, Zhou M (2015) Linking waterlogging tolerance with Mn2+ toxicity: a case study for barley. Plant Biol 17:26–33

    Article  CAS  PubMed  Google Scholar 

  • Ibba MI, Kiszonas AM, Guzmán C, Morris CF (2017) Definition of the low molecular weight glutenin subunit gene family members in a set of standard bread wheat (Triticum aestivum L.) varieties. J Cereal Sci 74:263–271

    Article  CAS  Google Scholar 

  • Ihsan MZ, El-Nakhlawy FS, Ismail SM, Fahad S (2016) Wheat phenological development and growth studies as affected by drought and late season high temperature stress under arid environment. Front Plant Sci 7:795

    Article  PubMed  PubMed Central  Google Scholar 

  • Iizumi T, Sakuma H, Yokozawa M, Luo J-J, Challinor AJ, Brown ME, Sakurai G, Yamagata T (2013) Prediction of seasonal climate-induced variations in global food production. Nat Clim Chang 3:904

    Article  Google Scholar 

  • Jaggard KW, Qi A, Ober ES (2010) Possible changes to arable crop yields by 2050. Philos Trans R Soc Lond B Biol Sci 365:2835–2851

    Article  PubMed  PubMed Central  Google Scholar 

  • Jatoi W, Baloch M, Kumbhar M, Khan N, Kerio M (2011) Effect of water stress on physiological and yield parameters at anthesis stage in elite spring wheat cultivars. Sarhad J Agric 27:59–65

    Google Scholar 

  • Jiang G-L (2013) Molecular markers and marker-assisted breeding in plants. In: Andersen SB (ed) Plant breeding from laboratories to fields. InTech, Rijeka. https://doi.org/10.5772/52583

    Chapter  Google Scholar 

  • Jones DL, Cross P, Withers PJ, DeLuca TH, Robinson DA, Quilliam RS, Harris IM, Chadwick DR, Edwards-Jones G (2013) Nutrient stripping: the global disparity between food security and soil nutrient stocks. J Appl Ecol 50:851–862

    Article  Google Scholar 

  • Joshi M, Deshpande J (2010) Polymerase chain reaction: methods, principles and application. Int J Biomed Res 2:81–97

    Google Scholar 

  • Kalia RK, Rai MK, Kalia S, Singh R, Dhawan A (2011) Microsatellite markers: an overview of the recent progress in plants. Euphytica 177:309–334

    Article  CAS  Google Scholar 

  • Karaköy T, Baloch FS, Toklu F, Özkan H (2014) Variation for selected morphological and quality-related traits among 178 faba bean landraces collected from Turkey. Plant Genet Resour 12:5–13

    Article  Google Scholar 

  • Kebriyaee D, Kordrostami M, Rezadoost MH, Lahiji HS (2012) QTL analysis of agronomic traits in rice using SSR and AFLP markers. Not Sci Biol 4:116–123

    Article  CAS  Google Scholar 

  • Knox AK, Dhillon T, Cheng H, Tondelli A, Pecchioni N, Stockinger EJ (2010) CBF gene copy number variation at Frost Resistance-2 is associated with levels of freezing tolerance in temperate-climate cereals. Theor Appl Genet 121:21–35

    Article  PubMed  Google Scholar 

  • Komatsu S, Yanagawa Y (2013) Cell wall proteomics of crops. Front Plant Sci 4:17

    PubMed  PubMed Central  Google Scholar 

  • Kosová K, Vítámvás P, Planchon S, Renaut J, Vanková R, Prášil IT (2013) Proteome analysis of cold response in spring and winter wheat (Triticum aestivum) crowns reveals similarities in stress adaptation and differences in regulatory processes between the growth habits. J Proteome Res 12:4830–4845

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Rai R (2014) Can wheat beat the heat: understanding the mechanism of thermotolerance in wheat (Triticum aestivum L.) a review. Cereal Res Commun 42:1–18

    Article  CAS  Google Scholar 

  • Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62:4731–4748

    Article  CAS  PubMed  Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461

    Article  CAS  Google Scholar 

  • Li J-Y, Liu J, Dong D, Jia X, McCouch SR, Kochian LV (2014) Natural variation underlies alterations in Nramp aluminum transporter (NRAT1) expression and function that play a key role in rice aluminum tolerance. Proc Natl Acad Sci U S A 111(17):6503–6508. https://doi.org/10.1073/pnas.1318975111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Litt M, Luty JA (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 44:397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Piñeros MA, Kochian LV (2014) The role of aluminum sensing and signaling in plant aluminum resistance. J Integr Plant Biol 56:221–230

    Article  CAS  PubMed  Google Scholar 

  • Lobell DB, Hammer GL, Chenu K, Zheng B, McLean G, Chapman SC (2015) The shifting influence of drought and heat stress for crops in northeast Australia. Glob Chang Biol 21:4115–4127

    Article  PubMed  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland

    Google Scholar 

  • Madhumati B (2014) Potential and application of molecular markers techniques for plant genome analysis. Int J Pure Appl Biosci 2:169–188

    Google Scholar 

  • Magalhaes JV, Liu J, Guimaraes CT, Lana UG, Alves VM, Wang Y-H, Schaffert RE, Hoekenga OA, Pineros MA, Shaff JE (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39:1156

    Article  CAS  PubMed  Google Scholar 

  • Majid SA, Asghar R, Murtaza G (2007) Yield stability analysis conferring adaptation of wheat to pre-and post-anthesis drought conditions. Pak J Bot 39:1623–1637

    Google Scholar 

  • Mano Y, Oyanagi A (2009) Trends of waterlogging tolerance studies in the Poaceae. Jpn J Crop Sci 78:441–448

    Article  Google Scholar 

  • Mao X, Zhang H, Tian S, Chang X, Jing R (2009) TaSnRK2. 4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis. J Exp Bot 61:683–696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maron LG, Guimarães CT, Kirst M, Albert PS, Birchler JA, Bradbury PJ, Buckler ES, Coluccio AE, Danilova TV, Kudrna D (2013) Aluminum tolerance in maize is associated with higher MATE1 gene copy number. Proc Natl Acad Sci U S A:201220766. https://doi.org/10.1073/pnas.1220766110

    Article  CAS  Google Scholar 

  • Mateu-Andres I, De Paco L (2004) Allozymic differentiation of the Antirrhinum majus and A. siculum species groups. Ann Bot 95:465–473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16:237–251

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462

    Article  CAS  PubMed  Google Scholar 

  • Mondini L, Noorani A, Pagnotta MA (2009) Assessing plant genetic diversity by molecular tools. Diversity 1:19–35

    Article  CAS  Google Scholar 

  • Moore G, Devos K, Wang Z, Gale M (1995) Cereal genome evolution: grasses, line up and form a circle. Curr Biol 5:737–739

    Article  CAS  PubMed  Google Scholar 

  • Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30:194. https://doi.org/10.1038/ng822

    Article  CAS  PubMed  Google Scholar 

  • Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51(Pt 1):263–273

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Byrt CS, Hare RA, Tyerman SD, Tester M (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol 30:360–364

    Article  CAS  PubMed  Google Scholar 

  • Nable RO, Bañuelos GS, Paull JG (1997) Boron toxicity. Plant Soil 193:181–198

    Article  CAS  Google Scholar 

  • Nemoto Y, Sasakuma T (2002) Differential stress responses of early salt-stress responding genes in common wheat. Phytochemistry 61:129–133

    Article  CAS  PubMed  Google Scholar 

  • Niwas R, Khichar M (2016) Managing impact of climatic vagaries on the productivity of wheat and mustard in India. Mausam 67:205–222

    Google Scholar 

  • Ortiz R, Sayre KD, Govaerts B, Gupta R, Subbarao G, Ban T, Hodson D, Dixon JM, Ortiz-Monasterio JI, Reynolds M (2008) Climate change: can wheat beat the heat? Agric Ecosyst Environ 126:46–58

    Article  Google Scholar 

  • Pallotta M, Schnurbusch T, Hayes J, Hay A, Baumann U, Paull J, Langridge P, Sutton T (2014) Molecular basis of adaptation to high soil boron in wheat landraces and elite cultivars. Nature 514:88–91

    Article  CAS  PubMed  Google Scholar 

  • Patel R, Prasher S, Bonnell R (2000) Effects of watertable depth, irrigation water salinity, and fertilizer application on root zone salt buildup. Can Agric Eng 42:111–116

    Google Scholar 

  • Powell N, Ji X, Ravash R, Edlington J, Dolferus R (2012) Yield stability for cereals in a changing climate. Funct Plant Biol 39:539–552

    Article  PubMed  Google Scholar 

  • Pradhan GP, Prasad PV, Fritz AK, Kirkham MB, Gill BS (2012) Effects of drought and high temperature stress on synthetic hexaploid wheat. Funct Plant Biol 39:190–198

    Article  PubMed  Google Scholar 

  • Prasad P, Pisipati S, Momčilović I, Ristic Z (2011) Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. J Agron Crop Sci 197:430–441

    Article  CAS  Google Scholar 

  • Provan J, Powell W, Hollingsworth PM (2001) Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends Ecol Evol 16:142–147

    Article  CAS  PubMed  Google Scholar 

  • Pryor S, Barthelmie R, Schoof J (2013) High-resolution projections of climate-related risks for the Midwestern USA. Clim Res 56:61–79

    Article  Google Scholar 

  • Qadir M, Quillérou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Drechsel P, Noble AD (2014) Economics of salt-induced land degradation and restoration. Nat Res Forum 38:282–295

    Article  Google Scholar 

  • Rajendrakumar P, Biswal AK, Balachandran SM, Srinivasarao K, Sundaram RM (2006) Simple sequence repeats in organellar genomes of rice: frequency and distribution in genic and intergenic regions. Bioinformatics 23:1–4

    Article  PubMed  CAS  Google Scholar 

  • Rashed M, Atta A, El-Din TS, Mostafa A (2017) Development of SSR & STS molecular markers associated with stem rust resistance in bread wheat (Triticum aestivum L.). Egypt J Genet Cytol 45:261–278

    Article  Google Scholar 

  • Raza A, Shaukat H, Ali Q, Habib M (2018) Assessment of RAPD markers to analyse the genetic diversity among sunflower (Helianthus annuus L.) genotypes. Turkish J Agric Food Sci Technol 6:107–111

    Article  Google Scholar 

  • Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J (2019a) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plan Theory 8:34

    Google Scholar 

  • Raza A, Mehmood SS, Ashraf F, Khan RS (2019b) Genetic diversity analysis of brassica species using PCR-based SSR markers. Gesunde Pflanz 71:1–7

    Article  CAS  Google Scholar 

  • Ren Z-H, Gao J-P, Li L-G, Cai X-L, Huang W, Chao D-Y, Zhu M-Z, Wang Z-Y, Luan S, Lin H-X (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141

    Article  CAS  PubMed  Google Scholar 

  • Rhine MD, Stevens G, Shannon G, Wrather A, Sleper D (2010) Yield and nutritional responses to waterlogging of soybean cultivars. Irrig Sci 28:135–142

    Article  Google Scholar 

  • Ridout CJ, Donini P (1999) Use of AFLP in cereals research. Trends Plant Sci 4:76–79

    Article  CAS  PubMed  Google Scholar 

  • Riechmann JL, Heard J, Martin G, Reuber L, Jiang C-Z, Keddie J, Adam L, Pineda O, Ratcliffe O, Samaha R (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110

    Article  CAS  PubMed  Google Scholar 

  • Rizhsky L, Liang H, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130:1143–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Röder M, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  PubMed Central  Google Scholar 

  • Röder M, Wendehake K, Korzun V, Bredemeijer G, Laborie D, Bertrand L, Isaac P, Rendell S, Jackson J, Cooke R (2002) Construction and analysis of a microsatellite-based database of European wheat varieties. Theor Appl Genet 106:67–73

    Article  PubMed  CAS  Google Scholar 

  • Romina P, Abeledo LG, Miralles DJ (2014) Identifying the critical period for waterlogging on yield and its components in wheat and barley. Plant Soil 378:265–277

    Article  CAS  Google Scholar 

  • Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Boote KJ, Folberth C, Glotter M, Khabarov N (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci 111:3268–3273

    Article  CAS  PubMed  Google Scholar 

  • Sangtarash M (2010) Responses of different wheat genotypes to drought stress applied at different growth stages. Pak J Biol Sci 13:114

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Ryan PR, Delhaize E, Hebb DM, Ogihara Y, Kawaura K, Noda K, Kojima T, Toyoda A, Matsumoto H (2006) Sequence upstream of the wheat (Triticum aestivum L.) ALMT1 gene and its relationship to aluminum resistance. Plant Cell Physiol 47:1343–1354

    Article  CAS  PubMed  Google Scholar 

  • Sauter M (2013) Root responses to flooding. Curr Opin Plant Biol 16:282–286

    Article  PubMed  Google Scholar 

  • Schlotteröer C, Amos B, Tautz D (1991) Conservation of polymorphic simple sequence loci in cetacean species. Nature 354:63

    Article  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  CAS  PubMed  Google Scholar 

  • Semagn K, Bjørnstad Å, Ndjiondjop M (2006) An overview of molecular marker methods for plants. Afr J Biotechnol 5:2540–2568

    CAS  Google Scholar 

  • Semiz GD, Suarez DL, Ünlükara A, Yurtseven E (2014) Interactive effects of salinity and N on pepper (Capsicum annuum L.) yield, water use efficiency and root zone and drainage salinity. J Plant Nutr 37:595–610

    Article  CAS  Google Scholar 

  • Setter T, Waters I, Sharma S, Singh K, Kulshreshtha N, Yaduvanshi N, Ram P, Singh B, Rane J, McDonald G (2008) Review of wheat improvement for waterlogging tolerance in Australia and India: the importance of anaerobiosis and element toxicities associated with different soils. Ann Bot 103:221–235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shah SH, Houborg R, McCabe MF (2017) Response of chlorophyll, carotenoid and SPAD-502 measurement to salinity and nutrient stress in wheat (Triticum aestivum L.). Agronomy 7:61

    Article  CAS  Google Scholar 

  • Shamsi K, Kobraee S (2011) Bread wheat production under drought stress conditions. Ann Biol Res 2:352–358

    Google Scholar 

  • Shamsi K, Petrosyan M, Noor-Mohammadi G, Haghparast R (2010) The role of water deficit stress and water use efficiency on bread wheat cultivars. J Appl Biosci 35:2325–2331

    Google Scholar 

  • Sharkey TD (1988) Estimating the rate of photorespiration in leaves. Physiol Plant 73:147–152

    Article  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Dang TT, Vergara GV, Pandey DM, Sanchez D, Neeraja C, Septiningsih EM, Mendioro M, Tecson-Mendoza EM, Ismail AM (2010) Molecular marker survey and expression analyses of the rice submergence-tolerance gene SUB1A. Theor Appl Genet 121:1441–1453

    Article  CAS  PubMed  Google Scholar 

  • Sobrino B, Brión M, Carracedo A (2005) SNPs in forensic genetics: a review on SNP typing methodologies. Forensic Sci Int 154:181–194

    Article  CAS  PubMed  Google Scholar 

  • Soliman M, Kostandi S, Van Beusichem M (1992) Influence of sulfur and nitrogen fertilizer on the uptake of iron, manganese, and zinc by corn plants grown in calcareous soil. Commun Soil Sci Plant Anal 23:1289–1300

    Article  CAS  Google Scholar 

  • Sorrells ME, La Rota M, Bermudez-Kandianis CE, Greene RA, Kantety R, Munkvold JD, Mahmoud A, Ma X, Gustafson PJ, Qi LL (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sutton T, Baumann U, Hayes J, Collins NC, Shi B-J, Schnurbusch T, Hay A, Mayo G, Pallotta M, Tester M (2007) Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science 318:1446–1449

    Article  CAS  PubMed  Google Scholar 

  • Tanksley S, Orton T (1983) Isozymic variation and plant breeders’ rights. Iso Plant Genet Breed 1:425

    Article  Google Scholar 

  • Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17:6463–6471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thakur P, Nayyar H (2013) Facing the cold stress by plants in the changing environment: sensing, signaling, and defending mechanisms. In: Plant acclimation to environmental stress. Springer, New York, pp 29–69

    Chapter  Google Scholar 

  • Tiryakioğlu M, Karanlik S, Arslan M (2015) Response of bread-wheat seedlings to waterlogging stress. Turk J Agric For 39:807–816

    Article  CAS  Google Scholar 

  • Tiwari V, Mamrutha H, Sareen S, Sheoran S, Tiwari R, Sharma P, Singh C, Singh G, Rane J (2017) Managing abiotic stresses in wheat. In: Abiotic stress management for resilient agriculture. Springer, Singapore, pp 313–337

    Chapter  Google Scholar 

  • Turner NC (2004) Sustainable production of crops and pastures under drought in a Mediterranean environment. Ann Appl Biol 144:139–147

    Article  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uga Y, Okuno K, Yano M (2011) Dro1, a major QTL involved in deep rooting of rice under upland field conditions. J Exp Bot 62:2485–2494

    Article  CAS  PubMed  Google Scholar 

  • Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol 17:113–122

    Article  CAS  PubMed  Google Scholar 

  • Vashisht D, Hesselink A, Pierik R, Ammerlaan J, Bailey-Serres J, Visser E, Pedersen O, Van Zanten M, Vreugdenhil D, Jamar D (2011) Natural variation of submergence tolerance among Arabidopsis thaliana accessions. New Phytol 190:299–310

    Article  CAS  PubMed  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van der Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Weber JL (1990) Informativeness of human (dC-dA) n·(dG-dT) n polymorphisms. Genomics 7:524–530

    Article  CAS  PubMed  Google Scholar 

  • Wei T-M, Chang X-P, Min D-H, Jing R-L (2010) Analysis of genetic diversity and trapping elite alleles for plant height in drought-tolerant wheat cultivars. Acta Agron Sin 36:895–904

    CAS  Google Scholar 

  • Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolff K, Schoen E, Peters-Van Rijn J (1993) Optimizing the generation of random amplified polymorphic DNAs in chrysanthemum. Theor Appl Genet 86:1033–1037

    Article  CAS  PubMed  Google Scholar 

  • Wu K, Jones R, Danneberger L, Scolnik PA (1994) Detection of microsatellite polymorphisms without cloning. Nucleic Acids Res 22:3257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y (2010) Plant genetic resources: management, evaluation and enhancement. Molecular plant breeding, pp 151–194

    Google Scholar 

  • Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705–708

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Li Y, Sun J, Du L, Zhang Y, Yu Q, Liu X (2013) Comparative physiological and proteomic response to abrupt low temperature stress between two winter wheat cultivars differing in low temperature tolerance. Plant Biol 15:292–303

    Article  CAS  PubMed  Google Scholar 

  • Yamori W, Hikosaka K, Way DA (2014) Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynth Res 119:101–117

    Article  CAS  PubMed  Google Scholar 

  • Yildiz M, Cuevas HE, Sensoy S, Erdinc C, Baloch FS (2015) Transferability of Cucurbita SSR markers for genetic diversity assessment of Turkish bottle gourd (Lagenaria siceraria) genetic resources. Biochem Syst Ecol 59:45–53

    Article  CAS  Google Scholar 

  • Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11:1–16

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Mao X, Jing R, Chang X, Xie H (2010) Characterization of a common wheat (Triticum aestivum L.) TaSnRK2.7 gene involved in abiotic stress responses. J Exp Bot 62:975–988

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang X, Jiang D, Zheng C, Dai T, Cao W (2011) Post-anthesis salt and combination of salt and waterlogging affect distributions of sugars, amino acids, Na+ and K+ in wheat. J Agron Crop Sci 197:31–39

    Article  CAS  Google Scholar 

  • Zhu J-K (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raza, A. et al. (2019). Applications of Molecular Markers to Develop Resistance Against Abiotic Stresses in Wheat. In: Hasanuzzaman, M., Nahar, K., Hossain, M. (eds) Wheat Production in Changing Environments. Springer, Singapore. https://doi.org/10.1007/978-981-13-6883-7_15

Download citation

Publish with us

Policies and ethics