HTS Filter Based on Meta-material Resonator

  • Haiwen LiuEmail author
  • Baoping Ren
  • Xuehui Guan
  • Pin Wen
  • Tao Zuo


Composite right/left-handed transmission line (CRLH-TL) resonator [1] and Split ring resonators (SRRs) [2] are suitable element for meta-material structures, which have received great attentions and obtained significant progress in artificial materials and structures. Because of their unique electromagnetic properties with the simplicity in fabrication, negative refraction, and invisibility cloak, CRLH-TL resonator and SRR have great potential in applications, such as microwave filter, perfect absorber, and polarizer.


  1. 1.
    C.C. Tatsuo Itoh, Electromagnetic metamaterials, transmission line theory and microwave applications (Wiley, 2005)Google Scholar
  2. 2.
    R.A. Shelby, D.R. Smith, S. Schultz, D.R. Smith, S. Shultz, Experimental verification of a negative index of refraction. Science 292(5514), 77–79 (2001)CrossRefGoogle Scholar
  3. 3.
    N. Michishita, H. Kitahara, Y. Yamada, K. Cho, Tunable phase shifter using composite right/left-handed transmission line with mechanically variable MIM capacitors. IEEE Antennas Wirel. Propag. Lett. 10, 1579–1581 (2011)CrossRefGoogle Scholar
  4. 4.
    A. Lai, C. Caloz, T. Itoh, Composite right/left-handed transmission line metamaterials. IEEE Microw. Mag. 5(3), 34–50 (2004)CrossRefGoogle Scholar
  5. 5.
    A.L. Borja, A. Belenguer, J. Cascon, H. Esteban, V. Boria, Wideband passband transmission line based on metamaterial-inspired CPW balanced cells. IEEE Antennas Wirel. Propag. Lett. 10, 1421–1424 (2011)CrossRefGoogle Scholar
  6. 6.
    V. Sanz et al., Balanced right/left-handed coplanar waveguide with stub-loaded split-ring resonators. IEEE Antennas Wirel. Propag. Lett. 3, 193–196 (2013)Google Scholar
  7. 7.
    M.C. Ricci, S.M. Anlage, Single superconducting split-ring resonator electrodynamics. Appl. Phys. Lett. 88, 264102 (2006)CrossRefGoogle Scholar
  8. 8.
    S. Savel’ev, A.L. Rakhmanov, F. Nori, Using Josephson vortex lattices to control terahertz radiation: tunable transparency and terahertz photonic crystals. Phys. Rev. Lett. 94, 157004, May 2005Google Scholar
  9. 9.
    S. Savel’ev, A.L. Rakhmanov, V.A. Yampol’skii, F. Nori, Analogues of nonlinear optics using terahertz Josephson plasma waves in layered superconductors. Nat. Phys. 2, 521–525, Aug 2006Google Scholar
  10. 10.
    V.A. Yampol’skii, S. Savel’ev, A.L. Rakhmanov, F. Nori, Nonlinear electrodynamics in layered superconductors. Phys. Rev. B. 78, 024511, July 2008Google Scholar
  11. 11.
    N.I. Zheludev, The road ahead for metamaterials. Science 328, 582–583 (2010)CrossRefGoogle Scholar
  12. 12.
    P. Tassin, T. Koschny, M. Kafesaki, C.M. Soukoulis, A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics. Nature Photon. 6, 259–264, Mar 2012Google Scholar
  13. 13.
    M. Lapine et al., Structural tunability in metamaterials. Appl. Phys. Lett. 95, 084105 (2009)CrossRefGoogle Scholar
  14. 14.
    D.A. Powell, M. Lapine, M. Gorkunov, I.V. Shadrivov, Y.S. Kivshar, Metamaterial tuning by manipulation of near-field interaction. Phys. Rev. B. 82, 155128, Dec 2010Google Scholar
  15. 15.
    S.C. Lin, New microstrip cascaded-quadruplet bandpass filter based on connected couplings and short-ended parallel-coupled line. IEEE Microw. Wireless Compon. Lett. 24(1), 2–4 (2014)CrossRefGoogle Scholar
  16. 16.
    A. Grbic, G.V. Elefthetiades, Experimental verification of backwardwave radiation from a negative refractive index metamaterial. J. Appl. Phys. 92(10), 5930–5935 (2002)CrossRefGoogle Scholar
  17. 17.
    J. McDonald, J.R. Clem, D.E. Oates, Critical-state model for harmonic generation in a superconducting microwave resonator. Phys. Rev. B Condens. Matter 55(17), 11823–11831, May 1997Google Scholar
  18. 18.
    T. Kaiser, B.A. Aminov, A. Baumfalk, A. Cassinese, H.J. Chaloupka, M.A. Hein, S. Kolesov, H. Medelius, G. Muller, M. Perpeet, H. Piel, E. Wikborg, Nonlinear power handling of YBa2Cu3O7-x films and microwave devise. J. Superconduct. 12(2), 343–351 (1999)CrossRefGoogle Scholar
  19. 19.
    M.A. Eberspächer, T.F. Eibert, Analysis of composite right/lefthanded unit cells based on even–odd-mode excitation. IEEE Trans. Microw. Theory Technol. 60(5), 1186–1196 (2012)CrossRefGoogle Scholar
  20. 20.
    D.M. Pozar, Microwave Engineering (Wiley Inter science, Hoboken, NJ, USA, 2005)Google Scholar
  21. 21.
    Riana H. Geschke, Branka Jokanovic, Petrie Meyer, Filter parameter extraction for triple-band composite split-ring resonators and filters. IEEE Trans. Microw. Theory. Technol. 59(6), 1500–1508 (2011)CrossRefGoogle Scholar
  22. 22.
    J. Guo, L. Sun, S.Y. Zhou, Y.B. Bian, J. Wang, B. Cui, C.G. Li, X.Q. Zhang, H. Li, Q. Zhang, X. Wang, C.Z. Gu, Y.S. He, A 12-pole K-band wideband high-temperature superconducting microstrip filter. IEEE Trans. Appl. Supercond. 22, 1500106 (2012)CrossRefGoogle Scholar
  23. 23.
    G.L. Larkins, R. Socorregut, Y.A. Vlasov, Superconducting microstrip hairpin filter with BaTiO3 patches. IEEE Trans. Appl. Supercond. 13, 724–726 (2003)CrossRefGoogle Scholar
  24. 24.
    Y.-S. Lin, Y. Qian, F. Ma, Z. Liu, P. Kropelnicki, C. Lee, Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators. Appl. Phys. Lett. 102, 111908 (2013)CrossRefGoogle Scholar
  25. 25.
    M.-H. Li, S.-Y. Liu, L.-Y. Guo, H. Lin, H.-L. Yang, B.-X. Xiao, Influence of the dielectric-spacer thickness on the dual-band metamaterial absorber. Opt. Commun. 295, 262–267, May 2013Google Scholar
  26. 26.
    X. Ma, C. Huang, M. Pu et al., Dual-band asymmetry chiral metamaterial based on planar spiral structure. Appl. Phys. Lett. 101(16), 161901 (2012)CrossRefGoogle Scholar
  27. 27.
    J.S. Hong, M.J. Lancaster, Microwave Filter for RF/Microwave Application (Wiley, New York, NY, USA, 2001)CrossRefGoogle Scholar
  28. 28.
    M.C. Ricci, S.M. Anlage, Single superconducting split-ring resonator electrodynamics. Appl. Phys. Lett. 88(26), 264102 (2006)CrossRefGoogle Scholar
  29. 29.
    S.-X. Li, J.B. Kycia, Applying a direct current bias to superconducting microwave resonators by using superconducting quarter wavelength band stop filters. Appl. Phys. Lett. 102(24), 242601 (2013)CrossRefGoogle Scholar
  30. 30.
    H.W. Liu et al., Dual-band superconducting bandpass filter using embedded split ring resonator. IEEE Trans. Appl. Supercond. 23(3), 1300304 (2013)CrossRefGoogle Scholar
  31. 31.
    N. Sekiya, S. Sugiyama, Design of miniaturized HTS dual-band bandpass filters using stub-loaded meander line resonators and their applications to tri-band bandpass filters. IEEE Trans. Appl. Supercond. 25(3), App. 1500805, June 2015Google Scholar

Copyright information

© Science Press, Beijing and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Haiwen Liu
    • 1
    Email author
  • Baoping Ren
    • 2
  • Xuehui Guan
    • 3
  • Pin Wen
    • 4
  • Tao Zuo
    • 5
  1. 1.Xi’an Jiaotong UniversityXi’anChina
  2. 2.East China Jiaotong UniversityNanchangChina
  3. 3.East China Jiaotong UniversityNanchangChina
  4. 4.East China Jiaotong UniversityNanchangChina
  5. 5.China Electronics Technology Group CorporationHefeiChina

Personalised recommendations