Skip to main content

Elastomer Transducers

  • Chapter
  • First Online:
Soft Actuators
  • 1363 Accesses

Abstract

Dielectric elastomers, transducers that couple the deformation of a rubbery polymer film to an applied electric field, show particular promise with features such as simple fabrication in a variety of size scales, high strain and energy density, high efficiency and fast speed of response, and inherent flexibility, environmental tolerance, and ruggedness. A variety of actuator configurations has been demonstrated at various size scales including rolled “artificial muscle” actuators, framed and bending beam actuators for efficient opto-mechanical switches, and diaphragm and thickness-mode actuators for new types of motors, pumps, and valves. The performance benefits of dielectric elastomers can allow for new generations of devices in microrobotics, communications, biotechnology, aeronautics, and aerospace.

Dielectric elastomer has also been shown to operate in reverse as a generator. It has several characteristics, making it potentially well suited for power takeoff systems using wave, water current, wind, human motion, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pelrine R, Chiba S (1992) Review of artificial muscle approaches. In: Proceedings of third international symposium on micromachine and human science, Nagoya, Japan

    Google Scholar 

  2. Chiba S, Stanford S, Pelrine R, Kornbluh R, Prahlad H (2006) Electroactive polymer artificial muscle. JRSJ 24(4):38–42

    Article  Google Scholar 

  3. Chiba S et al (2016) Elastomer transducers. In: Advances in science and technology, Trans Tech Publication, Switzerland, vol 97, pp 61–74. ISSN: 1662–0356, https://doi.org/10.4028/wwwscienctific.net/AST.97.61

  4. Waki M, Chiba S (2014) Soft actuators, Chapter 33 Elastomer Transducers. Springer

    Google Scholar 

  5. Pelrine R, Kornbluh R, Chiba S et al (1999) High-field deformation of elastomeric dielectrics for actuators. In: Proceedings of 6th SPIE symposium on smart structure and materials, vol 3669, pp 149–161

    Google Scholar 

  6. Chiba S, Waki M, Kormbluh R, Pelrine R (2008) Innovative power generators for energy harvesting using electroactive polymer artificial muscles. In: Electroactive Polymer Actuators and Devices (EAPAD) 2008, ed. Y. Bar-Cohen, Proceedings of SPIE. vol 6927, 692715 (1–9)

    Google Scholar 

  7. Chiba S, Waki M (2011) Extending application of dielectric elastomer artificial muscles to wireless communication systems. In: Recent advances in wireless communications and networks, Chapter 20, pp 435–454, InTech

    Google Scholar 

  8. Chiba S, Waki M (2010) Application development of artificial muscle actuator. Electron Mater 49(7):34–41

    Google Scholar 

  9. Kornbluh R, Bashkin J, Pelrine R, Prahlad H, Chiba S (2004) Medical applications of new electroactive polymer artificial muscles. Seikei-Kakou 16(10):631–637

    CAS  Google Scholar 

  10. Chiba S, Waki M, Wada T (2012) Evolving dielectric elastomer artificial muscles. Petrotech 35(7)

    Google Scholar 

  11. Sugimoto T, Ono K, Ando A, Chiba S, Wak M (2010) Sound generator structure for low-elastic electroactive polymer. Acoust Sci Tech 31(6):411–413, Acoustical Society of Japan

    Article  Google Scholar 

  12. Chiba S et al (2007) Extending applications of dielectric elastomer artificial muscle”. Proceedings of SPIE, San Diego, March 18–22, 2007

    Google Scholar 

  13. Chiba S, Waki M (2009) Artificial muscle power generation utilizing movement of waves, water flow, and human beings. Petrotech 32(12)

    Google Scholar 

  14. Pelrine R, Kornbluh R, Prahlad H, Heydt R, Bashkin J, Chiba S (2006) Micro and nano fluidic devices using electroactive polymer artificial muscle. In: Proceedings of the 10th International conference on miniaturized system for chemistry and life science, pp 278–280, November 5–9, Tokyo, Japan

    Google Scholar 

  15. Kornbluh R, Pelrine R, Chiba S (2004) Silicon to silicon: stretching the capabilities of micromachines with electroactive polymers. IEEJ Trans SM 124(8):266–271

    Article  Google Scholar 

  16. Fijita K, Chiba S, Waki M (2017) Conceptual examination of dielectric elastomer for flight control surface actuation. In: Proceedings of annual conference, Japan Society of Mechanical Engineers

    Google Scholar 

  17. Kornbluh R, Pelrine R, Chiba S (2004) Artificial muscle for small robots and other micromechanical devices. Trans IEE Japan 122-E(2):97–102

    Google Scholar 

  18. Nagai H, Oyama A (2016) Development of Japanese Mars Airplane. In: 67th International Astronautical Congress, IAC-16-3.3A.5x35104, Guadalajara, Mexico, September 2016

    Google Scholar 

  19. Chiba S, Kornbluh R, Pelrine R, Waki M (2008) Low-cost hydrogen production from electroactive polymer artificial muscle wave power generators. In: Proceedings of World Hydrogen Energy Conference 2008, Brisbane, Australia, June 16–20, 2008

    Google Scholar 

  20. Chiba S, Waki M (2011) Power generation by micro/small vibration using dielectric elastomer. Funct Mater 31(4):56–63

    CAS  Google Scholar 

  21. Chiba S, Pelrine R, Kornbluh R, Prahlad H, Stanford S, Eckerle J (2007) New opportunities in electric power generation using electroactive polymers (EPAM). J Jpn Inst Energy 86(9):743–737

    Article  CAS  Google Scholar 

  22. Moretti G, Forehand D, Vertechy R, Fontana M, Ingram D (2014) Modeling of an oscillating wave surge converter with dielectric elastomer power take-off. In: Proceedings of the international conference on offshore mechanics and arctic engineering—OMAE, 9A

    Google Scholar 

  23. Vertechy R, Fontana M, Rosati Papini GP, Forehand D (2014) In-tank tests of a dielectric elastomer generator for wave energy harvesting. In: Proceedings of SPIE—the international society for optical engineering, 9056

    Google Scholar 

  24. Chiba S et al (2017) Simple and robust direct drive water power generation system using dielectric elastomers. J Mater Sci Eng B7(1–2):39–47. https://doi.org/10.17265/2161-6213/2017.1-2.005

    Article  CAS  Google Scholar 

  25. Chiba S, Waki M, Masuda K, Ikoma T, Osawa H (2011) Innovative wave power generation using dielectric elastomer artificial muscles. In: Proceedings of WHTC. 2011, September, Glasgow, UK

    Google Scholar 

  26. Chiba S, Waki M, Kornbluh R, Pelrine R (2009) Innovative wave power generation system using EPAM. In: Proceedings of Oceans’ 09, Bremen, Germany, May 11–15, 2009

    Google Scholar 

  27. Chiba S, Waki M, Wada T (2015) Simple solar heat generator using dielectric elastomers. Extended Abstract of MRS-J, A-4, Yokohama, Japan

    Google Scholar 

  28. Chiba S et al (2017) Recent progress on soft transducers for sensor networks. In: Proceedings of Eco Design 2017 International Symposium, November 2017. Taiwan, To be published in Springer, Aug. 2018

    Google Scholar 

  29. Chiba S, Waki M (2011) Recent progress in dielectric elastomers (Harvesting energy mode and high efficient actuation mode), Clean Tech, Nihon Kogyo Shuppan, Tokyo, April, 2011

    Google Scholar 

  30. Chiba S et al (2017) Innovative elastomer transducer driven by Karman vortices in water flow. J Mater Sci Eng A7(5–6):121–135. https://doi.org/10.17265/2161-6213/2017.5.6.002

    Article  Google Scholar 

  31. Chiba S et al (2017) An experimental study on the motion of floating bodies arranged in series for wave power generation. J Mater Sci Eng A7(11–12):281–289. https://doi.org/10.17265/2161-6213/2017.11-12.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikio Waki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Waki, M., Chiba, S. (2019). Elastomer Transducers. In: Asaka, K., Okuzaki, H. (eds) Soft Actuators. Springer, Singapore. https://doi.org/10.1007/978-981-13-6850-9_36

Download citation

Publish with us

Policies and ethics