Skip to main content

Modeling of Dielectric Elastomer Actuator

  • Chapter
  • First Online:
Soft Actuators
  • 1467 Accesses

Abstract

Dielectric elastomer deforms in terms of area expansion under a voltage. The large and quick strain in dielectric elastomer features promising applications in soft robotics. This chapter introduces the characteristics of dielectric elastomer in physics as well as the performance of dielectric elastomer actuator (DEA). Mechanism of actuation is explained, and a free energy model of DEA is established for characterization. A specific nonlinear mechanical behavior, “strain-stiffening,” is highlighted and is then incorporated in the harnessing of snap-through instability. By harnessing the instability, DEA is capable of new performance in actuation which further broadens its applications in functional surface and muscle-like actuator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosset S, Araromi OA, Schlatter S, Shea HR (2016) Fabrication process of silicone-based dielectric elastomer actuators. J Vis Exp (108):e53423. https://doi.org/10.3791/53423

  2. Hsien Low S, Lynn Shiau L, Lau GK (2012) Large actuation and high dielectric strength in metallized dielectric elastomer actuators. Appl Phys Lett 100(18):053304–051942

    Article  Google Scholar 

  3. Maffli L, Rosset S, Ghilardi M, Carpi F, Shea H (2015) Ultrafast all-polymer electrically tunable silicone lenses. Adv Funct Mater 25(11):1656–1665

    Article  CAS  Google Scholar 

  4. Li T, Li G, Liang Y, Cheng T, Dai J, Yang X et al (2017) Fast-moving soft electronic fish. Sci Adv 3(4):e1602045

    Article  Google Scholar 

  5. Rosenthal M, Stanford S, Prahlad H, Pelrine R, Pei Q (2004) Multiple-degrees-of-freedom electroelastomer roll actuators. Smart Mater Struct 13(5):N86

    Article  Google Scholar 

  6. Pelrine R, Kornbluh R, Pei Q, Joseph J (2000) High-speed electrically actuated elastomers with strain greater than 100%. Science 287(5454):836

    Article  CAS  Google Scholar 

  7. Dorfmann L, Ogden RW (2014) Instabilities of an electroelastic plate. Int J Eng Sci 77(2):79–101

    Article  Google Scholar 

  8. Li W, Landis CM (2012) Deformation and instabilities in dielectric elastomer composites. Smart Mater Struct 21(9):299–312

    Article  Google Scholar 

  9. Liu Y, Liu L, Zhang Z, Jiao Y, Sun S, Leng J (2010) Analysis and manufacture of an energy harvester based on a mooney-rivlin–type dielectric elastomer. Eplasty 90(3):1303–1324

    Google Scholar 

  10. Suo Z, Zhao X, Hong W, Zhou J, Greene WH (2008) A theory of large deformation in soft active materials. In: Electroactive polymer actuators and devices, vol 6927. Electroactive polymer actuators and devices (EAPAD) 2008

    Google Scholar 

  11. Boyce MC (1996) Direct comparison of the gent and the arruda-boyce constitutive models of rubber elasticity. Rubber Chem Technol 69(5):781–785

    Article  CAS  Google Scholar 

  12. Sommerlarsen P, Kornbluh RD, Heydt R, Kofod G, Pei Q (2001) Applications of dielectric elastomer actuators. In: Proceedings of SPIE – the international society for optical engineering, 4329, pp 335–349

    Google Scholar 

  13. Li B, Chen H, Qiang J, Hu S, Zhu Z, Wang Y (2011) Effect of mechanical pre-stretch on the stabilization of dielectric elastomer actuation. J Phys D Appl Phys 44(15):155301

    Article  Google Scholar 

  14. Ha SM, Yuan W, Pei Q, Pelrine R, Stanford S (2010) Interpenetrating polymer networks for high-performance electroelastomer artificial muscles. Adv Mater 18(7):887–891

    Article  Google Scholar 

  15. Shankar R, Ghosh TK, Spontak RJ (2010) Electromechanical response of nanostructured polymer systems with no mechanical pre-strain. Macromol Rapid Commun 28(10):1142–1147

    Article  Google Scholar 

  16. Li B, Zhou J, Chen H (2011) Electromechanical stability in charge-controlled dielectric elastomer actuation. Appl Phys Lett 99(24):77

    Google Scholar 

  17. Yang S, Zhao X, Sharma P (2017) Avoiding the pull-in instability of a dielectric elastomer film and the potential for increased actuation and energy harvesting. Soft Matter 13:4552–4558

    Article  CAS  Google Scholar 

  18. Liu X, Jia S, Chen H, Li B, Xing Y (2015) Experimental study on electromechanical failure of dielectric elastomer actuator. In: ASME 2015 international mechanical engineering congress and exposition. American Society of Mechanical Engineers, pp V009T12A079

    Google Scholar 

  19. Liu L, Liu Y, Luo X, Li B, Leng J (2012) Electromechanical instability and snap-through instability of dielectric elastomers undergoing polarization saturation. Mech Mater 55(14):60–72

    Article  Google Scholar 

  20. Li B, Liu L, Suo Z (2011) Extension limit, polarization saturation, and snap-through instability of dielectric elastomers. Int J Smart Nano Mater 2(2):59–67

    Article  CAS  Google Scholar 

  21. Li B, Chen H, Zhou J (2013) Modeling of the muscle-like actuation in soft dielectrics: deformation mode and electromechanical stability. Appl Phys A 110(1):59–63

    Article  CAS  Google Scholar 

  22. Keplinger C, Li T, Baumgartner R, Suo Z, Bauer S (2011) Harnessing snap-through instability in soft dielectrics to achieve giant voltage-triggered deformation. Soft Matter 8(2):285–288

    Article  Google Scholar 

  23. An L, Wang F, Cheng S, Lu T, Wang TJ (2015) Experimental investigation of the electromechanical phase transition in a dielectric elastomer tube. Smart Mater Struct 24(3):035006

    Article  Google Scholar 

  24. Wang Q, Zhang L, Zhao X (2011) Creasing to cratering instability in polymers under ultrahigh electric fields. Phys Rev Lett 106(11):118301

    Article  Google Scholar 

  25. Wang Q, Tahir M, Zang J, Zhao X (2012) Dynamic electrostatic lithography: multiscale on-demand patterning on large-area curved surfaces. Adv Mater 24(15):1946–1946

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial support from the National Natural Science Foundation of China (NO. 91748124, 91648110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, B., Chen, H., Chen, G. (2019). Modeling of Dielectric Elastomer Actuator. In: Asaka, K., Okuzaki, H. (eds) Soft Actuators. Springer, Singapore. https://doi.org/10.1007/978-981-13-6850-9_30

Download citation

Publish with us

Policies and ethics