Treated Sewage Effluents as a Source of Microbiological Contamination on Receiving Watersheds

  • Shashikant Yadav
  • Suhana Rao


The treatment of wastewater treatment is imperative for maintaining community health. Without efficient and sustainable treatments, the spread of waterborne contaminants and pathogens will increase resulting in the transmission of water-borne diseases as well as the degradation of receiving water bodies. Pollutants in wastewater can be divided into two main areas: biological such as microorganisms and chemical such as nutrients, heavy metals, detergents, pesticides and hydrocarbons. The majority of disease-causing waterborne microorganisms originate from animal and human faecal wastes which contain a variety of viruses, bacteria, and protozoa. These microorganisms may inevitably be washed into surrounding surface water sources into which the treated effluent is discharged. This paper aims at reviewing the different sources of wastewater together with common microbial contaminants found within improperly treated effluents. In addition, the impact of improperly treated wastewater together with the use of current guidelines is discussed.


Effluent treatment Microbial contaminants Wastewater 


  1. 1.
    WHO/UNICEF, 25 YEARS Progress on Sanitation and Drinking Water: 2015 Update and MDG assessment, New York, NY UNICEF World Heal. Organ. (2015) 4. ISBN 978 92 4 150914 5Google Scholar
  2. 2.
    Mara D Domestic wastewater treatment in developping countries, 2004.
  3. 3.
    DWAF: Department of Water Affairs, 2011 Green Drop Report, (2011) 1–450.
  4. 4.
    Naidoo S, Olaniran AO (2013) Treated wastewater effluent as a source of microbial pollution of surface water resources. Int J Environ Res Public Health 11:249–270. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Government Gazette, Requirements for the purification of wastewater or effluent. Gazette No 9225, Regulation No 991, 18 May, (1984) 1–6Google Scholar
  6. 6.
    I. Environmental Protection Agency, Wastewater Treatment Manuals, Management. (1997) 13Google Scholar
  7. 7.
    Gorchev HG, Ozolins G (2011a) Guidelines for drinking-water quality. Who 1:564. CrossRefGoogle Scholar
  8. 8.
    CPCB Assessment of utilisation of industrial solid wastes in cement manufacturing, Central Pollution Control Board, Ministry of Environment & Forests, Govt. of India, 2006. PROBES/103/2006-2007Google Scholar
  9. 9.
    Ashbolt NJ (2004) Microbial contamination of drinking water and disease outcomes in developing regions. Toxicology 198:229–238. CrossRefPubMedGoogle Scholar
  10. 10.
    World Health Organization (2003) Guidelines for safe recreational water, vol 1. Coastal and Fresh Waters, Geneva. 1:219.
  11. 11.
    Gustafson D University curriculum development for decentralized wastewater treatment septage – Biosolids CIDWT / University Disclaimer, (2004)Google Scholar
  12. 12.
    Gorchev HG, Ozolins G (2011b) WHO guidelines for drinking-water quality. WHO Chron 38:104–108. CrossRefGoogle Scholar
  13. 13.
    Barrell RA, Hunter PR, Nichols G (2000) Microbiological standards for water and their relationship to health risk. Commun Dis Public Health 3:8–13. CrossRefPubMedGoogle Scholar
  14. 14.
    Cabral JPS (2010) Water microbiology. Bacterial pathogens and water. Int J Environ Res Public Health 7:3657–3703. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Gordon B, Callan P, Vickers C (2008) WHO guidelines for drinking-water quality. WHO Chron 38:564. CrossRefGoogle Scholar
  16. 16.
    NHMRC and NRMMC 2011 Australian drinking water guidelines Paper 6 National Water Quality Management Strategy. ISBN Online:1864965118Google Scholar
  17. 17.
    Panicker G, Call DR, Krug MJ, Bej K, Bej AK (2004) Detection of pathogenic Vibrio spp . in Shellfish by using multiplex PCR and DNA microarrays. Appl Environ Microbiol 70:7436–7444. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sack M, Hopper JW, Lamprecht F (2004) Low respiratory sinus arrhythmia and prolonged psychophysiological arousal in posttraumatic stress disorder: heart rate dynamics and individual differences in arousal regulation. Biol Psychiatry 55:284–290. CrossRefPubMedGoogle Scholar
  19. 19.
    Greenberg DS, Sunada Y, Campbell KP, Yaffe D, Nudel U © 1994 Nature Publishing Group Nature 8: 340–344. CrossRefGoogle Scholar
  20. 20.
    Lozano-León A, Torres J, Osorio CR, Martínez-Urtaza J (2003) Identification of tdh-positive Vibrio parahaemolyticus from an outbreak associated with raw oyster consumption in Spain. FEMS Microbiol Lett 226:281–284. CrossRefPubMedGoogle Scholar
  21. 21.
    Pan XR, Li GW, Hu YH, Wang JX, Yang WY, An ZX, Hu ZX, Lin J, Xiao JZ, Cao HB, Liu PA, Jiang XG, Jiang YY, Wang JP, Zheng H, Zhang H, Bennett PH, Howard BV (1997) Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance: the Da Qing IGT and diabetes study. Diabetes Care 20:537–544. CrossRefPubMedGoogle Scholar
  22. 22.
    Grabow WOK (2001) Bacteriophages: update on application as models for viruses in water. Water SA 27:251–268. CrossRefGoogle Scholar
  23. 23.
    Leclerc H, Mossel DAA, Edberg SC, Struijk CB (2001) Advances in the bacteriology of the Coliform Group: their suitability as markers of microbial water safety. Annu Rev Microbiol 55:201–234. CrossRefPubMedGoogle Scholar
  24. 24.
    Peter Feng KJ, Weagant SD (ret.) (2015) Diarrheagenic Escherichia coli. Bacteriol Anal Manage 11:142–201Google Scholar
  25. 25.
    Pierpaoli M, Ruello ML, Fava G (2017) Enhanced adsorption of organic compounds over an activated carbon cloth by an external-applied electric field. Environments 4:33. CrossRefGoogle Scholar
  26. 26.
    Soon JM, Seaman P, Baines RN (2013) Escherichia coli O104: H4 outbreak from sprouted seeds. Int J Hyg Environ Health 216:346–354. CrossRefPubMedGoogle Scholar
  27. 27.
    Okoh AI, Sibanda T, Gusha SS (2010) Inadequately treated wastewater as a source of human enteric viruses in the environment. Int J Environ Res Public Health 7:2620–2637. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Davison AJ, Benko M, Harrach B (2003) Genetic content and evolution of adenoviruses. The J Gen Virol 84:2895–2908. CrossRefPubMedGoogle Scholar
  29. 29.
    Jiang Y, Costello P, Fang F, Huang M, He S (2006) A gender- and sexual orientation-dependent spatial attentional effect of invisible images. Proc Natl Acad Sci U S A 103:17048–17052. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Van Heerden A, Van Wyk PWJ, Botes PJ, Pohl CH, Strauss CJ, Nigam S, Kock JLF (2007) The release of elongated, sheathed ascospores from bottle-shaped asci in Dipodascus geniculatus. FEMS Yeast Res 7:173–179. CrossRefPubMedGoogle Scholar
  31. 31.
    Kocwa-Haluch R, Zalewska B (2002) Presence of rotavirus hominis in sewage and water. Pol J Environ Stud 11:751–755Google Scholar
  32. 32.
    Hashizume M, Faruque ASG, Terao T, Yunus M, Streatfield K, Yamamoto T, Moji K (2011) The indian ocean dipole and cholera incidence in Bangladesh: a time-series analysis. Environ Health Perspect 119:239–244. CrossRefPubMedGoogle Scholar
  33. 33.
    Safe Drinking Water Committee (1977) National Research Council, Drinking Water and Health, vol 1Google Scholar
  34. 34.
    Wakelin SA, Colloff MJ, Kookana RS (2008) Effect of wastewater treatment plant effluent on microbial function and community structure in the sediment of a freshwater stream with variable seasonal flow. Appl Environ Microbiol 74:2659–2668. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Akpor OB, Muchie M (2011) J Environ Sci Technol 4:480–489. CrossRefGoogle Scholar
  36. 36.
    Durgapersad K (n.d.) Effects of Wetlands on water quality and invertebrate biodiversity in the Klip River and Natalspruit in Gauteng, South AfricaGoogle Scholar
  37. 37.
    DWAF (1996) South African water quality guidelines, vol 1, Domestic useGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Shashikant Yadav
    • 1
  • Suhana Rao
    • 2
  1. 1.Dr. B.R. Ambedkar National Institute of Technology JalandharJalandharIndia
  2. 2.Kurukshetra UniversityKurukshetraIndia

Personalised recommendations