Skip to main content

Robust Feature Selection Method of Radiomics for Grading Glioma

  • Conference paper
  • First Online:
Proceedings of the 2nd International Conference on Healthcare Science and Engineering (ICHSE 2018)

Abstract

The accuracy of glioma segmentation is significantly affected by the radiomics-based prediction model for grading glioma. This study proposed a robust feature selection method that can select stable and insensitive features to the segmentation of the region of interest (ROI). The method consists of three main steps. First, stable features are selected from 360 radiomics features based on the Pearson correlation coefficient. Then, an unsupervised K-means algorithm is introduced to remove redundant features from those selected in the first step and obtain sets of K group candidate features. Finally, by using these K group feature sets to train four prediction models, the final feature set and final prediction models that have the best prediction performance are selected. Experiments were conducted on 156 glioma samples from Henan Provincial People’s Hospital between 2012 and 2016, and 11 robust features were selected. The results demonstrated excellent accuracy, sensitivity, specificity, and AUC (0.88, 0.94, 0.88, and 0.85, respectively). Compare with the performance without feature selection, a 5% increase in accuracy, sensitivity, and AUC and 13% increase in specificity were observed. The proposed feature selection method can reduce the training time by 94.04%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.A. Dolecek, J.M. Propp, N.E. Stroup, C. Kruchko, CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro-Oncology 14(5) (2014)

    Article  Google Scholar 

  2. K. Lenting, R. Verhaak, M.T. Laan, P. Wesseling, W. Leenders, Glioma: experimental models and reality. Acta Neuropathol. 133, 263–282 (2017)

    Article  Google Scholar 

  3. N.A.O. Bush, S.M. Chang, M.S. Berger, Current and future strategies for treatment of glioma. Neurosurg. Rev. 40, 1–14 (2017)

    Article  Google Scholar 

  4. P.Y. Wen, S. Kesari, Malignant gliomas in adults. N. Engl. J. Med. 359, 492–507 (2008)

    Article  Google Scholar 

  5. R.J. Gillies, P.E. Kinahan, H. Hricak, Radiomics: images are more than pictures, they are data. Radiology 278, 563–577 (2016)

    Article  Google Scholar 

  6. C.H. Chung, S. Levy, P. Chaurand, D.P. Carbone, Genomics and proteomics: emerging technologies in clinical cancer research. Crit. Rev. Oncol. Hematol. 61, 1–25 (2007)

    Article  Google Scholar 

  7. V. Kumar, Y.H. Gu, S. Basu, A. Berglund, S.A. Eschrich, M.B. Schabath et al., Radiomics: the process and the challenges. Magn. Reson. Imaging 30, 1234–1248 (2012)

    Article  Google Scholar 

  8. P. Lambin, E. Rios-Velazquez, R. Leijenaar, S. Carvalho, R.G.P.M. van Stiphout, P. Granton et al., Radiomics: extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 48, 441–446 (2012)

    Article  Google Scholar 

  9. K. Skogen, A. Schulz, J.B. Dormagen, B. Ganeshan, E. Helseth, A. Server, Diagnostic performance of texture analysis on MRI in grading cerebral gliomas. Eur. J. Radiol. 85, 824–829 (2016)

    Article  Google Scholar 

  10. M. Nicolasjilwan, Y. Hu, C.H. Yan, D. Meerzaman, C.A. Holder, D. Gutman et al., Addition of MR imaging features and genetic biomarkers strengthens glioblastoma survival prediction in TCGA patients. J. Neuroradiol. 42, 212–221 (2015)

    Article  Google Scholar 

  11. M. Vaidya, K.M. Creach, J. Frye, F. Dehdashti, J.D. Bradley, I. El Naqa, Combined PET/CT image characteristics for radiotherapy tumor response in lung cancer. Radiother. Oncol. 102, 239–245 (2012)

    Article  Google Scholar 

  12. B. Ganeshan, E. Panayiotou, K. Burnand, S. Dizdarevic, K. Miles, Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival. Eur. Radiol. 22, 796–802 (2012)

    Article  Google Scholar 

  13. C.L. Schlett, T. Hendel, S. Weckbach, M. Reiser, H.U. Kauczor, K. Nikolaou et al., Population-based imaging and radiomics: rationale and perspective of the German National Cohort MRI Study. Rofo-Fortschr. Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren 188, 652–661 (2016)

    Article  Google Scholar 

  14. H.J.W.L. Aerts, E.R. Velazquez, R.T.H. Leijenaar, C. Parmar, P. Grossmann, S. Cavalho et al., Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5 (2014)

    Google Scholar 

  15. W. Wu, P. Chintan, G. Patrick, Q. John, L. Philippe, B. Johan et al., Exploratory study to identify radiomics classifiers for lung cancer histology. Front. Oncol. 6 (2016)

    Google Scholar 

  16. H.J. Yoon, I. Sohn, J.H. Cho, H.Y. Lee, J.H. Kim, Y.L. Choi et al., Decoding tumor phenotypes for ALK, ROS1, and RET fusions in lung adenocarcinoma using a radiomics approach. Medicine 94 (2015)

    Article  Google Scholar 

  17. Y.H. Gu, V. Kumar, L.O. Hall, D.B. Goldgof, C.Y. Li, R. Korn et al., Automated delineation of lung tumors from CT images using a single click ensemble segmentation approach. Pattern Recogn. 46, 692–702 (2013)

    Article  Google Scholar 

  18. Y.Q. Huang, C.H. Liang, L. He, J. Tian, C.S. Liang, X. Chen et al., Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer. J. Clin. Oncol. 34 (2016)

    Article  Google Scholar 

  19. K. Nie, L. Shi, Q. Chen, X. Hu, S. K. Jabbour, N. Yue et al., Rectal cancer: assessment of neoadjuvant chemoradiation outcome based on radiomics of multiparametric MRI. Clin. Cancer Res. (Off. J. Am. Assoc. Cancer Res.) 22 (2016)

    Article  Google Scholar 

  20. A. Chaddad, P.O. Zinn, R.R. Colen, Radiomics texture feature extraction for characterizing GBM phenotypes using GLCM, in IEEE International Symposium on Biomedical Imaging, (2015), pp. 84–87

    Google Scholar 

  21. Y.P. Wu, Y.S. Lin, W.G. Wu, C. Yang, J.Q. Gu, Y. Bai et al., Semiautomatic segmentation of glioma on mobile devices. J. Healthc. Eng. (2017)

    Google Scholar 

  22. N. Gordillo, E. Montseny, P. Sobrevilla, State of the art survey on MRI brain tumor segmentation. Magn. Reson. Imaging 31, 1426–1438 (2013)

    Article  Google Scholar 

  23. J. Saehdeva, V. Kumar, I. Gupta, N. Khandelwal, C.K. Ahuja, A novel content-based active contour model for brain tumor segmentation. Magn. Reson. Imaging 30, 694–715 (2012)

    Article  Google Scholar 

  24. C. Bendtsen, M. Kietzmann, R. Korn, P.D. Mozley, G. Schmidt, G. Binnig, X-ray computed tomography: semiautomated volumetric analysis of late-stage lung tumors as a basis for response assessments. Int. J. Biomed. Imaging (2011)

    Google Scholar 

  25. J. Ma, Q. Wang, Y. Ren, H. Hu, J. Zhao, Automatic lung nodule classification with radiomics approach, in Ma 2016 Automatic (2016) p. 978906

    Google Scholar 

  26. C. Parmar, R.T. Leijenaar, P. Grossmann, et al., Radiomic feature clusters and prognostic signatures specific for Lung and Head & Neck cancer. Sci. Rep. 5 (2015)

    Google Scholar 

  27. C. Lian, R. Su, T. Denœux, F. Jardin, P. Vera, Selecting radiomic features from FDG-PET images for cancer treatment outcome prediction. Med. Image Anal. 32 (2016)

    Article  Google Scholar 

  28. Y. Balagurunathan, Y. Gu, H. Wang, V. Kumar, O. Grove, S. Hawkins et al., Reproducibility and prognosis of quantitative features extracted from CT images. Transl. Oncol. 7 (2014)

    Article  Google Scholar 

  29. Q. Li, J.G. Griffiths, Least squares ellipsoid specific fitting, in Geometric Modeling and Processing (2004)

    Google Scholar 

  30. R.M. Haralick, K. Shanmugam, I.H. Dinstein, Textural features for image classification. Syst. Man Cybern. IEEE Trans. smc-3, 610–621 (1973)

    Article  Google Scholar 

  31. M.M. Galloway, Texture analysis using gray level run lengths. Comput. Graph. Image Process. 4, 172–179 (1975)

    Article  Google Scholar 

  32. C. Bocchino, A. Carabellese, T. Caruso, G. Della Sala, S. Ricart, A. Spinella, Use of gray value distribution of run lengths for texture analysis. Pattern Recogn. Lett. 11, 415–419 (1990)

    Google Scholar 

  33. B.V. Dasarathy, E.B. Holder, Image characterizations based on joint gray level—run length distributions. Pattern Recogn. Lett. 12, 497–502 (1991)

    Article  Google Scholar 

  34. G. Thibault, B. Fertil, C. Navarro, S. Pereira, N. Levy, J. Sequeira et al., Texture indexes and gray level size zone matrix application to cell nuclei classification, in Pattern Recognition and Information Processing (2017)

    Google Scholar 

  35. M. Amadasun, R. King, Textural features corresponding to textural properties. IEEE Trans. Syst. Man Cybernet. 19, 1264–1274 (1989)

    Article  Google Scholar 

  36. N. Ganganath, C. T. Cheng, K.T. Chi, Data clustering with cluster size constraints using a modified K-means algorithm, in International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (2014), pp. 158–161

    Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (Grant 81772009), Scientific and Technological Research Project of Henan Province (Grant 182102310162).

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusong Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Y. et al. (2019). Robust Feature Selection Method of Radiomics for Grading Glioma. In: Wu, C., Chyu, MC., Lloret, J., Li, X. (eds) Proceedings of the 2nd International Conference on Healthcare Science and Engineering . ICHSE 2018. Lecture Notes in Electrical Engineering, vol 536. Springer, Singapore. https://doi.org/10.1007/978-981-13-6837-0_2

Download citation

Publish with us

Policies and ethics