Skip to main content

Properties and Importance of Various Bamboo Species for Multi-Utility Applications

  • Chapter
  • First Online:

Abstract

Bamboo, with the potential to grow on wasteland, has emerged as the most appropriate alternative to wood. Low weight to height ratio, high growth rate, tensile strength comparable to materials like steel, and ability to grow on wasteland as well make it a most sought-after material. Bamboo fascinates people by its vivid color and fine particle structure. Easy availability, rapid growing speed, and ability to sustain in wastelands make it most desirable material for building and construction industry. The usage of bamboo varies from household products, handicrafts, and laminated panels to pulp and papermaking industries. Bamboo is available in 90 genera with about 1200 species. The major constituents of bamboo culms are cellulose, hemicelluloses, and lignin (about 90% of the total mass) with resins, tannins, and waxes as the minor amount. Trace amount of inorganic salt is also found in it. Mechanical properties and durability of these species depend on their chemical composition. This chapter presents the information regarding the economic and ecological importance of bamboo species. This chapter tries to assimilate the knowledge about the constituents of various bamboo species available across the globe. In addition to this, factors that affect the quality of bamboo culms in service life are also discussed. Biotic factors include the resistance of culms to various microorganisms and insects attacking the culms alone or in succession. Non-biotic factors like rain, moisture, and weathering are also described here. Knowledge about basic features and properties of these species is required to formulate the strategies for specific uses of these species making it a more valuable product. Livelihood opportunities in the field of bamboo products from Indian perspective are explored. Challenges to wider application of bamboo along with future potential are also discussed here.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AC:

Ash content

C:

Carbon

CC:

Cellulose content

LC:

Lignin content

References

  • Adrianus R, Tambunan W, Supriyatin LK, Watimena C, Sudrajat H, Yusuf M (2010) Durability assessment of chemically treated Bambusa blumeana. World J Fungal Plan Biol 1(2):32–36

    Google Scholar 

  • Ahmad M, Kamke FA (2003) Analysis of Calcutta bamboo for structural composite materials: surface characteristics. Wood Sci Technol 37(3–4):233–240

    Article  CAS  Google Scholar 

  • Ashoka P, Meena RS, Kumar S, Yadav GS, Layek J (2017) Green nanotechnology is a key for eco-friendly agriculture. J Clean Prod 142:4440–4441

    Article  Google Scholar 

  • Ashori A (2006) Pulp and paper from Kenafbast fibers. Fibers Polym 7(1):26–29

    Article  CAS  Google Scholar 

  • Asif A, Munner T (2007) Energy supply, its demand and security issues for developed and emerging economies. Renew Sust Energ Rev 11(7):1388–1413

    Article  Google Scholar 

  • Ben-Zhi Z, Mao-Yi F, Jin-Zhong X, Xiao-Sheng Y, Zheng-Cai L (2005) Ecological functions of bamboo forest: research and application. J For Res 16(2):143–147

    Article  Google Scholar 

  • Bhalla S, Gupta S, Gudhakar P, Suresh P (2008) Bamboo as green alternative to concrete and steel for modern structures. J Environ Res Dev 3(2):362–370

    Google Scholar 

  • Cheng L, Adhikari S, Wang Z, Ding Y (2015) Characterization of bamboo species at different ages and bio-oil production. J Anal Appl Pyrolysis 116:215–222

    Article  CAS  Google Scholar 

  • Chew LT, Rahim S, Jamaludin K (1992) Bambusa vulgaris for urea and cement-bonded particleboard manufacture. J Trop For Sci 4(3):249–256

    Google Scholar 

  • Choudhury S, Das KS, Nonglait KCL (2017) Ecological and medicinal importance of termite fauna. NEHU J XV(1):79–87

    Google Scholar 

  • Dadhich RK, Meena RS, Reager ML, Kansotia BC (2015) Response of bio-regulators to yield and quality of Indian mustard (Brassica juncea L. Czernj. and Cosson) under different irrigation environments. J Appl Nat Sci 7(1):52–57

    Article  CAS  Google Scholar 

  • Datta R, Baraniya D, Wang YF, Kelkar A, Moulick A, Meena RS, Yadav GS, Ceccherini MT, Formanek P (2017) Multi-function role as nutrient and scavenger off free radical in soil. Sustain MDPI 9:402. https://doi.org/10.3390/su9081402

    Article  CAS  Google Scholar 

  • Deng J, Chen F, Wang G, Zhang W (2016) Variation of parallel-to-grain compression and shearing properties in Moso Bamboo culm (Phyllostachys pubescens). Bioresources 11(1):1784–1795

    Article  CAS  Google Scholar 

  • Dhawan S, Mishra SC, Dhawan S (2007) A study of termite damage in relation to chemical composition of bamboos. Indian Forester 133(3):411–418

    CAS  Google Scholar 

  • FAO (2017) Global soil partnership endorses guidelines on sustainable soil management. http://www.fao.org/global-soil-partnership/resources/highlights/detail/en/c/416516/

  • Forest Survey of India (FSI) (2011) India State of Forest Report, 2011. The Ministry of Environment and Forests, Government of India. http://fsi.nic.in/cover_2011/chapter6.pdf

  • Ganesh A (2003) Bamboo characterization for thermochemical conversion and feasibility study of bamboo based gasification and charcoal making. Energy Systems Engineering of Indian Institute of Technology, Mumbai

    Google Scholar 

  • Goyal AK, Brahma BK (2014) Antioxidant and nutraceutical potential of Bamboo: an overview. Int J Fund Appl Sci 3(1):2–10

    Google Scholar 

  • Hamdan H, Anwar U, Zaidon A, Tamizi MM (2009) Mechanical properties and failure behaviour of Gigantochloa scortechinii. J Trop For Sci 21(4):336–344

    Google Scholar 

  • Hamid NH, Mohammad A, Sulaiman O, Ludin NA (2012) The decay resistance and hyphae penetration of bamboo Gigantochloa scortechinii decayed by white and brown rot fungi. Int J For Res 1:5

    Google Scholar 

  • Hammett AL, Youngs RL, Sun X, Chandra M (2001) Non-wood fiber as an alternative to wood fiber in Chinas pulp and paper industry. Holzforschung 55(2):219–224

    Article  CAS  Google Scholar 

  • Hapukotuwa NK, Grace JK (2011) Comparative study of the resistance of six Hawaii-grown bamboo species to attack by the subterranean termites Coptotermes formosanus Shirakiand Coptotermes gestroi (Wasmann) (Blattodea: Rhinotermitidae). Insects. https://doi.org/10.3390/insects2040475

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoang CP, Corsi RL, Szaniszlo PJ (2010) Resistance of green building materials to fungal growth. Int Biodeterior Biodegrad 64:104–111

    Article  CAS  Google Scholar 

  • Hossain MF, Islam MA, Numan SM (2015) Multipurpose uses of bamboo plants: a review. Int Res J Biol Sci 4(12):57–60

    Google Scholar 

  • Huang AM, Li GY, Fu F, Fei BH (2008) Use of visible and near infrared spectroscopy to predict klason lignin content of bamboo, Chinese fir, paulownia and poplar. J Wood Chem Technol. https://doi.org/10.1080/02773810802347008

    Article  CAS  Google Scholar 

  • Hui CM, Yang YM, Hao JM (2003) The ecological environmental benefits of bamboo and sustainable development of bamboo industry in China. J Southwest For Coll 23:25–29

    Google Scholar 

  • INBAR Report (2012) International trade of bamboo and rattan. http://www.aha-kh.com/wp-content/uploads/2017/01/5-inbar-international-trade-of-bamboo-and-rattan-2012.pdf

  • Ireana Y (2010) Cell wall architecture, properties and characterization of Bamboo, Kenaf and rice straw fiber. M.Sc. thesis, USM

    Google Scholar 

  • Janssen JJA (2000) Designing and building with bamboo, Beijing, China. INBAR 2000:12–46

    Google Scholar 

  • Kamthai S (2003) Alkaline sulfite pulping and ECF-bleaching of sweet bamboo (Dendrocalamus asper Backer). M.Sc. thesis, Kasetsart University, Thailand

    Google Scholar 

  • Kaur PJ, Kardam V, Pant KK, Naik SN, Satya S (2016a) Characterization of commercially important Asian bamboo species. Eur J Wood Prod 74(1):137–139

    Article  CAS  Google Scholar 

  • Kaur PJ, Pant KK, Satya S, Naik SN (2016b) Bamboo: the material of future. Int J Ser Multidiscip Res 2(2):27–34

    Google Scholar 

  • Kaur PJ, Pant KK, Satya S, Naik SN (2016c) Field investigations of selectively treated bamboo species. Eur J Wood Prod 74(5):771–773

    Article  CAS  Google Scholar 

  • Kaur PJ, Satya S, Pant KK, Naik SN (2016d) Eco-friendly preservation of bamboo: traditional to modern techniques. Bioresources 11(4):10604–10624

    Google Scholar 

  • Khalil HPSA, Yusra AFI, Bhat AH, Jawaid M (2010) Cell wall ultrastructure, anatomy, lignin distribution, and chemical composition of Malaysian cultivated kenaf fiber. Ind Crop Prod 31(1):113–121

    Article  CAS  Google Scholar 

  • Kuehl Y, Li Y, Henley G (2013) Impacts of selective harvest on the carbon sequestration potential in Moso bamboo (Phyllostachys pubescens) plantations. For Trees Liveli 22:1–18

    Article  Google Scholar 

  • Kumar R, Chandrashekar N (2014) Fuel properties and combustion characteristics of some promising bamboo species in India. J For Res 25(2):471–476

    Article  CAS  Google Scholar 

  • Kumar M, Tanya (2015) Bamboo “poor men timber”: a review Study for its potential & market scenario in India. IOSR J Agric Vet Sci 8(2):80–83

    Google Scholar 

  • Kumar S, Meena RS, Pandey A, Seema (2017) Soil acidity management and an economics response of lime and sulfur on sesame in an alley cropping system. Int J Curr Microbiol App Sci 6(3):2566–2573

    Article  CAS  Google Scholar 

  • Li R, Zhang J, Zhang ZE (2003) Values of bamboo biodiversity and its protection in China. J Bamboo Res 22:7–13

    Google Scholar 

  • Li XB, Shupe TF, Peter GF, Hse CY, Eberhardt TL (2007) Chemical changes with maturation of the bamboo species Phyllostachys pubescens. J Trop For Sci 19(1):6–12

    Google Scholar 

  • Li X, Sun C, Zhou B, He Y (2015) Determination of hemicellulose, cellulose and lignin in moso bamboo by near infrared spectroscopy. Sci Rep 5:17210. https://doi.org/10.1038/serp17210

    Article  PubMed  PubMed Central  Google Scholar 

  • Liese W, Kumar S (2003) Bamboo preservation compendium, INBAR Publication, pp 37–106

    Google Scholar 

  • Lobovikov M, Ball L, Guardia M, Russo L (2005) World bamboo resources: a thematic study prepared in the framework of the Global Forest Resources Assessment 2005. Food and Agriculture Organization of the United Nations, International government publication, Rome, 14

    Google Scholar 

  • Lobovikov M, Schoene D, Yping L (2012) Bamboo in climate change and rural livelihoods. Mitig Adapt Strateg Glob Chang 17(3):261–276

    Article  Google Scholar 

  • Lourenco A, Gominho J, Pereira H (2010) Pulping and delignification of sapwood and heartwood from Eucalyptus Globulus. J Pulp Pap Sci 36(3–4):85–90

    CAS  Google Scholar 

  • Meena RS, Yadav RS (2015) Yield and profitability of groundnut (Arachis hypogaea L) as influenced by sowing dates and nutrient levels with different varieties. Legum Res 38(6):791–797

    Google Scholar 

  • Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Shiiag SK (2016) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J Clean Prod 112:1258–1260

    Article  Google Scholar 

  • Mehra SP, Mehra LK (2007) Bamboo cultivation – potential and prospects. Tech Dig 10:26–36

    Google Scholar 

  • Naik NK (2009) Mechanical and physico-chemical properties of bamboos carried out by Aerospace Engineering Department, Indian Institute of Technology – Bombay, National Mission of Bamboo Applications report, pp 1–14. http://www.bambootech.org/subsubtop.asp?subsubid=84&subid=25&sname=MISSION&subname=REPORTS

  • Nath AJ, Lal R, Das AK (2015) Managing woody bamboos for carbon farming and carbon trading. Glob Ecol Conserv 3:654–656

    Article  Google Scholar 

  • Nor-Aziha N, Azmy HM (1991) Preliminary study on the four Malaysian commercial bamboo species. India Bull 1(2):6–10

    Google Scholar 

  • Nurdiah EA (2016) The potential of bamboo as building material in organic shaped buildings. Procedia Soc Behav Sci 26:30–38

    Article  Google Scholar 

  • Oka GM, Triwiyono A, Awludin A, Siswosukarto S (2014) Effects of node, internode and height position on the mechanical properties of Gigantochloa atroviolacea bamboo. Process Eng 95:31–37

    Google Scholar 

  • Okahisa Y, Yoshimura T, Imamura Y (2006) Seasonal and height-dependent fluctuation of starch and free glucose contents in moso bamboo (Phyllostachys pubescens) and its relation to attack by termites and decay fungi. J Wood Sci 52(5):445–451

    Article  CAS  Google Scholar 

  • Panagos P, Meusburger K, Liedekerke MV, Alewell C, Hiederer R, Montanarella L (2014) Assessing soil erosion in Europe based on data collected through a European network. Soil Sci Plant Nutr 60(1):15–29

    Article  Google Scholar 

  • Peng P, Peng F, Bian J, Xu F, Sun R (2011) Studies on the starch and hemicelluloses Fractionated by graded ethanol precipitation from bamboo Phyllostachys bambusoides f. shouzhu Yi. J Agric Food Chem 59(6):2680–2688

    Article  CAS  PubMed  Google Scholar 

  • Peralta RCG, Menezes EB, Carvalho AG, Menezes ELA (2003) Feeding preferences of subterranean termites for forest species associated or not to wood decaying fungi. Floresta e Ambiente 10(2):58–63

    Google Scholar 

  • Poletto M, Zattera AJ, Forte MMC, Santana RMC (2012) Thermal decomposition of wood: Influence of wood components and cellulose crystallite size. Bioresour Technol 109:148–153

    Article  CAS  PubMed  Google Scholar 

  • Rahman MM, Rashid MH, Hossain MA, Hasan MT, Hasan MK (2011) Performance Evaluation of Bamboo Reinforced Concrete Beam. Int J Eng Technol 11(4):142–146

    Google Scholar 

  • Ram K, Meena RS (2014) Evaluation of pearl millet and mungbean intercropping systems in Arid Region of Rajasthan (India). Bangladesh J Bot 43(3):367–370

    Article  Google Scholar 

  • Reid S, Díaz IA, Armesto JJ, Willson MF (2004) Importance of native bamboo for understory birds in Chilean temperate forests. Auk 121(2):515–525

    Article  Google Scholar 

  • Ribeiro RAS, Ribeiro MGS, Miranda IPA (2017) Bending strength and nondestructive evaluation of structural bamboo. Constr Build Mater 146:38–42

    Article  Google Scholar 

  • Roy A, Roy S, Rai C (2017) Insight into bamboo-based fermented foods by Galo (Sub-tribe) of Arunachal Pradesh, India. Int J Life Sci Sci Res 3(4):1200–1207

    Google Scholar 

  • Saikia P, Dutta D, Kalita D, Bora JJ, Goswami T (2015) Improvement of mechano-chemical properties of bamboo by bio-chemical treatment. Constr Build Mater 106:575–583

    Google Scholar 

  • Sangeetha R, Diea YKT, Chaitra C, Malvi PG, Shinomol GK (2015) The amazing bamboo: a review on its medicinal and pharmacological potential. Ind J Nutr 2(1):1–6

    Google Scholar 

  • Schmidt O, Wei DS, Liese W, Wollenberg E (2011) Fungal degradation of bamboo samples. Holzforschung 65:883–888

    Article  CAS  Google Scholar 

  • Schmidt O, Wei DS, Tang TKH, Liese W (2013) Bamboo and fungi. J Bamboo Rattan 12(1–4):1–14

    Google Scholar 

  • Scurlock JMO, Dayton DC, Hames B (2000) Bamboo: an overlooked biomass resource? Biomass Bioenergy 19(4):229–244

    Article  CAS  Google Scholar 

  • Shah RA, Bambhava HD, Pitroda J (2013) Bamboo: eco-friendly building material in Indian context. Int J Sci Res 2(3):29–133

    Google Scholar 

  • Sharma H, Sarma AM, Sarma A, Borah S (2010) A case of gregarious flowering in Bamboo, dominated low-land forest of Assam, India: phenology, regeneration, impact on rural economy and conservation. J For Res 21(4):409–414

    Article  Google Scholar 

  • Shibata S, Iwanaga Y, Kamimura K (2002) Revegetation of roadside manmade slopes with Karami fencing and by burying Bambusa multiplex (Lour.) Raeushel culms [C]. In: Lou Y (ed) Bamboo in disaster avoidance. Beijing, INBAR, pp 3–11. http://www.inbar.int/publication/txt/INBAR_PR_11.htm

    Google Scholar 

  • Sihag SK, Singh MK, Meena RS, Naga S, Bahadur SR, Gaurav, Yadav RS (2015) Influences of spacing on growth and yield potential of dry direct seeded rice (Oryza sativa L.) cultivars. Ecoscan 9(1–2):517–519

    Google Scholar 

  • Song X, Zhou G, Jiang H, Yu S, Fu J, Li W, Wang W, Ma Z, Peng C (2011) Carbon sequestration by Chinese bamboo forests and their ecological benefits: assessment of potential, problems, and future challenges. Environ Rev 19:418–428

    Article  CAS  Google Scholar 

  • Subekti N, Yoshimura T, Rokhman F, Mastur A (2015) Potential for subterranean termite attack against five bamboo speciesin correlation with chemical components. Procedia Environ Sci 28:783–788

    Article  CAS  Google Scholar 

  • Sugesty S, Kardiansyah T, Hardiani H (2015) Bamboo as raw materials for dissolving pulp with environmental friendly technology for rayon fiber. Proc Chem 17:194–199

    Article  CAS  Google Scholar 

  • Suprapti S (2010) Decay resistance of five Indonesian bamboo species against fungi. J Trop For Sci 22(3):287–294

    Google Scholar 

  • Tan D, Zhang XX, Yang J (2010) A primary exploration on distribution and the variation of negative oxygen ion concentration in Chashanzhuhai. Environ Ecol Three Gorges 186:26–28

    Google Scholar 

  • Tardio G, Mickovski SB, Stokes A, Devkota S (2017) Bamboo structures as a resilient erosion control measure. Proc Inst Civil Eng 170(2). https://doi.org/10.1680/jfoen.16.00033

    Article  Google Scholar 

  • Torvinen E, Meklin T, Torkko P, Suomalainen S, Reiman M, Katila ML, Paulin L, Nevalainen A (2006) Mycobacteria and fungi in moisture-damaged building materials. Appl Environ Microbiol 72(10):6822–6824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varma D, Meena RS, Kumar S (2017) Response of mungbean to fertility and lime levels under soil acidity in an alley cropping system in Vindhyan Region, India. Int J Chem Stud 5(2):384–389

    Google Scholar 

  • Wahab R, Mustafa MT, Sudin M, Mohamed A, Rahman S, Samsi HW, Khalid I (2013) Extractives, holocellulose, α-cellulose, lignin and ash contents in cultivated tropical bamboo Gigantochloa brang, G. levis, G. scortechinii and G. wrayi. Curr Res J Biol Sci 5(6):266–272

    Article  Google Scholar 

  • Wang YP, Wang G, Cheng HT (2009) Structures of bamboo fiber for textiles. Text Res J 80(4):334–343

    Article  CAS  Google Scholar 

  • Wang Y, Zhan H, Ding Y, Wang S, Li S (2016) Variability of anatomical and chemical properties with age and height in dendrocalamus brandisii. Bioresources 11(1):1202–1213

    CAS  Google Scholar 

  • Wei D, Schmidt O, Liese W (2013) Durability test of bamboo against fungi according to EN standards. Eur J Wood Prod HolzalsRoh- und Werkstoff 71(5):551–556

    Article  CAS  Google Scholar 

  • Wu B, Xie H, Tan S (1992) Preliminary study on water conservation function of Phyllostachys pubescens community. J Bamboo Res 11(4): 18–25 (in Chinese)

    Google Scholar 

  • Xiao JH (2001) Improving benefits of bamboo stands by classified management and oriental cultivation. J Bamboo Res 20:1–6

    CAS  Google Scholar 

  • Xu G, Wang L, Liu J, Hu S (2013) Decay resistance and thermal stability of bamboo preservatives prepared using camphor leaf extract. Int Biodeter Biodegr 78:103–107

    Article  CAS  Google Scholar 

  • Yadav GS, Das A, Lal R, Babu S, Meena RS, Patil SB, Saha P, Datta M (2018) Conservation tillage and mulching effects on the adaptive capacity of direct-seeded upland rice (Oryza sativa L.) to alleviate weed and moisture stresses in the North Eastern Himalayan Region of India. Arch Agron Soil Sci. https://doi.org/10.1080/03650340.2018.1423555

    Article  Google Scholar 

  • Yang Z, Xu S, Ma X, Wang S (2008) Characterization and acetylation behavior of bamboo pulp. Wood Sci Technol 42(8):621–632

    Article  CAS  Google Scholar 

  • Yoshimura T, Tsunoda K (2004) Termite problems and management in Pacific-Rim Asian region. In: Proceedings of the IAWPS 2005. International symposium on wood science and technology, 27–30 November 2005

    Google Scholar 

  • Zhou GM, Jiang PK (2004) Density, storage and spatial distribution of carbon in Phyllostachys pubescens forest. Sci Silvae Sin 40:20–25

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, P.J., Pant, K.K., Kaushik, G. (2019). Properties and Importance of Various Bamboo Species for Multi-Utility Applications. In: Jhariya, M., Banerjee, A., Meena, R., Yadav, D. (eds) Sustainable Agriculture, Forest and Environmental Management. Springer, Singapore. https://doi.org/10.1007/978-981-13-6830-1_8

Download citation

Publish with us

Policies and ethics