Skip to main content

Soil for Sustainable Environment and Ecosystems Management

  • Chapter
  • First Online:
Sustainable Agriculture, Forest and Environmental Management

Abstract

India shares 2% of the world’s geographical area supporting 18% human population and 15% livestock population. Soil is the largest pool on the earth having the capacity to sequester and store a million ton of C (carbon) as soil organic carbon (SOC) pool and in plant as vegetation’s C pool. It helps to reduce atmospheric C and minimize free movement of several GHGs (greenhouse gases) in the atmosphere which forms the basis of global warming which is a major concern today. Soils support all organisms (perennial trees as vegetations, crops, animals, and humans) and harbor a variety of organisms (both micro and macro) which is prerequisite for smooth functioning of the ecosystem. These entire organisms link among them and help in augmenting quality and health of soils through decaying and decomposition of dead plants (by microorganism, earthworm, etc.) and release several essential nutrients which is the basis of life for plant, animal, and humans. Although, healthy soil gives better ecosystem services along with environmental, ecological, and food and nutrition security (FNS). From an Indian perspective, major soil type includes Inceptisols (95.8 Mha), Entisols (80.1 Mha), and Alfisols (79.7 Mha) sharing 77.76% of land cover. C sequestration capacity of soil is a very good strategy for targeting the goal of FNS along with enhancement of soil health and quality. Good soil can enhance productivity of both land and crops, which secure food and nutritional consumption of varying organisms and sort out the problem of food insecurity. The present chapter deals with the issues related to soil, environment, and their sustainability perspective. In this context, sustainable soil management (SSM) performs good job and helps in maintaining organic carbon (OC) stock which improve fertility and physiochemical properties of soil that significantly affects yield parameter of crops (productivity), water availability and use efficiency, and health of soil-inhabiting organism and whole ecosystem processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C:

Carbon

CO2 :

Carbon dioxide

FNS:

Food and nutrient security

GHGs:

Greenhouse gases

MEA:

Millennium ecosystem assessment

N:

Nitrogen

OC:

Organic carbon

OM:

Organic matter

SOC:

Soil organic carbon

SOM:

Soil organic matter

References

  • Amezquita MC, Ibrahim M, Llanderal T, Buurman P, Amezquita E (2005) Carbon sequestration in pastures, silvopastoral systems and forests in four regions of the Latin American tropics. J Sustain For 21:31–49

    Article  Google Scholar 

  • Andrews SS, Karlen DL, Cambardella CA (2004) The soil management assessment framework: a quantitative soil quality evaluation method. Soil Sci Soc Am J 68:1945–1962

    Article  CAS  Google Scholar 

  • Ashoka P, Meena RS, Kumar S, Yadav GS, Layek J (2017) Green nanotechnology is a key for eco-friendly agriculture. J Clean Prod 142:4440–4441

    Google Scholar 

  • Baker JM, Ochsner TE, Venterea RT, Griffis TJ (2007) Tillage and soil carbon sequestration- what do we really know? Agric Ecosyst Environ 118:1–5

    Article  CAS  Google Scholar 

  • Bambrick AD, Whalen JK, Bradley RL, Cogliastro A, Gordon AM, Olivier A, Thevathasan NV (2010) Spatial heterogeneity of soil organic carbon in tree-based intercropping systems in Quebec and Ontario, Canada. Agrofor Syst 79:343–353

    Article  Google Scholar 

  • Banerjee A, Jhariya MK, Yadav DK, Raj A (2018) Micro-remediation of Metals: A New Frontier in Bioremediation. In: Hussain C (ed) Handbook of environmental materials management. Springer, ISBN: 978–3–319-58538-3. Doi:https://doi.org/10.1007/978-3-319-58538-3_10-1

    Google Scholar 

  • Bertrand M, Barot S, Blouin M, Whalen J, Oliveira T, Roger-Estrade J (2015) Earthworm services for cropping systems a review. Agron Sustain Dev 35(2):553–567

    Article  CAS  Google Scholar 

  • Brevik EC (2009) Soil, food security, and human health. In: Verheye W (ed) Soils, plant growth and crop production. Oxford: Encyclopedia of Life Support Systems (EOLSS) Publishers, 2009a. Accessed 31 Dec 2013

    Google Scholar 

  • Brevik EC (2013) The potential impact of climate change on soil properties and processes and corresponding influence on food security. Agriculture 3:398–417

    Article  Google Scholar 

  • Buragohain S, Sharma B, Nath JD, Gogaoi N, Meena RS, Lal R (2017) Impact of ten years of bio-fertilizer use on soil quality and rice yield on an inceptisol in Assam, India Soil Res. https://doi.org/10.1071/SR17001

    Article  Google Scholar 

  • Capowiez Y, Sammartino S, Michel E (2014) Burrow systems of endogeic earthworms: effects of earthworm abundance and consequences for soil water infiltration. Pedobiol 57:303–309

    Article  Google Scholar 

  • Chaudhury S, Bhattacharyya T, Wani SP, Pal DK, Sahrawat KL, Nimje A, Chandran P, Venugopalan MV, Telpande B (2016) Land use and cropping effects on carbon in black soils of semi-arid tropical India. Curr Sci 110(9):1692–1698

    Article  CAS  Google Scholar 

  • Chauhan SK, Sharma SC, Chauhan R, Gupta N, Srivastava R (2010) Accounting poplar and wheat productivity for carbon sequestration in agrisilviculture system. Indian Forester 136(9):1174–1182

    Google Scholar 

  • Crowther TW, Todd-Brown KEO, Rowe CW, Wieder WR, Carey JC, Machmuller MB, Snoek BL, Fang S, Zhou G, Allison SD, Blair JM, Bridgham SD, Burton AJ, Carrillo Y, Reich PB, Clark JS, Classen AT, Dijkstra FA, Elberling B, Emmett BA, Estiarte M, Frey SD, Guo J, Harte J, Jiang L, Johnson BR, Kröel-Dulay G, Larsen KS, Laudon H, Lavallee JM, Luo Y, Lupascu M, Ma LN, Marhan S, Michelsen A, Mohan J, Niu S, Pendall E, Peñuelas J, Pfeifer-Meister L, Poll C, Reinsch S, Reynolds LL, Schmidt IK, Sistla S, Sokol NW, Templer PH, Treseder KK, Welker JM, Bradford MA (2016) Quantifying global soil carbon losses in response to warming. Nature 540:104–110

    Article  CAS  PubMed  Google Scholar 

  • Daily GC, Matson PA, Vitousek PM (1997) Ecosystem services supplied by soils. In: Daily GC (ed) Nature’s services: societal dependence on natural ecosystems. Island Press, Washington, DC

    Google Scholar 

  • Datta R, Baraniya D, Wang YF, Kelkar A, Moulick A, Meena RS, Yadav GS, Ceccherini MT, Formanek P (2017) Multi-function role as nutrient and scavenger off free radical in soil. Sustain MDPI 9(8):1402 https://doi:https://doi.org/10.3390/su9081402

    Article  CAS  Google Scholar 

  • De Haan C, Steinfeld H, Blackburn H (1998) Livestock and the environment: finding a balance. 115 pp. Study sponsored by Commission of the European Communities, Food and Agricultural Organisation of the United Nations, and the World Bank. http//www.fao.org/docrep/x5303e/x5303302.htm

  • De MoraesSa JC, Lal R, Cerri CC, Lorenz K, Hundria M, Cesar P, Carvalho F (2017) Low-carbon agriculture in South America to mitigate global climate change and advance food security. Environ Int 98:102–112

    Article  CAS  Google Scholar 

  • Deb S, Bhadoria PBS, Mandal B, Rakshit A, Singh HB (2015) Soil organic carbon: towards better soil health, productivity and climate change mitigation. Clim Chang Environ Sustain 3(1):26–34

    Article  Google Scholar 

  • Deen W, Kataki PK (2003) Carbon sequestration in a long-term conventional versus conservation tillage experiment. Soil Tillage Res 74:143–150

    Article  Google Scholar 

  • Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994) Carbon pools and flux of global Forest ecosystems. Science, New Series 263(5144):185–190. http://www.jstor.org/stable/2882371

    CAS  Google Scholar 

  • Edwards CA (2004) Earthworm ecology. CRC Press, Boca Raton. 441 p

    Book  Google Scholar 

  • Eisenhauer N (2010) The action of an animal ecosystem engineer: identification of the main mechanisms of earthworm impacts on soil microarthropods. Pedobiol 53:343–352

    Article  Google Scholar 

  • Eswaran H, Reich FP, Kimble JM, Beinroth FH, Padamnabhan E, Moncharoen P (2000) Global carbon stocks. In: Lal R, Kimble JM, Eswaran H, Stewart BA (eds) Global climate change and pedogenic carbonates. CRC/Lewis, Boca Raton

    Google Scholar 

  • FAO (2015) Learning tool on Nationally Appropriate Mitigation Actions (NAMAs) in the agriculture, forestry and other land use (AFOLU) sector. FAO, Rome

    Google Scholar 

  • FAO and ITPS (2015) Status of the world’s soil resources, Rome

    Google Scholar 

  • Fisichelli NA, Frelich LE, Reich PB, Eisenhauer N (2013) Linking direct and indirect pathways mediating earthworms, deer, and understory composition in Great Lakes forests. Biol Invasions 15:1057–1066

    Article  Google Scholar 

  • Goh KM (2004) Carbon sequestration and stabilization in soils: implications for soil productivity and climate change. Soil Sci Plant Nutr 50(4):467–476

    Article  CAS  Google Scholar 

  • Gougoulias C, Clark JM, Shaw LJ (2014) The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J Sci Food Agric 94:2362–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haile SG, Nair PKR, Nair VD (2008) Carbon storage of different soil-size fractions in Florida silvopastoral systems. J Environ Qual 37:1789–1797

    Article  CAS  PubMed  Google Scholar 

  • Haile SG, Nair VD, Nair PKR (2010) Contribution of trees to carbon storage in soils of silvopastoral systems in Florida, USA. Glob Chang Biol 16:427–438

    Article  Google Scholar 

  • Hansen J, Kharecha P, Sato M, Masson-Delmotte V, Ackerman F, Beerling DJ, Hearty PJ, Hoegh-Guldberg O, Hsu SL, Parmesan C, Rockstrom J, Rohling EJ, Sachs J, Smith P, Steffen K, Van Susteren L, Von Schuckmann K,Zachos JC (2013) Assessing “Dangerous Climate Change”: required reduction of carbon emissions to protect young people, future generations and nature (JA Añel, Ed.). PLoS One 8(12):e81648

    Google Scholar 

  • Helgason BL, Walley FL, Germida JJ (2009) Fungal and bacterial abundance in long-term no-till and intensive-till soils of the Northern Great Plains. Soil Sci Soc Am J 73:120–127

    Article  CAS  Google Scholar 

  • Hopkin SP (1989) Ecophysiology of metals in terrestrial invertebrates. Elsevier Applied Science, London

    Google Scholar 

  • Howlett D (2009) Environmental amelioration potential of silvopastoral agroforestry systems in Spain: soil carbon sequestration and phosphorus retention. Ph.D. Dissertation, University of Florida, Gainesville

    Google Scholar 

  • Howlett DS, Mosquera-Losada MR, Nair PKR, Nair VD, Rigueiro-Rodríguez A (2011) Soil C storage in silvopastoral systems and a treeless pasture in northwestern Spain. J Environ Qual 40:784–790

    Article  CAS  Google Scholar 

  • Hubert B, Rosegrant M, van Boekel MAJS, Ortiz R (2010) The future of food: scenarios for 2050. Crop Sci 50(Suppl. 1):S33–S50

    Article  Google Scholar 

  • IPCC (2007) Climate Change 2007: mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Jhariya MK (2017a) Vegetation ecology and carbon sequestration potential of shrubs in tropics of Chhattisgarh, India. Environ Monit Assess 189(10):518. https://doi.org/10.1007/s10661-017-6246-2

    Article  CAS  PubMed  Google Scholar 

  • Jhariya MK (2017b) Influences of forest fire on forest floor and litterfall dynamics in Bhoramdeo Wildlife Sanctuary (C.G.), India. J For Environ Sci 33(4):330–341

    Google Scholar 

  • Jhariya MK, Raj A (2014) Human welfare from biodiversity. Agrobios Newsl XIII(9):89–91

    Google Scholar 

  • Jhariya MK, Bargali SS, Raj A (2015) Possibilities and perspectives of agroforestry in Chhattisgarh. pp 237–257. In: Miodrag Zlatic (ed) Precious Forests-Precious Earth. ISBN: 978–953–51-2175-6, 286 p, InTech, Croatia, Europe, Doi:https://doi.org/10.5772/60841

    Google Scholar 

  • Jhariya MK, Yadav DK, Banerjee A (2018a) Plant mediated transformation and habitat restoration: phytoremediation an eco-friendly approach. p 231–247. In: Gautam A, Pathak C (eds) Metallic contamination and its toxicity. ISBN: 9789351248880. New Delhi, Daya Publishing House, A Division of Astral International Pvt. Ltd

    Google Scholar 

  • Jhariya MK, Banerjee A, Yadav DK, Raj A (2018b) Leguminous trees an innovative tool for soil sustainability. In: Meena RS, Das A, Yadav GS, Lal R (eds) Legumes for Soil Health and Sustainable Management. . Springer, ISBN 978–981–13-0253-4 (eBook), ISBN: 978–981–13-0252-7 (Hardcover). https://doi.org/10.1007/978-981-13-0253-4_10

    Chapter  Google Scholar 

  • Kaur B, Gupta SR, Singh G (2002) Carbon storage and nitrogen cycling in silvi-pastoral systems on a sodic soil in northwestern India. Agrofor Syst 54:21–29

    Article  Google Scholar 

  • Keestrea SD, Bouma J, Wallinga J, Tittonell P, Smith P, Cerdà A, Montanarella L, Quinton JN, Pachepsky Y, van der Putten WH, Bardgett RD, Moolenaar S, Mol G, Jansen B, Fresco LO (2016) The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil 2:111–128

    Article  Google Scholar 

  • Kibblewhite M, Ritz K, Swift M (2008) Soil health in agricultural systems. Philo Trans R Soc B: Biol Sci 363(1492):685–701. https://doi.org/10.1098/rstb.2007.2178

    Article  CAS  Google Scholar 

  • Kirby KR, Potvin C (2007) Variation in carbon storage among tree species: implications for the management of a small-scale carbon sink project. For Ecol Manag 246:208–221

    Article  Google Scholar 

  • Köchy M, Hiederer R, Freibauer A (2015) Global distribution of soil organic carbon – part 1: masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. Soil 1:351–365

    Article  CAS  Google Scholar 

  • Kumar S, Meena RS, Bohra JS (2018) Interactive effect of sowing dates and nutrient sources on dry matter accumulation of Indian mustard (Brassica juncea L.). J Oilseed Brassica 9(1):72–76

    Google Scholar 

  • Lal R (2004a) Soil carbon sequestration impacts on global climate change and food security. Science 204:1623–1627

    Article  CAS  Google Scholar 

  • Lal R (2004b) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22

    Article  CAS  Google Scholar 

  • Lal R (2005) Forest soils and carbon sequestration. For Ecol Manag 220:242–258

    Article  Google Scholar 

  • Lal R (2008) Carbon sequestration. Philos Trans R Soc B: Biol Sci 363(1492):815–830

    Article  CAS  Google Scholar 

  • Lal R (2009) Soil degradation as a reason for inadequate human nutrition. Food Sec 1:45–57

    Article  Google Scholar 

  • Lander CH, Moffitt D, Klaus A (1998) Nutrients available from livestock manure, relative to crop growth requirements. Working Paper 98–1.Natural Resources Conservation Service, Resource Assessment and Strategic Planning. US Department of Agriculture, 15 p

    Google Scholar 

  • Makumba W, Akinnifesi FK, Janssen B, Oenema O (2007) Long-term impact of a Gliricidia-maize intercropping system on carbon sequestration in southern Malawi. Agric Ecosyst Environ 118:237–243

    Article  CAS  Google Scholar 

  • MEA (2005) Millennium ecosystem assessment: ecosystems and human well-being 5. Island Press, Washington, DC

    Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553

    Article  Google Scholar 

  • Meena RS, Gogaoi N, Kumar S (2017) Alarming issues on agricultural crop production and environmental stresses. J Clean Prod 142:3357–3359

    Article  Google Scholar 

  • Meena H, Meena RS, Lal R, Singh GS, Mitran T, Layek J, Patil SB, Kumar S, Verma T (2018) Response of sowing dates and bio regulators on yield of cluster bean under current climate in alley cropping system in eastern U.P. Indian Legum Res 41(4):563–571

    Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663. https://doi.org/10.1111/1574-6976.12028

    Article  CAS  PubMed  Google Scholar 

  • Muller DB, Vogel C, Bai Y, Vorholt JA (2016) The plant microbiota: systems-level insights and perspectives. In: Bonini NM (ed) Ann review genetics, vol 50. Annual Reviews, Palo Alto, pp 211–234

    Google Scholar 

  • Muyekho FN, Cheruiyot DT, Kamidi M, Wanyonyi, M, Akuno F, Gitahi, F, Mwania N (2000) Participatory evaluation of forages for increased herbage dry matter yields in smallholder farms in Trans Nzoia District: preliminary experiences. In: Mureithi JG, Gachene CKK, Muyekho FN, Onyango M, Mose L, Magenya O (eds) Participatory technology development for soil management by smallholders in Kenya. Proceedings of the 2nd Scientific Conference of the Soil Management and Legume Research Network Projects, June 2000 Mombasa, Kenya, p 321–326

    Google Scholar 

  • Nair PKR (2012) Climate change mitigation and adaptation: a low hanging fruit of agroforestry. In: Nair PKR, Garrity DP (eds) Agroforestry: the future of global land use. Springer, Dordrecht, pp 31–67

    Chapter  Google Scholar 

  • Nieder R, Benbi DK, Reichl FX (2018) Soil quality and human health. In: Soil components and human health. Springer, Dordrecht, pp 1–34

    Chapter  Google Scholar 

  • Oelbermann M, Voroney RP, Gordon AM, Kass DCL, Schlnvoigt AM, Thevathasan NV (2006) Carbon input, soil carbon pools, turnover and residue stabilization efficiency in tropical and temperate agroforestry systems. Agrofor Syst 68:27–36

    Article  Google Scholar 

  • Oldeman LR (1998) Soil degradation: a threat to food. Security International Soil Reference and Information Center, Wageningen

    Google Scholar 

  • Pan Y, Birdsey RA, Phillips OL, Jackson RB (2013) The structure, distribution, and biomass of the world’s forests. Annu Rev Ecol Evol Syst 44:593–622

    Article  Google Scholar 

  • Parikh SJ, James BR (2012) Soil: the foundation of agriculture. Nat Educ Knowl 3(10):2

    Google Scholar 

  • Parrotta JA (1999) Productivity, nutrient cycling and succession in single- and mixed-species stands of Casuarina equisetifolia, Eucalyptus robusta and Leucaena leucocephala in Puerto Rico. For Ecol Manag 124:45–77

    Article  Google Scholar 

  • Peichl M, Thevathasan NV, Gordon AM, Huss J, Abohassan RA (2006) Carbon sequestration potentials in temperate tree based intercropping systems, southern Ontario, Canada. Agrofor Syst 66:243–257

    Article  Google Scholar 

  • Pimentel D, Burgess M (2013) Soil erosion threatens food production. Agriculture 3:443–463

    Article  Google Scholar 

  • Pinho RC, Miller RP, Alfaia SS (2012) Agroforestry and the improvement of soil fertility: a view from Amazonia. Appl Environ Soil Sci 2012:1–11. https://doi.org/10.1155/2012/616383

    Article  Google Scholar 

  • Prentice IC (2001) The carbon cycle and atmospheric carbon dioxide. Climate change 2001: the scientific basis IPCC. Cambridge University Press, Cambridge, pp 183–237

    Google Scholar 

  • Raj A (2015) Evaluation of gummosis potential using various concentration of ethephon. M.Sc. Thesis, I.G.K.V., Raipur (C.G.), 89 p

    Google Scholar 

  • Raj A, Singh L (2017) Effects of girth class, injury and seasons on ethephon induced gum exudation in Acacia nilotica in Chhattisgarh. Ind J Agrofor 19(1):36–41

    Google Scholar 

  • Raj A, Jhariya MK, Bargali SS (2018) Climate smart agriculture and carbon sequestration. In: Pandey CB, Gaur MK, Goyal RK (eds) Climate change and agroforestry adaptation mitigation and livelihood security. New India Publishing Agency (NIPA), New Delhi, pp 1–19ISBN: 9789-386546067

    Google Scholar 

  • Ram K, Meena RS (2014) Evaluation of pearl millet and mungbean intercropping systems in Arid Region of Rajasthan (India). Bangladesh J Bot 43(3):367–370

    Article  Google Scholar 

  • Rao MR, Ong CK, Pathak P, Sharma MM (1991) Productivity of annual cropping and agroforestry systems on a shallow Alfisol in semi-arid India. Agrofor Syst 15:51–63

    Article  Google Scholar 

  • Reicosky DC, Sauer TJ, Hatfield JL (2011) Challenging balance between productivity and environmental quality: tillage impacts. In: Hatfield JL, Sauer TJ (eds) Soil management: building a stable base for agriculture. Soil Science Society of America, Madison, pp 13–37. https://doi.org/10.2136/2011soilmanagement.c2

    Chapter  Google Scholar 

  • Resner K, Yoo K, Sebestyen S, Aufdenkampe A, Hale C, Lyttle A, Blum A (2015) Invasive earthworms deplete key soil inorganic nutrients (Ca, Mg, K, and P) in a northern hardwood forest. Ecosystems 18:89–102

    Article  CAS  Google Scholar 

  • Reynaldo V, Banwart S, Black H, Ingram J, Joosten H, Milne E, Noellemeyer E, Baskin Y (2012) The benefits of soil carbon – managing soils for multiple economic, societal and environmental benefits. UNEP Year Book 2012

    Google Scholar 

  • Robinson DA, Hockley N, Cooper D, Emmett BA, Keith AM, Lebron I, Reynolds B, Tipping E, Tye AM, Watts CW, Whalley WR, Black HIJ, Warren GP, Robinson JS (2012) Natural capital and ecosystem services, developing an appropriate soils framework as a basis for valuation. Soil Biol Biochem 57:1023–1033

    Article  CAS  Google Scholar 

  • Rojas RV, Achouri M, Maroulis J, Caon L (2016) Healthy soils: a prerequisite for sustainable food security. Environ Earth Sci 75:180

    Article  Google Scholar 

  • Saha S, Nair PKR, Nair VD, Kumar BM (2009) Soil carbon stocks in relation to plant diversity of home gardens in Kerala, India. Agrofor Syst 76:53–65

    Article  Google Scholar 

  • Sharrow SH, Ismail S (2004) Carbon and nitrogen storage in agroforests, tree plantations, and pastures in western Oregon, USA. Agrofor Syst 60:123–130

    Article  Google Scholar 

  • Sheldrick WF, Syers JK, Lingard J (2002) A conceptual model for conducting nutrient audits at national, regional, and global scales. Nutr Cycl Agroecosyst 62:61–72

    Article  CAS  Google Scholar 

  • Sihag SK, Singh MK, Meena RS, Naga S, Bahadur SR, Gaurav, Yadav RS (2015) Influences of spacing on growth and yield potential of dry direct seeded rice (Oryza sativa L.) cultivars. The Ecoscan 9(1–2):517–519

    Google Scholar 

  • Singh NR, Jhariya MK (2016) Agroforestry and agrihorticulture for higher income and resource conservation. In: Narain S, Rawat SK (eds) Innovative technology for sustainable agriculture development. Biotech Books, New Delhi, pp 125–145ISBN: 978-81-7622-375-1

    Google Scholar 

  • Singh NR, Jhariya MK, Loushambam RS (2014) Performance of soybean and soil properties under poplar based agroforestry system in Tarai Belt of Uttarakhand. Ecol Environ Conserv 20(4):1569–1573

    Google Scholar 

  • Singh BR, McLaughlin MJ, Brevik EC (eds) (2017) The nexus of soils, plants, animals and human health. Catena- Schweizerbart, Stuttgart. 156 p

    Google Scholar 

  • Swamy SL, Puri S (2005) Biomass production and C-sequestration of Gmelina arborea in plantation and agroforestry system in India. Agrofor Syst 64:181–195

    Article  Google Scholar 

  • Takimoto A, Nair PKR, Nair VD (2008) Carbon stock and sequestration potential of traditional and improved agroforestry systems in the West African Sahel. Agric Ecosyst Environ 125:159–166

    Article  CAS  Google Scholar 

  • Tonucci RG, Nair PKR, Nair VD, Garcia R, Bernardino FS (2011) Soil carbon storage in silvopasture and related land use systems in the Brazilian Cerrado. J Environ Qual 40(3):833–841. https://doi.org/10.2134/jeq2010.0162

    Article  CAS  PubMed  Google Scholar 

  • Troeh FR, Thompson LM (1993) Soils and soil fertility, 5th edn. Oxford University Press

    Google Scholar 

  • Usman S, Kundiri AM (2016) Role of soil science: an answer to sustainable crop production for economic development in Sub-Saharan Africa. Int J Soil Sci 11:61–70

    Article  Google Scholar 

  • Van Straalen NM, Roelofs D (2007) An introduction to ecological genomics. Oxford University Press, Oxford

    Google Scholar 

  • Varma D, Meena RS, Kumar S (2017) Response of mungbean to fertility and lime levels under soil acidity in an alley cropping system in Vindhyan Region, India. Int J Chem Stud 5(2):384–389

    Google Scholar 

  • Verbon EH, Liberman LM (2016) Beneficial microbes affect endogenous mechanisms controlling root development. Trends Plant Sci 21:218–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma JP, Meena VS, Kumar A, Meena RS (2015) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health: a book review. J Clean Prod 107:793–794

    Article  Google Scholar 

  • Viswanath S, Peddappaiah RS, Subramoniam V, Manivachakam P, George M (2004) Management of Casuarina equisetifolia in wide-row intercropping systems for enhanced productivity. Ind J Agrofor 6(2):19–25

    Google Scholar 

  • Wall DH, Bardgett RD, Covich AP, Snelgrove PVR (2004) The need for understanding how biodiversity and ecosystem functioning affect ecosystem services in soils and sediments. In: Wall DH (ed) Sustaining biodiversity and ecosystem services in soils and sediments. Island Press, Washington, DC, pp 1–12

    Google Scholar 

  • Weissert LF, Salmond JA, Turnbull JC, Schwendenmann L (2016) Temporal variability in the sources and fluxes of CO2 in a residential area in an evergreen subtropical city. Atmospheric Environ 143:164–176. https://doi.org/10.1016/j.atmosenv.2016.08.044

    Article  CAS  Google Scholar 

  • White PJ, Crawford JW, Álvarez MCD, Moreno RG (2014) Soil management for sustainable agriculture 2013. Appl Environ Soil Sci Article ID 536825, 2 pages, 2014, https://doi.org/10.1155/2014/536825

    Article  Google Scholar 

  • Woodward FI, Bardgett RD, Raven JA, Hetherington AM (2009) Biological approaches to global environmental change mitigation and remediation. Curr Biol 19:R615–R623

    Article  CAS  PubMed  Google Scholar 

  • Yadav GS, Babu S, Meena RS, Debnath C, Saha P, Debbaram C, Datta M (2017) Effects of godawariphosgold and single supper phosphate on groundnut (Arachis hypogaea) productivity, phosphorus uptake, phosphorus use efficiency and economics. Indian J Agric Sci 87(9):1165–1169

    CAS  Google Scholar 

  • Yadav GS, Lal R, Meena RS, Datta M, Babu S, Das LJ, Saha P (2017b) Energy budgeting for designing sustainable and environmentally clean/safer cropping systems for rainfed rice fallow lands in India. J Clean Prod 158:29–37

    Article  Google Scholar 

  • Zdruli P, Lal R, Cherlet M, Kapur S (2017) New World Atlas of desertification and issues of carbon sequestration, organic carbon stocks, nutrient depletion and implications for food security. In: Carbon management, technologies, and trends in mediterranean ecosystems. Springer, Cham, pp 13–25

    Chapter  Google Scholar 

  • Zhu Y, Meharg AA (2015) Protecting global soil resources for ecosystem services. Ecosyst Health Sustain 1(3):1–4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raj, A., Jhariya, M.K., Yadav, D.K., Banerjee, A., Meena, R.S. (2019). Soil for Sustainable Environment and Ecosystems Management. In: Jhariya, M., Banerjee, A., Meena, R., Yadav, D. (eds) Sustainable Agriculture, Forest and Environmental Management. Springer, Singapore. https://doi.org/10.1007/978-981-13-6830-1_6

Download citation

Publish with us

Policies and ethics