Skip to main content

Use of Bioinoculants in the Modulation of Volatile Organic Compound Emission Under Environmental Stresses for Sustainable Agriculture

  • Chapter
  • First Online:

Abstract

Long-term effects of chemical applications in agroecosystems have brought about the rise in awareness with greater emphasis on sustainable development and eco-friendly agriculture. This has opened up the advancement and increased utilization of biofertilizers as key components acting as nutrient suppliers and lower agricultural burden that lead to sustainable agriculture and conservation of the environment. Predominant biofertilizers are plant growth-promoting rhizobacteria (PGPR) with plant growth-promoting functional traits. Bacteria containing ACC deaminase are well-known to provide plant stress tolerance by reducing the ethylene level in stress-elicited plant; on the other hand, the physiological responses and mechanism of improved plant stress resistance by bacteria are poorly understood. As a part of plant defence against biotic and abiotic stresses, plants release a range of volatile organic compounds (VOC). Though VOC emission is a part of plant defence, it has a large impact to the environment and climate change. The higher atmospheric reactivity of VOC leads to generation of ozone, secondary aerosol formation and cloud formation. However, the emission of VOCs from different plant species is well studied in this respect, but the control of VOC emission from plants is a complex and open question. This chapter aims to focus on the function of the ACC deaminase-containing bacteria in controlling VOC emission along with other plant growth-promoting characteristics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abeles FB, Morgan PW, SaltveitJr ME (1992) Regulation of ethylene production by internal, environmental and stress factors. In: Ethylene in plant biology, 2nd edn. Elsevier, Amsterdam, pp 56–119

    Chapter  Google Scholar 

  • Arimura GI, Ozawa R, Nishioka T, Boland W, Koch T, Kühnemann F, Takabayashi J (2002) Herbivore-induced volatiles to induce the emission of ethylene in neighboring lima bean plants. Plant J 29:87–98

    Article  CAS  PubMed  Google Scholar 

  • Arimura G, Matsui K, Takabayashi J (2009) Chemical and molecular ecology of herbivore-induced plant volatiles: proximate factors and their ultimate functions. Plant Cell Physiol 50:911–923

    Article  CAS  PubMed  Google Scholar 

  • Arsene F, Katupitiya S, Kennedy IR, Elmerich C (1994) Use of lacZ fusions to study the expression of nif genes of Azospirillum brasilense in association with plants. Mol Plant-Microbe Interac 7:748–757

    Article  CAS  Google Scholar 

  • Austin B, Goodfellow M, Dickinson CH (1978) Numerical taxonomy of phylloplane bacteria isolated from Lolium perenne. J Gen Microbiol 104:139–155

    Google Scholar 

  • Balandreau J (2002) The spermosphere model to select for plant growth promoting rhizobacteria. In: Biofertilisers in action. Rural industries research and development corporation, Canberra, pp 55–63

    Google Scholar 

  • Baldani J, Caruso L, Baldani VL, Goi SR, Döbereiner J (1997) Recent advances in BNF with non-legume plants. Soil Biol Biochem 29:911–922

    Article  CAS  Google Scholar 

  • Baldani VLD, Baldani JI, Dobereiner J (2000) Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia sp. Biol Fertil Soils 30:485–491

    Article  Google Scholar 

  • Bashan Y (1986) Migration of the rhizosphere bacteria Azospirillum brasilense and Pseudomonas fluorescens towards wheat roots in the soil. J Gen Microbiol 132:3407–3414

    Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770

    Article  CAS  Google Scholar 

  • Beauchamp J, Wisthaler A, Hansel A, Kleist E, Miebach M, Niinemets Ü, Schurr UL, Wildt J (2005) Ozone induced emissions of biogenic VOC from tobacco: relationships between ozone uptake and emission of LOX products. Plant Cell Environ 28:1334–1343

    Article  CAS  Google Scholar 

  • Behrendt U, Ulrich A, Schumann P (2003) Fluorescent pseudomonads associated with the phyllosphere of grasses; Pseudomonas trivialis sp. nov., Pseudomonas poae sp. nov. and Pseudomonas congelans sp. nov. Int J Syst Evol Microbiol 53(5):1461–1469

    Google Scholar 

  • Brilli F, Barta C, Fortunati A (2007) Response of isoprene emission and carbon metabolism to drought in white poplar (Populus alba) saplings. New Phytol 175:244–254

    Article  CAS  PubMed  Google Scholar 

  • Broek AV, Michiels J, VanGool A, Vanderleyden J (1993) Spatial-temporal colonization patterns of Azospirillum brasilense on the wheat root surface and expression of the bacteria nifH gene during association. Mol Plant-Microbe Interact 6:592–600

    Article  Google Scholar 

  • Burd GI, Dixon DG, Glick RR (2000) Plant growth promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  CAS  PubMed  Google Scholar 

  • Butler HK, Dadson R, Holland MA (2000) Evidence that trans-Zeatin riboside produced by a microbial symbiont is physiologically meaningful to its host plant. Abstract available at: http://abstracts.aspb.org/aspp2000/public/P43

  • Camejo D, Jiménez A, Alarcón JJ, Torres W, Gómez JM, Sevilla F (2006) Changes in photosynthetic parameters and antioxidant activities following heat-shock treatment in tomato plants. Funct Plant Biol 33:177–187

    Article  CAS  PubMed  Google Scholar 

  • Chung H, Park M, Madhaiyan M, Seshadri S, Song J, Cho H, Sa T (2005) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem 37:1970–1974

    Article  CAS  Google Scholar 

  • Copolovici L, Niinemets U (2010) Flooding induced emissions of volatile signaling compounds in three tree species with differing waterlogging tolerance. Plant Cell Environ 33:1582–1594

    CAS  PubMed  Google Scholar 

  • Copolovici L, Kännaste A, Remmel T, Vislap V, Niinemets Ü (2011) Volatile emissions from Alnus glutionosa induced by herbivory are quantitatively related to the extent of damage. J Chem Ecol 37:18–28

    Article  CAS  PubMed  Google Scholar 

  • Corpe WA, Rheem S (1989) Ecology of the methylotrophic bacteria on living leaf surfaces. Microbiol Ecol 62:243–248

    Article  CAS  Google Scholar 

  • Daniels R, Vanderleyden J, Michiels J (2004) Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev 28:261–289

    Article  CAS  PubMed  Google Scholar 

  • Deaker R, Kennedy IR (2001) Improved potential for nitrogen fixation in Azospirillum brasilense sp7-s associated with wheat nifH expression as a function of oxygen pressure. Acta Biotechnol 21(1):3–17

    Google Scholar 

  • deFreitas JR, Banerjee MR, Germida JJ (1997) Phosphate solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol Fertil Soils 24:358–364

    Article  CAS  Google Scholar 

  • de Zwart JMM, Nelisse PN, Kuenen JG (1996) Isolation and characterization of Methylophaga sulfidovorans sp. nov.: an obligately methylotrophic, aerobic, dimethylsulfide oxidizing bacterium from a microbial mat. FEMS Microbiol Ecol 20:261–270

    Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Brener S (2001) Responses of agronomically important crops to inoculation with Azospirillum. Funct Plant Biol 28(9):871–879

    Google Scholar 

  • Döbereiner J, Day JM (1976) First international symposium on nitrogen fixation. In: Newton WE, Nyman CJ (eds) Proceedings of international symposium on nitrogen fixation. Washington State University Press, Pullman, pp 518–538

    Google Scholar 

  • Döbereiner J, Day JM, Dart PJ (1972) Nitrogenase activity and oxygen sensitivity of the Paspalum notatum-Azotobacter paspali association. J Gen Microbiol 71:103–116

    Article  Google Scholar 

  • Doronina NV, Trotsenko YA, Tourova TP, Kuznetsov BB, Leisinger T (2000) Methylopila helvetica sp. nov. and Methylobacterium dichloromethanicum sp. nov. – novel aerobic facultatively methylotrophic bacteria utilizing dichloromethane. Syst Appl Microbiol 23:210–218

    Google Scholar 

  • El-Mohandes MAO (1999) The use of associative diazotrophs with different rates of mtrogen fertilization and compost to enhance growth and N~ 2-fixation of wheat. Bull Fac Agric Univ Cairo 50:729–754

    Google Scholar 

  • Estrada-De Los Santos P, Bustillos-Cristales R, Caballero-Mellado J (2001) Burkholderia, a genus rich in plant associated nitrogen fixers with wide environmental and geographic distribution. Appl Environ Microbiol 67(6):2790–2798

    Google Scholar 

  • Fall R, Karl T, Hansel A, Jordan A, Lindinger W (1999) Volatile organic compounds emitted after leaf wounding: on-line analysis by proton-transfer-reaction mass spectrometry. J Geophys Res 104:15963–15974

    Article  CAS  Google Scholar 

  • Fall R, Karl T, Jordan A, Lindinger W (2001) Biogenic C5 VOCs: release from leaves after freeze–thaw wounding and occurrence in air at a high mountain observatory. Atmos Environ 35:3905–3916

    Article  CAS  Google Scholar 

  • Fayez M, Daw ZY (1987) Effect of inoculation with different strains of Azospirillum brasilense on cotton (Gossipium barbadense). Biol Fertil Soils 4(1–2):91–95

    Google Scholar 

  • Freyermuth SK, Long RL, Mathur S, Holland MA, Holtsford TP, Stebbins NE, Morris RO, Polacco JC (1996) Metabolic aspects of plant interaction with commensal methylotrophs. In: Lidstorm ME, Tabita RF (eds) Microbial growth on C1 compounds. Springer/Kluwer, Dordrecht, pp 277–284

    Chapter  Google Scholar 

  • Galal YGM, El-Ghandour IA, Aly SS, Soliman S, Gadalla A (2000) Non-isotopic method for the quantification of biological nitrogen fixation and wheat production under field conditions. Biol Fertil Soils 32(1):47–51

    Google Scholar 

  • Ganguly TK, Jana AK, Moitra DN (1999) An evaluation of agronomic potential of Azospirillum brasilense and Bacillus megaterium in fibre-legume-cereal system in an Aeric haplaquept. Indian J Agric Res 33:35–39

    Google Scholar 

  • Gerretson FC (1948) The influence of microorganisms on the phosphorus uptake by plant. Plant Soil 1:51–81

    Google Scholar 

  • Gillis M, Van Van T, Bardin R, Goor M, Hebbar P, Willems A, Fernandez MP (1995) Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N2-fixing isolates from rice in Vietnam. Int J Syst Evol Microbiol 45(2):274–289

    Google Scholar 

  • Goodwin KD, Varner RK, Crill PM, Oremland RS (2001) Consumption of tropospheric levels of methyl bromide by C1 compound-utilizing bacteria and comparison to saturation kinetics. Appl Environ Microbiol 67:5437–5443

    Google Scholar 

  • Green P (1992) The genus Methylobacterium. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd edn. Springer, New York, pp 2342–2349

    Google Scholar 

  • Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature). Atmos Chem Phys 6:3181–3210

    Article  CAS  Google Scholar 

  • Gusta LV, Wilen RW, Fu P (1996) Low-temperature stress tolerance: the role of abscisic acid, sugars, and heat-stable proteins. Hortic Sci 31:39–46

    Google Scholar 

  • Han SO, New PB (1998) Variation in nitrogen fixing ability among natural isolates of Azospirillum. Microb Ecol 36:193–201

    Article  CAS  PubMed  Google Scholar 

  • Havaux M, Kloppstech K (2001) The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis NPQ and TT mutants. Planta 213:953–966

    Article  CAS  Google Scholar 

  • Hiraishi A, Furuhata K, Matsumoto A, Koike KA, Fukuyama M, Tabuchi K (1995) Phenotypic and genetic diversity of chlorine-resistant Methylobacterium strains isolated from various environments. Appl Environ Microbiol 61(6):2099–2107

    Google Scholar 

  • Holland MA (1997) Occams razor applied to hormonology. Are cytokinins produced by plants? Plant Physiol 115:865–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holland MA, Polacco JC (1994) PPFMs and other contaminants: is there more to plant physiology than just plant? Annu Rev Plant Physiol Plant Mol Biol 45:197–209

    Article  CAS  Google Scholar 

  • Hornei B, Luneberg E, Schmidt-Rotte H, Maass M, Weber K, Heits F, Frosch M, Solbach W (1999) Systemic infection of an immunocompromised patient with Methylobacterium zatmanii. J Clin Microbiol 37:248–250

    Google Scholar 

  • Illmer PA, Schinner F (1995) Solubilization of inorganic calcium phosphates solubilization mechanisms. Soil Biol Biochem 27:257–263

    Google Scholar 

  • Islam N, Bora LC (1998) Biological management of bacterial leaf blight of rice (Oryza sativa) with plant growth promoting rhizobacteria. Indian J Agric Sci 68:798–800

    Google Scholar 

  • Islam N, Rao CVS, Kennedy IR (2002) Facilitating a N2-fixing symbiosis between diazotrophs and wheat. In: Biofertilisers in action. Rural Industries Research and Development Corporation, Canberra, pp 84–93

    Google Scholar 

  • Ivanova EG, Doronina NV, Trotsenko YA (2001) Aerobic methylobacteria are capable of synthesizing auxins. Microbiology 70:392–397

    Article  CAS  Google Scholar 

  • Izumi H, Anderson IC, Alexander IJ, Killham K, Moore ER (2006) Endobacteria in some ectomycorrhiza of scots pine (Pinus sylvestris). FEMS Microbiol Ecol 56(1):34–43

    Google Scholar 

  • Jansen RM, Miebach M, Kleist E, Van Henten EJ, Wildt J (2009) Release of lipoxygenase products and monoterpenes by tomato plants as an indicator of Botrytis cinerea-induced stress. Plant Biol 11:859–868

    Article  CAS  PubMed  Google Scholar 

  • Kamnev AA, van der Lelie D (2000) Chemical and biological parameters as tools to evaluate and improve heavy metal phytoremediation. Biosci Rep 20:239–258

    Article  CAS  PubMed  Google Scholar 

  • Katupitiya S, New PB, Elmerich C, Kennedy IR (1995) Improved nitrogen fixation in 2,4-D treated wheat roots associated with Azospirillum lipoferum: studies of colonization using reporter genes. Soil Biol Biochem 27:447–452

    Article  CAS  Google Scholar 

  • Kennedy IR, Tchan YT (1992) Biological nitrogen fixation in non-leguminous field crops: recent advances. Plant Soil 141(1–2):93–118

    Google Scholar 

  • Kim C, Kecskés ML, Deaker RJ, Gilchrist K, New PB, Kennedy IR, Kim S, Sa T (2005) Wheat root colonization and nitrogenase activity by Azospirillum isolates from crop plants in Korea. Can J Microbiol 51:948–956

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, Lifshitz R, Schroth MN (1988) Pseudomonas inoculants to benefit plant production. ISI Atlas Sci Anim Plant Sci 1:60–64

    Google Scholar 

  • Koenig RL, Morris RO, Polacco JC (2002) tRNA is the source of low-level trans-zeatin production in Methylobacterium sp. J Bacteriol 184:1832–1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon SW, Kim JS, Crowley DE, Lim CK (2005) Phylogenetic diversity of fluorescent pseudomonads in agricultural soils from Korea. Lett Appl Microbiol 41(5):417–423

    Google Scholar 

  • Ladha JK, So RB, Watanabe I (1987) Composition of Azospirillum species associated with wetland rice plants grown in different soils. Plant Soil 102:127–129

    Article  Google Scholar 

  • Laheurte F, Berthelin J (1988) Effect of a phosphate solubilizing bacteria on maize growth and root exudation over four levels of labile phosphorus. Plant Soil 105(1):11–17

    Google Scholar 

  • Lee HS, Madhaiyan M, Kim CW, Choi SJ, Chung KY, Sa TM (2005) Physiological enhancement of early growth of rice seedlings (Oryza sativa L.) by phytohormone producing N2-fixing methylotrophic isolates. Biol Fertil Soils 42:402–408

    Article  CAS  Google Scholar 

  • Lidstrom ME, Chistoserdova L (2002) Plants in the pink: cytokinin production by Methylobacterium. J Bacteriol 184:1818–1818

    Google Scholar 

  • Loreto F, Delfine S (2000) Emission of isoprene from salt-stressed Eucalyptus globulus leaves. Plant Physiol 123(4):1605–1610

    Google Scholar 

  • Loreto F, Schnitzler JP (2010) Abiotic stresses and induced BVOCs. Trends Plant Sci 15(154):166

    Google Scholar 

  • Loreto F, Ciccioli P, Brancaleoni E, Cecinato A, Frattoni M, Sharkey TD (1996) Different sources of acetyl CoA contribute to form three classes of terpenoid emitted by Quercus ilex L. leaves. Proc Natl Acad Sci U S A 93:9966–9969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loreto F, Barta C, Brilli F, Nogues I (2006) On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature. Plant Cell Environ 29:1820–1828

    Article  CAS  PubMed  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Application of free living plant growth promoting rhizobacteria. Anton Leeuw 86:1–25

    Article  CAS  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Senthilkumar M, Seshadri S, Chung H, Jinchul YA, Sundaram S, Tongmin SA (2004) Growth promotion and induction of systemic resistance in rice cultivar Co-47 (Oryza sativa L.) by Methylobacterium sp. Bot Bull Acad Sin 45:315–324

    Google Scholar 

  • Madhaiyan M, PoonguzhaliS LHS, Hari K, Sundaram SP, Sa TM (2005a) Pink-pigmented facultative methylotrophic bacteria accelerate germination, growth and yield of sugarcane clone Co86032 (Saccharum officinarum L.). Biol Fertil Soils 41:350–358

    Article  CAS  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Sundaram SP, Sa T (2005b) A new insight into foliar applied methanol influencing phylloplane methylotrophic dynamics and growth promotion of cotton (Gossypium hirsutum L.) and sugarcane (Saccharum officinarum L.). Environ Exp Bot 57:168–176

    Article  CAS  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Ryu J, Sa T (2006a) Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 224:268–278

    Article  CAS  PubMed  Google Scholar 

  • Madhaiyan M, Reddy BS, Anandham R, Senthilkumar M, Poonguzhali S, Sundaram SP, Sa T (2006b) Plant growth promoting Methylobacterium induces defense responses in groundnut (Arachis hypogaea L.) compared to rot pathogens. Curr Microbiol 53:270–276

    Article  CAS  PubMed  Google Scholar 

  • Madhaiyan M, Kim BY, Poonguzhali S, Kwon SW, Song MH, Ryu JH, Sa TM (2007) Methylobacterium oryzae sp. nov., an aerobic, pink-pigmented, facultatively methylotrophic, 1-aminocyclopropane-1-carboxylate deaminaseproducing bacterium isolated from rice. Int J Syst Evol Microbiol 57(2):326–331

    Google Scholar 

  • Malik KA, Mirza MS, Hassan U, Mehnaz S, Rasul G, Haurat J, Normand P (2002) The role of plant-associated beneficial bacteria in rice-wheat cropping system. In: Biofertilisers in action. Rural industries research and development Corporation, Canberra, pp 73–83

    Google Scholar 

  • Mao LC, Wang GZ, Zhu CG, Pang HQ (2007) Involvement of phospholipase D and lipoxygenase in response to chilling stress in postharvest cucumber fruits. Plant Sci 172:400–405

    Article  CAS  Google Scholar 

  • Matsui K (2006) Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Curr Opin Plant Biol 9:274–280

    Article  CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh S, Glick BR (2004) Plant growth promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Physiol 166:525–530

    CAS  Google Scholar 

  • McDonald IR, Droning NV, Trotsenko YA, McAnulla C, Murrell JC (2001) Hyphomicrobium chloromethanicum sp. nov. and Methylobacterium chloromethanicum sp. nov., chloromethaneutilizing bacteria isolated from a polluted environment. Int J Syst Evol Microbiol 51:119–122

    Google Scholar 

  • Meyer SLF, Massoud SI, Chitwood DJ, Roberts DP (2000) Evaluation of Trichoderma virens and Burkholderia cepacia for antagonistic activity against root-knot nematode, Meloidogyne incognita. Nematology 2:871–879

    Google Scholar 

  • Mirza MS, Rasul G, Mehnaz S, Ladha JK, So RB, Ali S, Malik KA (2000) Beneficial effects of inoculated nitrogenfixing bacteria on rice. The quest for nitrogen fixation in rice, pp 191–204

    Google Scholar 

  • Mo K, Lora CO, Wanken AE, Javanmardian M, Yang X, Kulpa CF (1997) Biodegradation of methyl t-butyl ether by pure bacterial cultures. Appl Microbiol Biotechnol 47:69–72

    Google Scholar 

  • Morgan PW, Drew MC (1997) Ethylene and plant responses to stress. Physiol Plant 100:620–630

    Article  CAS  Google Scholar 

  • Murty MG, Ladha JK (1988) Influence of Azospirillum inoculation on the mineral uptake and growth of rice under hydroponics conditions. Plant Soil 108:281–285

    Google Scholar 

  • Muthukumarasamy R, Revathi G, Lakshminarasimhan C (1999) Influence of N fertilisation on the isolation of Acetobacter diazotrophicus and Herbaspirillum spp. from Indian sugarcane varieties. Biol Fertil Soils 29(2):157–164

    Google Scholar 

  • Nayak DN, Ladha JK, Watanabe I (1986) The fate of markerAzospirillum lipoferum inoculated into rice and its effect on growth, yield and N 2 fixation of plants studied by acetylene reduction, 15 N 2 feeding and 15 N dilution techniques. Biol Fertil Soils 2(1):7–14

    Google Scholar 

  • Nemchenko A, Kunze S, Feussner I, Kolomiets M (2006) Duplicate maize 13-lipoxygenase genes are differentially regulated by circadian rhythm, cold stress, wounding, pathogen infection, and hormonal treatments. J Exp Bot 157:3767–3779

    Article  CAS  Google Scholar 

  • Niinemets Ü (2010) Mild versus severe stress and BVOCs: thresholds, priming and consequences. Trends Plant Sci 15:145–153

    Article  CAS  PubMed  Google Scholar 

  • Okon Y, Labandera-Gonzalez CA (1994) Agronomic applications of Azospirillum: an evaluation of 20 years world-wide field inoculation. Soil Biol Biochem 26:1591–1601

    Article  CAS  Google Scholar 

  • Omer ZS, Tombolini R, Broberg A, Gerhardson B (2004) Indole-3-acetic acid production by pink-pigmented facultative methylotrophic bacteria. Plant Growth Regul 43:93–96

    Article  CAS  Google Scholar 

  • Pandey A, Kumar S (1989) Potential of Azotobacters and Azospirilla as biofertilizers for upland agriculture-a review. J Sci Ind Res 48(3):134–144

    Google Scholar 

  • Patt TE, Cole GC, Hanson RS (1976) Methylobacterium, a new genus of facultatively methylotrophic bacteria. Int J Syst Evol Microbiol 26(2):226–229

    Google Scholar 

  • Pereira JAR, Cavalcante VA, Baldani J, Döbereiner J (1989) Field inoculation of sorghum and rice with Azospirillum spp. and Herbaspirillum seropedicae. In: Nitrogen fixation with non-legumes. Springer, Dordrecht, pp 219–224

    Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiology 17:362–370

    Google Scholar 

  • Poonguzhali S, Madhaiyan M, Sa TM (2007) Quorum-sensing signals produced by plant-growth promoting Burkholderia strains under in vitro and in planta conditions. Res Microbiol 158:287–294

    Article  CAS  PubMed  Google Scholar 

  • Poonguzhali S, Madhaiyan M, Sa T (2008) Isolation and identification of phosphate solubilizing bacteria from Chinese cabbage and their effect on growth and phosphorus utilization of plants. J Microbiol Biotechnol 18(4):773–777

    Google Scholar 

  • Reis VM, Baldani JI, Baldani VLD, Döbereiner J (2000) Biological dinitrogen fixation in gramineaeand palm trees. Plant Sci 19:227–274

    Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897–906

    Google Scholar 

  • Rodriguez H, Reynaldo F (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  CAS  PubMed  Google Scholar 

  • Roper MM, Ladha JK (1995) Biological N 2 fixation by heterotrophic and phototrophic bacteria in association with straw. In: Management of Biological Nitrogen Fixation for the development of more productive and sustainable agricultural systems. Springer, Dordrecht, pp 211–224

    Google Scholar 

  • Saubidet MI, Barneix AJ (1998) Growth stimulation and nitrogen supply to wheat plants inoculated with Azospirillum brasilense. J Plant Nutr 21(12):2565–2577

    Google Scholar 

  • Schaefer JK, Oremland RS (1999) Oxidation of methyl halides by the facultative methylotroph strain IMB-1. Appl Environ Microbiol 65:5035–5041

    Google Scholar 

  • Schnitzler JP, Graus M, Kreuzwieser J, Heizmann U, Rennenberg H, Wisthaler A, Hansel A (2004) Contribution of different carbon sources to isoprene biosynthesis in poplar leaves. Plant Physiol 135(1):152–160

    Google Scholar 

  • Sevilla M, Burris RH, Gunapala N, Kennedy C (2001) Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and Nif− mutant strains. Mol Plant-Microbe Interact 14:358–366

    Article  CAS  PubMed  Google Scholar 

  • Shagol CC, Krishnamoorthy R, Kim K, Sundaram S, Sa T (2014) Arsenic-tolerant plant-growth-promoting bacteria isolated from arsenic-polluted soils in South Korea. Environ Sci Pollut Res Int 21:9356–9365

    Article  CAS  PubMed  Google Scholar 

  • Shankariah C, Hunsigi G (2001) Field responses of sugarcane to associative N2 fixers and P solubilisers. In: International society of sugar cane technologists congress, vol 24, pp 40–45

    Google Scholar 

  • Sharkey TD, Loreto F (1993) Water stress, temperature, and light effects on the capacity for isoprene emission and photosynthesis of kudzu leaves. Oecologia 95:328–333

    Article  PubMed  Google Scholar 

  • Siddikee MA, Chauhan PS, Anandham R, Han GH, Sa T (2010) Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. J Microbiol Biotechnol 20:1577–1584

    Article  CAS  PubMed  Google Scholar 

  • Siddikee MA, Glick BR, Chauhan PS, JongYim W, Sa T (2011) Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1 aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol Biochem 49:427–434

    Article  CAS  PubMed  Google Scholar 

  • Sperber JI (1958) The incidence of apatite-solubilizing organisms in the rhizosphere and soil. Aust J Agric Res 9:778–781

    Google Scholar 

  • Steindel F, Beauchamp J, Hansel A, Kesselmeier J, Kleist E, Kuhn U, Wisthaler A, Wildt J (2005) Stress induced VOC emissions from mildew infested oak. Geophys Res Abstr 7:EGU05-A-03010

    Google Scholar 

  • Subramanian P, Krishnamoorthy R, Chanratana M, Kim K, Sa T (2015) Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in psychrotolerant bacteria modulates ethylene metabolism and cold induced genes in tomato under chilling stress. Plant Physiol Biochem 89:18–23

    Article  CAS  PubMed  Google Scholar 

  • Sumner ME (1990) Crop responses to Azospirillum inoculation. In: Advances in soil science. Springer, New York, pp 53–123

    Google Scholar 

  • Sundara B, Natarajan V, Hari K (2002) Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crop Res 77(1):43–49

    Google Scholar 

  • Sung DY, Kaplan F, Lee KJ, Guy CL (2003) Acquired tolerance to temperature extremes. Trends Plant Sci 8:179–187

    Article  CAS  PubMed  Google Scholar 

  • Sy A, Giraud E, Jourand P, Garcia N, Willems A, De Lajudie P, Prin Y, Neyra M, Gillis M, Boivin-Masson C, Dreyfus B (2001a) Methylotrophic Methylobacterium bacteria nodulate and fix atmospheric nitrogen in symbiosis with legumes. J Bacteriol 183:214–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sy A, Girud E, Jourand P et al (2001b) Methylotrophic Methylobacterium bacteria nodulate and fix atmospheric nitrogen in symbiosis with legumes. J Bacteriol 183:214–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teuber M et al (2008) VOC emission of Grey poplar leaves as affected by salt stress and different N sources. Plant Biol 10:86–96

    Article  CAS  PubMed  Google Scholar 

  • Timmusk S, El-Daim IA, Copolovici L, Tanilas T, Kännaste A, Behers L, Nevo E, Seisenbaeva G, Stenström E, Niinemets Ü (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9(5):e96086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Torriani A (1960) Influence of inorganic phosphate in the formation of phosphatases by Escherichia coli. Biochim Biophys Acta 38:460–469

    Google Scholar 

  • Trân V, Mavingui P, Berge O, Balandreau J, Heulin T (1994) Promotion de croissarice du riz inoculé par une bactérie fixatrice d’azote, Burkholderia vietnamiensis, isolée d’un sol sulfaté acide du Vietnam. Agronomie 14:697–707

    Google Scholar 

  • Trân V, Berge O, Ngô Kê S, Balandreau J, Heulin T (2000) Repeated beneficial effects of rice inoculation with a strain of Burkholderia vietnamiensis on early and late yield components in low fertility sulphate acid soils of Vietnam. Plant Soil 218:273–284

    Google Scholar 

  • Trotsenko YA, Ivanova EG, Doronina NV (2001) Aerobic methylotrophic bacteria as phytosymbionts. Microbiology 70:725–736

    Article  PubMed  Google Scholar 

  • Truant AL, Gulati R, Giger O, Satishchandran V, Caya JG (1998) Methylobacterium species: an increasingly important opportunistic pathogen. Lab Med 29:704–710

    Google Scholar 

  • Vandamme P, Goris J, Chen WM, De Vos P, Willems A (2002) Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Syst Appl Microbiol 25(4):507–512

    Google Scholar 

  • Vessey J (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 225:571–586

    Article  Google Scholar 

  • Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 5:283–291

    Article  CAS  PubMed  Google Scholar 

  • Wood CC, Islam N, Ritchie RJ, Kennedy IR (2001) A simplified model for assessing critical parameters during associative 15N2 fixation between Azospirillum and wheat. Funct Plant Biol 28(9):969–974

    Google Scholar 

  • Yim W, Seshadri S, Kim K, Lee G, Sa T (2013) Ethylene emission and PR protein synthesis in ACC deaminase producing Methylobacterium sp. inoculated tomato plants (Lycopersicon esculentum Mill.) challenged with Ralstonia solanacearum under greenhouse conditions. Plant Physiol Biochem 67:95–104

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura F (1982) Phylloplane bacteria in a pine forest. Can J Microbiol 28:580–592

    Google Scholar 

  • Zeman AM, Tchan YT, Elmerich C, Kennedy IR (1992) Nitrogenase active wheat-root para-nodules formed by 2,4-dichlorophenoxy acetic acid (2,4-D)/Azospirillum. Res Microbiol 143:847–855

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the Basic Science Research Program of the National Research Foundation (NRF) under the Ministry of Education, Science and Technology (2015R1A2A1A05001885), South Korea, for providing funding support towards the completion of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongmin Sa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chatterjee, P., Samaddar, S., Roy Choudhury, A., Walitang, D., Jeon, S., Sa, T. (2019). Use of Bioinoculants in the Modulation of Volatile Organic Compound Emission Under Environmental Stresses for Sustainable Agriculture. In: Sayyed, R., Reddy, M., Antonius, S. (eds) Plant Growth Promoting Rhizobacteria (PGPR): Prospects for Sustainable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-13-6790-8_24

Download citation

Publish with us

Policies and ethics