Skip to main content

Part of the book series: Green Energy and Technology ((GREEN))

  • 509 Accesses

Abstract

The main challenges for the development of internal combustion (IC) engines are the reduction of pollutant emissions and increase of thermal efficiency. To address both issues, particularly in compression ignition (CI) engines, there is strong interest to develop advanced CI engines with high efficiency and low particulate matter (PM) and NOx emissions. In order to accomplish the advanced CI engines, long ignition delay is essentially required. There are many trials to extend the ignition delay of diesel combustion such as variable compression ratio and variable valve actuation, introduction of high exhaust gas recirculation (EGR) level, early direct injection, late direct injection, and fuel modification. In this chapter, discussion will be concentrated on the fuel modification, particularly the introduction of clean and renewable biofuels, biobutanol. The physico-chemical property, basic combustion study, and combustion and emission characteristics of biobutanol in advanced CI engines will be discussed in order. The advanced CI engines fueled with biobutanol which deliver both high efficiency and very low NOx and soot emissions were divided into four groups, i.e., low-temperature combustion, homogeneous charge compression  ignition, dual-fuel combustion, and reactivity controlled compression ignition modes. The application of acetone–butanol–ethanol blend to advanced CI engines is discussed separately.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Algayyim, S.J.M., Wandel, A.P., Yusaf, T., and Hamawand, I. 2018. Production and application of ABE as a biofuel. Renew. Sustain. Energy Rev. 82, 1195–1214.

    Article  Google Scholar 

  • Babu, M.V., Murthy, K.M., and Rao, G.A.P. 2017. Butanol and pentanol: the promising biofuels for CI engines-a review. Renew. Sustain. Energy Rev. 78, 1068–1088.

    Article  Google Scholar 

  • Baumgardner, M.E., Marchese, A.J., and Sarathy, S.M. 2013a. Autoignition characterization of primary reference fuels and n-heptane/n-butanol mixtures in a constant volume combustion device and homogeneous charge compression ignition engine, in 8th US National Combustion Meeting University of Utah, 19–22 May 070IC–0264.

    Article  Google Scholar 

  • Baumgardner, M.E., Sarathy, S.M., and Marchese, A.J. 2013b. Autoignition characterization of primary reference fuels and n-heptane/n-butanol mixtures in a constant volume combustion device and homogeneous charge compression ignition engine. Energy Fuels 27, 7778–7789.

    Article  Google Scholar 

  • Bendu, H., and Murugan, S. 2014. Homogeneous charge compression ignition (HCCI) combustion: mixture preparation and control strategies in diesel engines. Renew. Sustain. Energy Rev. 38, 732–746.

    Article  Google Scholar 

  • Black, G., Curran, H.J., Pichon, S., Simmie, J.M., and Zhukov, V. 2010. Bio-butanol: combustion properties and detailed chemical kinetic model. Combust. Flame 157, 363–373.

    Article  Google Scholar 

  • Bogin, G.E., Osecky, E., Ratcliff, M.A., Luecke, J., He, X., and Zigler, B.T. et al. 2013. Ignition quality tester (IQT) investigation of the negative temperature coefficient region of alkane autoignition. Energy Fuels 27, 1632–1642.

    Article  Google Scholar 

  • Chen, Z., Liu, J., Wu, Z., and Lee, C. 2013. Effects of port fuel injection (PFI) of n-butanol and EGR on combustion and emissions of a direct injection diesel engine. Energy Convers. Manag. 76, 725–731.

    Article  Google Scholar 

  • Cheng, X., Li, S., Yang, J., Dong, S., and Bao, Z. 2014. Effect of n-butanol-diesel blends on partially premixed combustion and emission characteristics in a light-duty engine. SAE technical paper 2014-01-2675.

    Google Scholar 

  • Cheng, X., Li, S., Yang, J., and Liu, B. 2016. Investigation into partially premixed combustion fueled with n-butanol-diesel blends. Renew. Energy 86, 723–732.

    Article  Google Scholar 

  • Dagaut, P., and Togbe, C. 2009. Experimental and modeling study of the kinetics of oxidation of butanol-n-heptane mixture in a jet-stirred reactor. Energy Fuels 23, 3527–3535.

    Article  Google Scholar 

  • Dec, J.E. 2009. Advanced compression-ignition engines-understanding the in-cylinder processes. Proc. Combust. Inst. 32, 2727–2742.

    Article  Google Scholar 

  • DelVescovo, D., Wang, H., Wissink, M., and Reitz, R.D. 2015. Isobutanol as both low reactivity and high reactivity fuels with addition of Di-Tert Butyl Perodixe (DTBP) in RCCI combustion. SAE Int. J. Fuels Lubr. 8(2), 329–343.

    Article  Google Scholar 

  • Dev, S., Divekar, P., Yanai, T., Chen, X., and Zheng, M. 2016. Hydrocarbon speciation of diesel ignited ethanol and butanol engines. SAE technical paper 2016-01-0773.

    Google Scholar 

  • Gao, T., Reader, G., Tjong, J., and Zheng, M. 2015. Energy efficiency comparison between butanol and ethanol combustion with diesel ignition. SAE technical paper 2015-01-0859.

    Google Scholar 

  • Geng, Z., Xu, L., Li, H., Wang, J., Huang, Z., and Lu, X. 2014. Shock tube measurements and modeling study on the ignition delay times of n-butanol/dimethyl ether mixtures. Energy Fuels 28, 4206–4215.

    Article  Google Scholar 

  • Giakoumis, E.G., Rakopoulos, C.D., Dimaratos, A.M., and Rakopoulos, D.C. 2013. Exhaust emissions with ethanol or n-butanol diesel fuel blends during transient operation: a review. Renew. Sustain. Energy Rev. 17, 170–190.

    Article  Google Scholar 

  • Haas, F.M., Ramcharan, A., and Dryer, F.L. 2011. Relative reactivities of the isomeric butanols and ethanol in an ignition quality tester. Energy Fuels 25, 3909–3916.

    Article  Google Scholar 

  • Han, X., Wang, M., and Zheng, M. 2015a. An enabling study of neat n-butanol HCCI combustion on a high compression-ratio diesel engine. SAE technical paper 2015-01-0001.

    Google Scholar 

  • Han, X., Wang, M., and Zheng, M. 2015b. Study of low temperature combustion with neat n-butanol on a common-rail diesel engine. SAE technical paper 2015-01-0003.

    Google Scholar 

  • Han, X., Zheng, M., Tjong, J., and Li, T. 2015c. Suitability study of n-butanol for enabling PCCI and HCCI and RCCI combustion on a high compression-ratio diesel engine. SAE technical paper 2015-01-1816.

    Google Scholar 

  • Han, X., Zheng, M., and Wang, J. 2013. Fuel suitability for low temperature combustion in compression ignition engines. Fuel 109, 336–349.

    Article  Google Scholar 

  • Heufer, K.A., Fernandes, R.X., Olivier, H., Beeckerman, J., Rohl, O., and Peters, N. 2011. Shock tube investigations of ignition delays of n-butanol at elevated pressures between 770 and 1250 K. Proc. Combust. Inst. 33, 359–366.

    Article  Google Scholar 

  • Jeftic, M., and Zheng, M. 2015. A study of the effect of post injection on combustion and emissions with premixing enhanced fueling strategies. Appl. Energy 157, 861–870.

    Article  Google Scholar 

  • Jin, H., Cai, J., Wang, G., Wang, Y., Li, Y., and Yang, J. et al. 2016. A comprehensive experimental and kinetic modeling study of tert-butanol combustion. Combust. Flame 169, 154–170.

    Article  Google Scholar 

  • Jin, C., Yao, M., Liu, H., Lee, C.F., and Ji, J. 2011. Progress in the production and application of n-butanol as a biofuel. Renew. Sustain. Energy Rev. 15, 4080–4106.

    Article  Google Scholar 

  • Jin, C., and Zheng, Z. 2015. A review on homogeneous charge compression ignition and low temperature combustion by optical diagnostics. J. Chem. ID 910348.

    Google Scholar 

  • Karwat, D.M.A., Wagnon, S.W., Teini, P.D., and Wooldridge, M.S. 2011. On the chemical kinetics of n-butanol: ignition and speciation studies. J. Phys. Chem. A 115, 4909–4921.

    Article  Google Scholar 

  • Karwat, D.M.A., Wagnon, S.W., Wooldridge, M.S., and Westbrook, C.K. 2012. On the combustion chemistry of n-heptane and n-butanol blends. J. Phys. Chem. A. 116, 12406–12421.

    Article  Google Scholar 

  • Karwat, D.M.A., Wooldrige, M.S., Klippenstein, S.J., and Davis, M.J. 2015. Effects of new ab initio rate coefficients on predictions of species formed during n-butanol ignition and pyrolysis. J. Phys. Chem. A 119, 543–551.

    Article  Google Scholar 

  • Komninos, N.P., and Rakopoulos, C.D. 2012. Modeling HCCI combustion of biofuels: a review. Renew. Sustain. Energy Rev. 16, 1588–1610.

    Article  Google Scholar 

  • Kumar, S., Cho, J.H., Park, J., and Moon, I. 2013. Advances in diesel-alcohol blends and their effects on the performance and emissions of diesel engines. Renew. Sustain. Energy Rev. 22, 46–72.

    Article  Google Scholar 

  • Lapuerta, M., Garcia-contreras, R., Campos-Fernandez, J., and Dorado, M.P. 2010. Stability, lubricity, viscosity, and cold-flow properties of alcohol-diesel blends. Energy Fuels 24, 4497–4502.

    Article  Google Scholar 

  • Lapuerta, M., Hernandez, J.J., Fernandez-Rodriguez, D., and Cova-bonillo, A. 2018. Autoignition of blends of n-butanol and ethanol with diesel or biodiesel fuels in a constant-volume combustion chamber. Energy 118, 613–621.

    Article  Google Scholar 

  • Leermakers, C.A.J., Bakker, P.C., Somers, L.M.T., de Goey, L.P.H., and Johansson, B.H. 2013. Butanol-diesel blends for partially premixed combustion. SAE technical paper 2013-01-1683.

    Google Scholar 

  • Li, G., Zhang, C., Shen, Y., Shen, Y., and Zhou, J. 2015. Effects of intake temperature on the combustion characteristics of HCCI engine fueled with n-butanol. Appl. Mech. Mater. 700, 651–654.

    Article  Google Scholar 

  • Li, G., Zhang, C., and Zhou, J. 2017a. Study on the knock tendency and cyclical variations of a HCCI engine fueled with n-butanol/n-heptane blends. Energy Conver. Manag. 133, 548–557.

    Article  Google Scholar 

  • Li, J., Yang, W., and Zhou, D. 2017b. Review on the management of RCCI engines. Renew. Sustain. Energy Rev. 69, 65–79.

    Article  Google Scholar 

  • Liu, H., Bi, X., Huo, M., Lee, C.F., and Yao, M. 2012. Soot emissions of various oxygenated biofuels in conventional diesel combustion and low temperature combustion conditions. Energy Fuels 26, 1900–1911.

    Article  Google Scholar 

  • Liu, H., Huo, M., Liu, Y., Wang, X., Wang, H., and Yao, M. et al. 2014b. Time-resolved spray, flame, soot quantitative measurement fueling n-butanol and soybean biodiesel in a constant volume chamber under various ambient temperature. Fuel 133, 317–325.

    Article  Google Scholar 

  • Liu, H., Li, S., Zheng, Z., Xu, J., and Yap, M. 2013. Effects of n-butanol, 2-butanol, and methyl octynoate addition to diesel fuel on combustion and emissions over a wide range of exhaust gas recirculation (EGR) rates. Appl. Energy 112, 246–256.

    Article  Google Scholar 

  • Liu, H., Wang, X., Zheng, Z., Gu, J., Wang, H., and Yao, M. 2014a. Experimental and simulation investigation of the combustion characteristics and emissions using n-butanol/biodiesel dual-fuel injection on a diesel engine. Energy 74, 741–752.

    Article  Google Scholar 

  • Liu, Y.C., Alam, F.E., Xu, Y., Dryer, F.L., Avedisian, C.T., and Farouk, T.I. 2016. Combustion characteristics of butanol isomers in multiphase droplet configurations. Combust. Flame 169, 216–218.

    Article  Google Scholar 

  • Lopez, A.F., Cadrazco, M., Agudelo, A.F., Corredor, L.A., Velez, J.A., and Agudelo, J.R. 2015. Impact of n-butanol and hydrous ethanol fumigation on the performance and pollutant emissions of an automotive diesel engine. Fuel 153, 483–491.

    Article  Google Scholar 

  • Lu, X., Han, D., and Huang, Z. 2011. Fuel design and management for the control of advanced compression-ignition combustion modes. Prog. Energy Combust. Sci. 37, 741–783.

    Article  Google Scholar 

  • Lu, X., Zhou, X., Ji, L., Yang, Z., Han, D., and Huang, C. et al. 2013. Experimental studies on the dual-fuel sequential combustion and emission simulation. Energy 51, 358–373.

    Article  Google Scholar 

  • Lujaji, F., Bereczky, A., Janosi, L., Novak, C., and Mbarawa, M. 2010. Cetane number and thermal properties of vegetable oil, biodiesel, 1-butanol and diesel blends. J. Therm. Anal. Calorim. 102, 1175–1181.

    Article  Google Scholar 

  • Mack, J.H., Schuler, D., Butt, R.H., and Dibble, R.W. 2016. Experimental investigation of butanol isomer combustion in homogeneous charge compression ignition (HCCI) engines. Appl. Energy 165, 612–626.

    Article  Google Scholar 

  • Masurier, J.-B., Foucher, F., Dayma, G., and Dagaut, P. 2015. Ozone applied to the homogeneous charge compression ignition engine to control alcohol fuels combustion. Appl. Energy 160, 566–580.

    Article  Google Scholar 

  • Maurya, R.K., and Agarwal, A.K. 2013. Experimental investigation of cyclic variations in HCCI combustion parameters for gasoline like fuels using statistical methods. Appl. Energy 111, 310–323.

    Article  Google Scholar 

  • Maurya, R.K., and Agarwal, A.K. 2015. Combustion and emission characterization of n-butanol fueled HCCI engine. J. Energy Res. Technol. 137(1), 1–12.

    Article  Google Scholar 

  • Merchant, S.S., Zanoelo, E.F., Speth, R.L., Harper, M.R., Van Geem, K.M., and Green, W.H. 2013. Combustion and pyrolysis of sio-butanol: experimental and chemical kinetic modeling study. Combust. Flame 60, 1907–1929.

    Article  Google Scholar 

  • Michikawauchi, R., Ranno, S., Ito, Y., and Kanda, M. 2011. Combustion improvement of diesel engine by alcohol addition – investigation of port injection method and blended fuel method. SAE technical paper 2011-01-0336.

    Google Scholar 

  • Mobasheri, R., and Sheddiq, M. 2018. Effects of diesel injection parameters in a heavy duty iso-butanol/diesel reactivity controlled compression ignition (RCCI) engine. SAE technical paper 2018-01-0197.

    Google Scholar 

  • Mohebbi, M., Reyhanian, M., Hosseini, V., Said, M.F.M., and Aziz, A.A. 2018. Performance and emissions of a reactivity controlled light-duty diesel engine fueled with n-butanol-diesel and gasoline. Appl. Therm. Eng. 134, 214–228.

    Article  Google Scholar 

  • Musculus, M.P.B., Miles, P.C., and Pickett, L.M. 2013. Conceptual models for partially premixed low-temperature diesel combustion. Prog. Energy Combust. Sci. 39, 246–283.

    Article  Google Scholar 

  • Najafabadi, M.I., and Aziz, N.A. 2013. Homogeneous charge compression ignition combustion: challenges and proposed solutions. J. Combust. ID 783789.

    Google Scholar 

  • No, S.-Y. 2015. Spray characteristics of biobutanol and its blended fuels in IC engines – a review, in ICLASS2015, 13th Triennial International Conference on Liquid Atomization and Spray Systems, Tainan, Taiwan, Aug. 23–27.

    Google Scholar 

  • No, S.-Y. 2016. Application of biobutanol in advanced CI engines – a review. Fuel 183, 641–658.

    Article  Google Scholar 

  • Noorani, K.E., Akih-Kumgeh, B., and Bergthorson, J.M. 2010. Comparative high temperature shock tube ignition of C1-C4 primary alcohols. Energy Fuels 24, 5834–5843.

    Article  Google Scholar 

  • Pan, L., Zhang, Y., Tian, Z., Yang, F., and Huang, Z. 2014. Experimental and kinetic study on ignition delay times of iso-butanol. Energy Fuels 28, 2160–2169.

    Article  Google Scholar 

  • Pan, S., Li, X., Han, W., and Huang, Y. 2017. An experimental investigation on multi-cylinder RCCI engine fueled with 2-butanol/diesel. Energy Convers. Manag. 154, 92–101.

    Article  Google Scholar 

  • Pelucchi, M., Cavallotti, C., Ranzi, E., Frassoldati, A., and Faravelli, T. 2016. Relative reactivity of oxygenated fuels: alcohols, aldehydes, ketones, and methyl esters. Energy Fuels 30, 8665–8679.

    Article  Google Scholar 

  • Qian, Y., Quyang, L., Wang, X., Zhu, L., and Lu, X. 2015. Experimental studies on combustion and emissions of RCCI fueled with n-heptane/alcohols fuels. Fuel 162, 239–250.

    Article  Google Scholar 

  • Rajesh Kumar, B., and Saravanan, S. 2016a. Effects of iso-butnaol/diesel and n-pentanol/diesel blends on performance and emissions of a DI diesel engine under premixed LTC (low temperature combustion) mode. Fuel 170, 49–59.

    Article  Google Scholar 

  • Rajesh Kumar, B., and Saravanan, S. 2016b. Use of higher alcohol biofuels in diesel engines: a review. Renew. Sustain. Energy Rev. 60, 84–115.

    Article  Google Scholar 

  • Reitz, R.D., and Duraisamy, G. 2015. Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engine. Prog. Energy Combust. Sci. 946, 12–71.

    Article  Google Scholar 

  • Ruiz, F.A., Cadarazco, M., Lopez, A.F., Sanchez-Valdepenas, J., and Agudelo, J.R. 2015. Impact of dual-fuel combustion with n-butanol or hydrous ethanol on the oxidation reactivity and nanostructure of diesel particulate matter. Fuel 161, 18–25.

    Article  Google Scholar 

  • Sahin, Z., Durgun, O., and Aksu, O.N. 2015. Experimental investigation of n-butanol/diesel fuel blends and n-butanol fumigation – evaluation of engine performance, exhaust emissions, heat release and flammability analysis. Energy Convers. Manag. 103, 778–789.

    Article  Google Scholar 

  • Saisirirat, P., Foucher, F., Chanchaona, S., and Mounaim-Rousselle, C. 2010. Spectroscopic measurements of low-temperature heat release for homogeneous combustion compression ignition (HCCI) n-heptane/alcohol mixture combustion. Energy Fuels 24, 5404–5409.

    Article  Google Scholar 

  • Saisirirat, P., Togbe, C., Chanchaona, S., Foucher, F., Mounaim-rousselle, C., and Dagaut, P. 2011. Auto-ignition and combustion characteristics in HCCI and JSR using 1-butanol/n-heptane and ethanol/n-heptane blends. Proc. Combust. Inst. 33, 3007–3014.

    Article  Google Scholar 

  • Sarathy, S.M., Obwald, P., Hansen, N., and Kohse-Hoinghaus, K. 2014. Alcohol combustion chemistry. Prog. Energy Combust. Sci. 44, 40–102.

    Article  Google Scholar 

  • Sarathy, S.M., Vranckx, S., Yasunaga, K., Mehl, M., Oβwald, P., and Metcalfe, W.K. et al. 2012. A comprehensive chemical kinetic combustion model for the four butanol iosmers. Combust. Flame 159, 2028–2055.

    Article  Google Scholar 

  • Saxena, S., and Bedoya, I.D. 2013. Fundamental phenomena affecting low temperature combustion and HCCI engines, high load limits and strategies for extending these limits. Prog. Energy Combust. Sci. 39, 457–488.

    Article  Google Scholar 

  • Soloiu, V., Duggan, M., Harp, S., Vlcek, B., and Williams, D. 2013a. PFI (port fuel injection) of n-butanol and direct injection of biodiesel to attain LTC (low-temperature combustion) for low-emissions idling in a compression engine. Energy 52, 143–154.

    Article  Google Scholar 

  • Soloiu, V., Duggan, M., Ochieng, H., Harp, S., Weaver, J., and Jenkins, C. et al. 2013c. Premixed charge of n-butanol coupled with direct injection of biodiesel for an advantageous Soot-NOx Trade-Off. SAE technical paper 2013-01-0916.

    Google Scholar 

  • Soloiu, V., Duggan, M., Ochieng, H., Williams, D., Molina, G., and Vlcek, B. 2013b. Investigation of low temperature combustion regimes of biodiesel with n-butanol injected in the intake manifold of a compression ignition engine. J. Energy Resour. Technol. 135, 0411101.

    Google Scholar 

  • Soloiu, V., Gaubert, R., Mondada, J., Wiley, J., Williams, J., and Harp, S. et al. 2019. Reactivity controlled compression ignition and low temperature combustion of fisher-tropsch fuel blended with n-butanol. Renew. Energy 134, 1173–1189.

    Article  Google Scholar 

  • Soloiu, V., Moncada, J.D., Gaubert, R., Knowles, A., Molina, G., and Illie, M. et al. 2018a. Reactivity controlled compression ignition combustion and emissions using n-butanol and methyl oleate. Energy 165, 911–924.

    Article  Google Scholar 

  • Soloiu, V., Moncada, J.D., Gaubert, R., Muinos, M., Harp, S., and Ilie, M. et al. 2018b. LTC (low-temperature combustion) analysis of PCCI (premixed charge compression ignition) with n-butanol and cotton seed biodiesel versus combustion and emissions characteristics of their binary mixtures. Renew. Energy 123, 32–333.

    Article  Google Scholar 

  • Soloiu, V., Rivero-Castillo, A., Muinos, M., Duggan, M., Harp, S., and Peavy, W. et al. 2014. Simultaneous reduction of NOx and soot in a diesel engine through RCCI operation with PFI of n-butanol and DI of cottonseed biodiesel. SAE technical paper 2014-01-1322.

    Google Scholar 

  • Soloiu, V., Simons, E., Muinos, M., Harp, S., Knowles, A., and Molina, G. 2016. Sound and vibration levels of CI engines with synthetic kerosene and n-butanol in RCCI. SAE technical paper 2016-01-1306.

    Google Scholar 

  • Stranic, I., Chase, D.P., Jarmon, J.T., Yang, S., Davidson, D.F., and Hanson, R.K. 2012. Shock tube measurements of ignition delay times for the butanol isomers. Combust. Flame 159, 516–527.

    Article  Google Scholar 

  • Szulczyk, K.R. 2010. Which is a better transportation fuel-butanol or ethanol? Int. J. Energy Environ. 1(3), 501–512.

    Google Scholar 

  • Thangaraja, J., and Kannan, C. 2016. Effect of exhaust gas recirculation on advanced diesel combustion and alternate fuels—A review. Appl. Energy 180, 169–184.

    Article  Google Scholar 

  • Trindade, W.R.D.S., and Santos, R.G.D. 2017. Review on the characteristics of butanol, its production and use as fuel in internal combustion engines. Renew. Sustain. Energy Rev. 69, 642–651.

    Article  Google Scholar 

  • Valentino, G., Corcione, F.E., Iannuzzi, S.E., and Serra, S. 2012. Experimental study on performance and emissions of a high speed diesel engine fuelled with n-butanol diesel blends under premixed low temperature combustion. Fuel 92, 295–307.

    Article  Google Scholar 

  • Vallinayagam, R., Vendharaj, S., Yang, W.M., Roberts, W.L., and Dibble, R.W. 2015. Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: a review. Renew. Sustain. Energy Rev. 51, 1166–1190.

    Article  Google Scholar 

  • Visakhamoorthy, S., Wen, J.Z., Sivoththaman, S., and Koch, C.R. 2012. Numerical study of a butanol/heptane fuelled homogeneous charge compression ignition (HCCI) engine utilizing negative value overlap. Appl. Energy 94, 166–173.

    Article  Google Scholar 

  • Vranckx, S., Heufer, K.A., Lee, C., Olivier, H., Schill, L., and Kopp, W.A. et al. 2011. Role of peroxy chemistry in the high-pressure ignition of n-butanol-experiments and detailed kinetic modelling. Combust. Flame 158, 1444–1455.

    Article  Google Scholar 

  • Wang, H., DelVescovo, D., Yao, M., and Reitz, R.D. 2015a. Numerical study of RCCI and HCCI combustion processes using gasoline, diesel, iso-butanol and DTBP cetane improver. SAE Int. J. Engines 8(2), 831–845.

    Article  Google Scholar 

  • Wang, X., Liu, H., Zheng, Z., and Yao, M. 2015b. Development of a reduced n-butanol/biodiesel mechanism for a dual fuel engine. Fuel 157, 87–96.

    Article  Google Scholar 

  • Wang, Y., Yang, Z., Yang, X., Han, D., Huang, Z., and Lu, X. 2014. Experimental and modeling studies on ignition delay times of methyl hexanoate/n-butanol blend fuels at elevated pressures. Energy Fuels 28, 5515–5522.

    Article  Google Scholar 

  • Weber, B.W., Kumar, K., Zhang, Y., and Sung, C.-J. 2011. Autoignition of n-butanol at elevated pressure and low-to-intermediate temperature. Combust. Flame 158, 809–819.

    Article  Google Scholar 

  • Weber, B.W., and Sung, C.-J. 2013. Comparative autoignition trends in butanol isomers at elevated pressure. Energy Fuels 27(3), 1688–1698.

    Article  Google Scholar 

  • Wu, H., Nithyanandan, K., Zhou, N., Lee, T.H., Chia-fon, L., and Zhang, C. 2015a. Impacts of acetone on the spray combustion of Acetone-butanol-ethanol (ABE)-diesel blends under low ambient temperature. Fuel 142, 109–116.

    Article  Google Scholar 

  • Wu, H., Zhang, C., Li, B., Lee, T.H., and Lee, C.F. 2015b. Investigation on spray and flame lift-off length of acetone-butanol-ethanol-diesel blend in a constant volume chamber. J. Eng. Gas Turbines Power 137, 091501.

    Article  Google Scholar 

  • Xiao, J., Jia, M., Chang, Y., Li, Y., Xu, Z., and Xu, G. et al. 2018. Numerical optimization and comparative study of n-butanol concentration stratification combustion and n-butanol/diesel reactivity stratification combustion for advanced compression ignition (CI) engine. Fuel 213, 83–97.

    Article  Google Scholar 

  • Xie, K., Yanai, T., Yang, Z., Reader, G., and Zheng, M. 2016. Emission analysis of HCCI combustion in a diesel engine fueled by butanol. SAE technical paper 2016-01-0749.

    Google Scholar 

  • Yanai, T., Dev, S., Han, X., Zheng, M., and Tjong, J. 2015. Impact of fuelling techniques on neat n-butanol combustion and emissions in a compression ignition engine. SAE technical papers 2015-01-0808.

    Google Scholar 

  • Yang, B., Yao, M., Cheng, W.K., Zheng, Z., and Yue, L. 2014. Regulated and unregulated emissions from a compression ignition engine under low temperature condition fuelled with gasoline and n-butanol/gasoline blends. Fuel 120, 163–170.

    Article  Google Scholar 

  • Yang, Z., Qian, Y., Yang, X., Wang, Y., Wang, Y., and Huang, X. et al. 2013. Autoignition of n-butanol/n-heptane blends fuels in a rapid compression machine under low-to-medium temperature ranges. Energy Fuels 27, 7800–7808.

    Article  Google Scholar 

  • Yao, M., Zhang, Q., Liu, H., Zheng, Z., Zhang, P., and Lin, Z. et al. 2010. Diesel engine combustion control: medium or heavy EGR? SAE technical paper 2010-01-1125.

    Google Scholar 

  • Yao, M., Zheng, Z., and Liu, H. 2009. Progress and recent trends in homogeneous charge compression ignition (HCCI) engines. Prog. Energy Combust. Sci. 35, 398–437.

    Article  Google Scholar 

  • Yu, S., Gao, T., Wang, M., Li, L., and Zheng, M. 2017. Ignition control for liquid dual-fuel combustion in compression ignition engines. Fuel 197, 583–595.

    Article  Google Scholar 

  • Zhang, S., Xu, Z., Lee, T., Lin, Y., Wu, W., and Lee, C.-F. 2016. A semi-detailed chemical kinetic mechanism of acetone-butanol-ethanol (ABE) and diesel blends for combustion simulations. SAE technical paper 2016-01-0583.

    Google Scholar 

  • Zhang, Q., Yao, M., Zheng, Z., Liu, H., and Xu, J. 2012. Experimental study of n-butanol addition on performance and emissions with diesel low temperature combustion. Energy 47, 515–521.

    Article  Google Scholar 

  • Zhang, C., Zhang, C., Xue, L., and Li, Y. 2017. Combustion characteristics and operation range of a RCCI combustion engine fueled with direct injection n-heptane and pipe injection n-butanol. Energy 125, 439–448.

    Article  Google Scholar 

  • Zheng, M., Han, X., Asad, U., and Wang, J. 2015a. Investigation of butanol-fuelled HCCI combustion on a high efficiency diesel engine. Energy Convers. Manag. 98, 215–224.

    Article  Google Scholar 

  • Zheng, M., Li, T., and Han, X. 2015b. Direct injection of neat n-butanol for enabling clean low temperature combustion in a modern diesel engine. Fuel 142, 28–37.

    Article  Google Scholar 

  • Zheng, Z., Li, C., Liu, H., Zhang, Y., Zhong, X., and Yao, M. 2015c. Experimental study on diesel conventional and low temperature combustion by fueling four isomers of butanol. Fuel 141, 109–119.

    Article  Google Scholar 

  • Zheng, Z., Xia, M., Liu, H., Shang, R., Ma, G., and Yao, M. 2018a. Experimental study on combustion and emission of n-butanol/biodiesel under both blended fuel mode and dual fuel RCCI mode. Fuel 226, 240–251.

    Article  Google Scholar 

  • Zheng, Z., Xia, M., Liu, H., Shang, R., Ma, G., and Yao, M. 2018b. Experimental study on combustion and emissions of dual fuel RCCI mode fueled with biodiesel/n-butanol, biodiesel/2, 5-dimethylfuran and biodiesel/ethanol. Energy 148, 824–838.

    Article  Google Scholar 

  • Zhou, N., Huo, M., Wu, H., Nithyanandan, K., Lee, C.-F., and Wang, Q. 2014a. Low temperature spray combustion of acetone-butanol-ethanol (ABE) and diesel blends. Appl. Energy 117, 104–115.

    Article  Google Scholar 

  • Zhou, X., Song, M., Huang, H., Yang, R., Wang, M., and Sheng, J. 2014b. Numerical study of the formation of soot precursors during low-temperature combustion of a n-butanol-diesel blend. Energy Fuels 28, 7149–7158.

    Article  Google Scholar 

  • Zhu, Y., Chen, Z., and Liu, J. 2014. Emission, efficiency, and influence in a diesel n-butanol dual-injection engine. Energy Convers. Manag. 87, 385–391.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo-Young No .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

No, SY. (2019). Biobutanol in Advanced CI Engine. In: Application of Liquid Biofuels to Internal Combustion Engines. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-6737-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6737-3_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6736-6

  • Online ISBN: 978-981-13-6737-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics