Skip to main content

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Biodiesel is one of the most promising alternative fuels for diesel engines because of its biodegradable, oxygenated, sulfur-free, and renewable characteristics. From an economic and social point of view, edible vegetable oil should be substituted by inedible, lower cost, and reliable plant oil for biodiesel production due to the food–fuel crisis and land availability problems. In this chapter, therefore, the discussion will be mainly focused on biodiesel from inedible vegetable oils. Further, application of neat inedible vegetable oils to CI engine will be excluded in this chapter and moved to Chap. 2 SVO. The choice of non edible vegetable oil in this chapter was motivated by the fact that any potential feedstock for biodiesel production should be abundant, and attainable at the lowest price, and studied by many researchers. Accordingly, the discussion for biodiesel includes three sections: the common inedible vegetable oils, underutilized vegetable oils, and finally less common vegetable oils. The engine performance and emissions characteristics for several nonedible oils such as Jatropha curcas, Karanja (Pongamia pinnata), Mahua (Madhuca indica), linseed, rubberseed, cottonseed, and neem oil are included in the common inedible vegetable oils. The underutilized vegetable oils include Ceiba pentandra oil (kapok oil), Croton megalocarpus oil, Calophyllum inophyllum oil, and Moringa oleifera oil. Of the various less common vegetable oils, Citrullus vulgaris seed oil, flax oil, Koroch seed oil, tea seed kernel oil, mustard oil, Annono oil, amla seed oil, and Mimusops oil are discussed. 

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aalam, C.S., and Saravanan, C.G. 2017. Effects of nano metal oxide blended Mahua biodiesel on CRDI diesel engine. Ain Shams Eng. J. 8, 689–696.

    Article  Google Scholar 

  • Aalam, C.S., Saravanan, C.G., and Anand, B.P. 2016. Impact of high fuel injection pressure on the characteristics of CRDI diesel engine powered by mahua methyl ester blend. Appl. Therm. Eng. 106, 702–711.

    Article  Google Scholar 

  • Abedin, M.J., Masjuki, H.H., Kalam, M.A., Sanjid, A., Ashrafur Rahman, S.M., and Rizwanul Fattah, I.M. 2014. Performance, emissions, and heat losses of palm and jatropha biodiesel blends in a diesel engine. Ind. Crops Prod. 59, 96–104.

    Article  Google Scholar 

  • Acharya, S.K., and Jena, S.P. 2013. Performance and emission analysis of a CI engine in dual mode with LPG and Karanja oil methyl ester. ISRN Renew. Energy, 540589.

    Google Scholar 

  • Acharya, N., Nanda, P., Panda, S., and Acharya, S. 2017. Analysis of properties and estimation of optimum blending ratio of blended mahua biodiesel. Eng. Sci. Technol. Int. J. 20, 511–517.

    Article  Google Scholar 

  • Adeniyi, O.M., Azimov, U., and Burluka, A. 2018. Algae biofuel: current status and future applications. Renew. Sustain. Energy Rev. 90, 316–335.

    Article  Google Scholar 

  • Agarwal, A.K., Dhar, A., Gupta, J.G., Kim, W.I., Choi, K., and Lee, C.S. et al. 2015. Effect of fuel injection pressure and injection timing of Karanja biodiesel blends on fuel spray, engine performance, emissions and combustion characteristics. Energy Convers. Manag. 91, 302–314.

    Article  Google Scholar 

  • Agarwal, A.K., Katiyar, V., and Singh, K. 2016a. Optimisation of Karanja/Jatropha-Methanol emulsification variables and their engine evaluation. Renew. Energy 96, 433–441.

    Article  Google Scholar 

  • Agarwal, A.K., and Khurana, D. 2013. Long-term storage oxidation stability of Karanja biodiesel with the use of antioxidants. Fuel Process. Technol. 106, 447–452.

    Article  Google Scholar 

  • Agarwal, A.K., Shrivastava, A., and Prasad, R.K. 2016b. Evaluation of toxic potential of particulates emitted from Jatropha biodiesel fuelled engine. Renew. Energy 99, 564–572.

    Article  Google Scholar 

  • Ahmed, S., Hassan, M.H., Kalam, M.A., Ashrafur Rahman, S.M., Abedin, M.J., and Shair, A. 2014. An experimental investigation of biodiesel production, characterization, engine performance, emission and noise of Brassica juncea methyl ester and its blends. J. Clean. Prod. 79, 74–81.

    Article  Google Scholar 

  • Aldhaidhawi, M., Chiriac, R., and Badescu, V. 2017. Ignition delay, combustion and emission characteristics of Diesel engine fueled with rapeseed biodiesel – a literature review. Renew. Sustain. Energy Rev. 73, 178–186.

    Article  Google Scholar 

  • Aliyu, B., Agnew, B., and Douglas, S. 2010. Croton megalocarpus (Musine) seeds as a potential source of bio-diesel. Biomass Bioenergy 34, 1495–1499.

    Article  Google Scholar 

  • Aliyu, B., Shitanda, D., Walker, S., Agnew, B., Masheiti, S., and Atan, R. 2011. Performance and exhaust emissions of a diesel engine fueled with Croton megalocarpus (musine) methyl ester. Appl. Therm. Eng. 31, 36–41.

    Article  Google Scholar 

  • Ang, G.T., Ooi, S.N., Tan, K.T., Lee, K.T., and Mohamed, A.R. 2015. Optimization and kinetic studies of sea mango (cerbera odollam) oil for biodiesel production vis supercritical reaction. Energy Convers. Manag. 99, 242–251.

    Article  Google Scholar 

  • Arumugam, A., and Ponnusami, V. 2019. Biodiesel production from Calophyllum inophyllum oil a potential non-edible feedstock: an overview. Renew. Energy 131, 459–471.

    Article  Google Scholar 

  • Ashok, B., Nanthagopal, K., Jeevanantham, A.K., Bhowmick, P., Malhotra, D., and Agarwal, P. 2017a. An assessment of Calophyllum inophyllum biodiesel fueled diesel engine characteristics using novel antioxidant additives. Energy Convers. Manag. 148, 935–943.

    Article  Google Scholar 

  • Ashok, B., Nanthagopal, K., Mohan, A., Johny, A., and Tamilarasu, A. 2017b. Comparative analysis on the effect of zinc oxide and ethanox as additives with biodiesel in CI engine. Energy 140, 352–364.

    Article  Google Scholar 

  • Ashok, B., Nanthagopal, K., Raj, R.T.K., Bhasker, J.P., and Vignesh, D.S. 2017c. Influence of injection timing and exhaust gas recirculation of a calophyllum inophyllum methyl ester fueled CI engine. Fuel Process. Technol. 167, 18–30.

    Article  Google Scholar 

  • Ashok, B., Nanthagopal, K., Subbarao, R., Johny, A., Mohan, A., and Tamilarasu, A. 2017d. Experimental studies on the effect of metal oxide and antioxidant additives with Calophyllum inophyllum Methyl ester in compression ignition engine. J. Clean. Prod. 166, 474–484.

    Article  Google Scholar 

  • Ashok, B., Nanthagopal, K., and Vignesh, D.S. 2018. Calophyllum inophyllum methyl ester biodiesel blend as an alternate fuel for diesel engine applications. Alex Eng. J. 57, 1239–1247.

    Article  Google Scholar 

  • Ashrafur Rahman, S.M., Masjuki, H.H., Kalam, M.A., Abedin, M.J., Sanjid, A., and Sajjad, H. 2013. Production of palm and Calophyllum inophyllum based biodiesel and investigation of blend performance and exhaust emission in an unmodified diesel engine at high idling conditions. Energy Convers. Manag. 76, 362–367.

    Article  Google Scholar 

  • Ashraful, A.M., Masjuki, H.H., Kalam, M.A., Fattah, I.M.R., Imtenan, S., and Shahir, S.A. et al. 2014. Production and comparison of fuel properties, engine performance, and emission characteristics of biodiesel from various non-edible vegetable oils—a review. Energy Convers. Manag. 80, 202–228.

    Article  Google Scholar 

  • Ashrafur Rahman, S.M., Masjuki, H.H., Kalam, M.A., Abedin, M.J., Sanjid, A., and Imtenan, S. 2014a. Effect of idling on fuel consumption and emissions of a diesel engine fueled by Jatropha biodiesel blends. J. Clean. Prod. 69, 208–215.

    Article  Google Scholar 

  • Ashrafur Rahman, S.M., Masjuki, H.H., Kalam, M.A., Abedin, M.J., Sanjid, A., and Mofijur Rahman, M. 2014b. Assessing idling effects on a compression ignition engine fueled with Jatropha and Palm biodiesel blends. Renew. Energy 68, 644–650.

    Article  Google Scholar 

  • Ashrafur Rahman, S.M., Masjuki, H.H., Kalam, M.A., Sanjid, A., and Abedin, M.J. 2014c. Asessment of emission and performance of compression ignition engine with varying injecting timing. Renew. Sustain. Energy Rev. 35, 221–230.

    Article  Google Scholar 

  • Asif, S., Ahmad, M., Bokhari, A., Chuah, L.F., Klemes, J.J., and Akbar, M.M. et al. 2017. Methyl ester systhesis of Pistacia Khinjuk seed oil by ultrasonic assisted cavitation system. Ind. Crops Prod. 108, 336–347.

    Article  Google Scholar 

  • Atabani, A.E., Badruddin, I.A., Masjuki, H.H., Chong, W.T., and Lee, K.T. 2014a. Pangium edule Reinw: a promising non-edible oil feedstock for biodiesel production. Arab. J. Sci. Eng. https://doi.org/10.1007/s13369-014-1452-5.

    Article  Google Scholar 

  • Atabani, A.E., Badruddin, I.A., Masjuki, H.H., Chong, W.T., Mahlia, T.M.I., and Lee, K.T. 2013a. Investigation of physical and chemical properties of potential edible and non-edible feedstocks for biodiesel production, a comparative analysis. Renew. Sustain. Energy Rev. 21, 749–755.

    Article  Google Scholar 

  • Atabani, A.E., Badrudding, I.A., Mahlia, T.M.I., Masjuk, H.H., Mofijur, M., and Lee, K.T. et al. 2013c. Fuel properties of Croton megalocarpus, Calophyllum inophyllum and Cocos nucifera (coconut) methyl esters and their performance in a multicylinder diesel engine. Energy Technol. 1, 685–694.

    Article  Google Scholar 

  • Atabani, A.E., and Cesar, A.S. 2014. Calophyllum inophyllum L.—a prospective non-edible biodiesel feedstock. Study of biodiesel production, properties, fatty acid composition, blending and engine performance. Renew. Sustain. Energy Rev. 37, 644–655.

    Article  Google Scholar 

  • Atabani, A.E., Mahlia, T.M.I., Masjuki, H.H., Badruddin, I.A., Yussof, H.W., and Chong, W.T. et al. 2013b. A comparative evaluation of physical and chemical properties of biodiesel synthesized from edible and non-edible oils and study on the effect of biodiesel blending. Energy 58, 296–304.

    Article  Google Scholar 

  • Atabani, A.E., Mofijur, M., Masjuki, H.H., Badruddin, I.A., Kalam, M.A., and Chong, W.T. 2014b. Effect of Croton megalocarpus Calophyllum inophyllum, Moringa oleifera, palm and coconut biodiesel-diesel blending on their physico-chemical properties. Ind. Crops Prod. 60, 130–137.

    Article  Google Scholar 

  • Atabani, A.E., Silitonga, A.S., Badruddin, I.A., Mahlia, T.M.I., Masjuki, H.H., and Mekhilef, S. 2012. A comprehensive review on biodiesel as an alternative energy source and its characteristics. Renew. Sustain. Energy Rev. 16, 2070–2093.

    Article  Google Scholar 

  • Atabani, A.E., Silitonga, A.S., Ong, H.C., Mahlia, T.M.I., Masjuki, H.H., and Badruddin, I.A. et al. 2013d. Non-edible vegetable oils: a critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emission production. Renew. Sustain. Energy Rev. 18, 211–245.

    Article  Google Scholar 

  • Augustine, A., Marimuthu, L., and Muthusamy, S. 2012. Performance and evaluation of DI diesel engine by using preheated cottonseed oil methyl ester. Procedia Eng. 38, 779–790.

    Article  Google Scholar 

  • Aydin, H., and Bayindir, H. 2010. Performance and emission analysis of cottonseed oil methyl ester in a diesel engine. Renew. Energy 35, 588–592.

    Article  Google Scholar 

  • Azad, A.K., Rasul, M.G., Khan, M.M.K., Sharma, S.C., and Islam, R. 2015. Prospect of Moringa seed oil as a sustainable biodiesel fuel in Australia: a review. Procedia Eng. 105, 601–606.

    Article  Google Scholar 

  • Azad, A.K., Rasul, M.G., Khan, M.M.K., Sharma, S.C., Mofijur, M., and Bhuiya, M.M.K. 2016. Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: a nonedible oil sources in Australia. Renew. Sustain. Energy Rev. 61, 302–318.

    Article  Google Scholar 

  • Bahadur, I., Bux, F., Guldhe, A., Tumba, K., Singh, B., and Ramjugernath, D. et al. 2014. Assessment of Potential of Croton gartissimus Oil for Macroscale production of Biodiesel based on Thermophysical Prpperties. Energy Fuels 28, 7576–7581.

    Article  Google Scholar 

  • Bajpai, S., and Das, L.M. 2014. Experimental investigations of an IC Engine operating with alkyl esters of Jatropha, Karanja and Castor seed Oil. Energy Procedia 54, 701–717.

    Article  Google Scholar 

  • Balaji, G., and Cheralathan, M. 2014a. Experiemental reduction of NOx and HC emissions in a CI engine fueled with methyl ester of neem oil using p-phenylenediamine antioxidant. J. Sci. Ind. Res. 73(3), 177–180.

    Google Scholar 

  • Balaji, G., and Cheralathan, M. 2014b. Study of antioxidant effect on oxidation stability and emissions in a methyl ester of neem oil fuelled DI diesel engine. J. Energy Inst. 87, 188–195.

    Article  Google Scholar 

  • Balaji, G., and Cheralathan, M. 2014c. Experimental investigation to reduce emissions of CI (compression ignition) engine fueled with methyl ester of cottonseed oil using antioxidant. Int. J. Ambient Energy 35(1), 13–19.

    Article  Google Scholar 

  • Balaji, G., and Cheralathan, M. 2015a. Experimental investigation of antioxidant effect on oxidation stability and emissions in a methyl ester of neem oil fueled DI diesel engine. Renew. Energy 74, 910–916.

    Article  Google Scholar 

  • Balaji, G., and Cheralathan, M. 2015b. Simultaneous reduction of NOx and HC emissions in a CI engine fueled with methyl ester of neem oil using ethylenendiamine as antioxidant additive. Energy Sources Part A Recover Util. Environ. Eff. 37(24), 2684–2691.

    Article  Google Scholar 

  • Barik, D., and Murugan, S. 2016. Effects of diethyl ether (DEE) injection on combustion performance and emission characteristics of Karanja methyl ester (KME)–biogas fueled dual fuel diesel engine. Fuel 164, 286–296.

    Article  Google Scholar 

  • Barik, D., and Sivalingam, M. 2014. Investigation on performance and exhaust emissions characteristics of a DI diesel engine fueled with Karanja methyl ester and biogas in dual fuel mode. SAE technical paper 2014-01-1311.

    Google Scholar 

  • Bart, J.C.J., Palmeri, N., and Cavallaro, S. 2010. Biodiesel science and technology: from soil to oil (Woodhead Publishing Limited).

    Google Scholar 

  • Behcet, R., Oktay, H., Cakmak, A., and Aydin, H. 2015. Comparison of exhaust emissions of biodiesel-diesel fuel blends produced from animal fats. Renew. Sustain. Energy Rev. 46, 157–165.

    Article  Google Scholar 

  • Belagur, V.K., and Chitimi, V.R. 2013. Few physical, chemical and fuel related properties of Calophyllum inophyllum linn (hone) oil and its blends with diesel fuel for their use in diesel engine. Fuel 109, 356–361.

    Article  Google Scholar 

  • Bhaskar, S.V. 2017. Evaluation on influence of fuel injection pressure on emission characteristics of CIDI engine using jatropha oil methyl ester. Int. J. Eng. Sci. Res. Technol. 6(10), 647–652.

    Google Scholar 

  • Bhatia, S.K., Bhatia, R.K., and Yang, Y.-H. 2017. An overview of microdiesel – a sustainable future source of renewable energy. Renew. Sustain. Energy Rev. 79, 1078–1090.

    Article  Google Scholar 

  • Bora, D.K., and Baruah, D.C. 2012. Assessment of tree seed oil biodiesel: a comparative review based on biodiesel of a locally available tree seed. Renew. Sustain. Energy Rev. 16, 1616–1629.

    Article  Google Scholar 

  • Bux, F. (ed). 2013. Biotechnological application of microalgae; biodiesel and value-added products (CRC Press).

    Google Scholar 

  • Chaithongdee, D., Chutmanop, J., and Srinophakum, P. 2010. Effect of anitoxidants and additives on the oxidation stability of jatropha biodiesel. Kasetsart J. Nat. Sci. 44(2), 243–250.

    Google Scholar 

  • Channapattana, S.V., Kantharaj, C., Shinde, V.S., Pawar, A.A., and Kamble, P.G. 2015. Emissions and performance evaluation of DI CI-VCR engine fuelled with honne oil methyl ester/diesel blends. Energy Procedia 74, 281–288.

    Article  Google Scholar 

  • Chauhan, B.S., Kumar, N., and Cho, H.M. 2012. A study on the performance and emission of a diesel engine fueled with Jatropha biodiesel oil and its blends. Energy 37, 616–622.

    Article  Google Scholar 

  • Chauhan, B.S., Kumar, N., Cho, H.M., and Lim, H.C. 2013. A study on the performance and emission of a diesel engine fueled with Karanja biodiesel and its blends. Energy 56, 1–7.

    Article  Google Scholar 

  • Chauhan, B.S., Singh, R.K., Cho, H.M., and Lim, H.C. 2016. Practice of diesel fuel blends using alternative fuels: a review. Renew. Sustain. Energy Rev. 59, 1358–1368.

    Article  Google Scholar 

  • Chavan, S.B., Kumbhar, R.R., Kumar, A., and Sharma, Y.C. 2015. Study of biodiesel blends on emission and performance characterization of a variable compression ratio engine. Energy Fuels 29, 4393–4398.

    Article  Google Scholar 

  • Cheah, K.W., Yusup, S., Chuah, L.F., and Bokhari, A. 2016. Pysio-chemical studies of locally sourced non-edible oil: prospective feedstock for renewable diesel production in Malaysia. Procedia Eng. 148, 451–458.

    Article  Google Scholar 

  • Chu, J., Xu, X., and Zhang, Y. 2013. Production and properties of biodiesel produced from Amygdalus pedunculata Pall. Bioresour. Technol. 134, 374–376.

    Article  Google Scholar 

  • Conigilio, L., Bennadji, H., Glaude, P.A., Herbinet, O., and Billaud, F. 2013. Combustion chemical kinetics of biodiesel and related compounds (methyl and ethyl esters): experiments and modeling – advanced and future refinements. Prog. Energy Combust. Sci. 39, 340–382.

    Article  Google Scholar 

  • Damanik, N., Ong, H.C., Chong, W.T., and Silitonga, A.S. 2017. Biodiesel production from Calophyllum inophyllum – palm mixed oil. Energy Source Part A, 1–7.

    Google Scholar 

  • Das, L.M., Bora, D.K., Pradhan, S., Naik, M.K., and Naik, S.N. 2009. Long-term storage stability of biodiesel produced from Karanja oil. Fuel 88, 2315–2318.

    Article  Google Scholar 

  • Demirbas, A. 2010. Tea seed upgrading facilities and economic assessment of biodiesel production from tea seed oil. Energy Convers. Manag. 51, 2595–2599.

    Article  Google Scholar 

  • Devi, A., Das, V.K., and Deka, D. 2017. Ginger extract as a nature based robust additive and its influence on the oxidation stability of biodiesel synthesized from non-edible oil. Fuel 187, 306–314.

    Article  Google Scholar 

  • Dhamodaran, G., Krishnan, R., Pochareddy, Y.K., Pyarelal, H.M., Sivasubramanian, H., and Ganeshram, A.K. 2017. A comparative study of combustion, emission, and performance characteristics of rice-bran-, neem-, and cottonseed-oil biodiesels with varying degree of unsaturation. Fuel 187, 296–305.

    Article  Google Scholar 

  • Dhar, A., and Agarwal, A.K. 2014a. Performance, emissions and combustion characteristics of Karanja biodiesel in a transportation engine. Fuel 119, 70–80.

    Article  Google Scholar 

  • Dhar, A., and Agarwal, A.K. 2014b. Effect of Karanja biodiesel blend on engine wear in a diesel engine. Fuel 134, 81–89.

    Article  Google Scholar 

  • Dhar, A., and Agarwal, A.K. 2014c. Experimental investigations of effect of Karanja biodiesel on tribological properties of lubricating oil in a compression ignition engine. Fuel 130, 112–119.

    Article  Google Scholar 

  • Dhar, A., and Agarwal, A.K. 2015a. Effect of Karanja biodiesel blends on particulate emissions from a transportation engine. Fuel 141, 154–163.

    Article  Google Scholar 

  • Dhar, A., and Agarwal, A.K. 2015b. Experimental investigations of the effect of pilot injection on performance, emissions and combustion characteristics of Karanja biodiesel fuelled CRDI engine. Energy Convers. Manag. 93, 357–366.

    Article  Google Scholar 

  • Dharma, S., Hassan, M.H., Ong, H.C., Sebayang, A.H., Silitonga, A.S., and Kusumo, F. et al. 2017. Experimental study and prediction of the performance and exhaust emissions of mixed Jatropha curcas-Ceiba pentandra biodiesel blends in diesel engine using artificial neural networks. J. Clean. Prod. 164, 6128–6633.

    Article  Google Scholar 

  • Dhoot, S.B., Jaju, D.R., Deshmukh, S.A., Panchal, B.M., and Sharma, M.R. 2011. Extraction of Thevitia peruviana seed oil and optimization of biodiesel production using alkali-catalized methanolysis. J. Altern. Energy Sources Technol. 2(2), 8–16.

    Google Scholar 

  • Dixit, S., Kanakraj, S., and Rehman, A. 2012. Linseed oil as a potential resource for bio-diesel: a review. Renew. Sustain. Energy Rev. 16, 4415–4421.

    Article  Google Scholar 

  • Dubey, P., and Gupta, R. 2017. Effects of dual bio-fuel (Jatropha biodiesel and turpentine oil) on a single cylinder naturally aspirated diesel engine without EGR. Appl. Therm. Eng. 115, 1137–1147.

    Article  Google Scholar 

  • Efavi, J.K., Kanbogtah, D., Apalangya, V., Nuankson, E., Tiburu, E.K., and Dodoo-Arhin, D. et al. 2018. The effect of NaOH catalyst concentration and extraction time on the yield and properties of Citrullus vulgaris seed oil as a potential biodiesel fees stock. S. Afr. J. Chem. Eng. 25, 98–102.

    Google Scholar 

  • El-Kasaby, M., and Nemit-allah, M.A. 2013. Experimental investigations of ignition delay period and performance of a diesel engine operated with Jatropha oil biodiesel. Alex. Eng. J. 52, 141–149.

    Article  Google Scholar 

  • Emiroglu, A.O., and Sen, M. 2018. Combustion, performance and exhaust emission characterizations of a diesel engine operating with a ternary blend (alcohol-biodiesel-diesel fuel). Appl. Therm. Eng. 133, 371–380.

    Article  Google Scholar 

  • Enweremadu, C.C., and Rutto, H.L. 2010. Combustion, emission and engine performance characteristics of used cooking oil biodiesel—a review. Renew. Sustain. Energy Rev. 14, 2863–2873.

    Article  Google Scholar 

  • Eryilmaz, T., Yesilyurt, M.K., Cesur, C., and Gokdogan, O. 2016. Biodiesel production potential from oil seeds in Turkey. Renew. Sustain. Energy Rev. 58, 842–851.

    Article  Google Scholar 

  • Fattah, I.M.R., Masjuki, H.H., Liaquat, A.M., Ramli, R., Kalam, M.A., and Riazuddin, V.N. 2013. Impact of various biodiesel fuels obtained from edible and non-edible oils on engine exhaust gas and noise emissions. Renew. Sustain. Energy Rev. 18, 552–567.

    Article  Google Scholar 

  • Fernandes, D.M., Sousa, R.M.F., De Oliveira, A., Morais, S.A.L., Richter, E.M., and Munoz, R.A.A. 2015. Moringa oleifera: a potential source for production of biodiesel and antioxidant additives. Fuel 146, 75–80.

    Article  Google Scholar 

  • Fotouo-M, H., du Toit, E.S., and Robbertse, P.J. 2016. Effect of storage conditions on Moringa oleifera Lam. seed oil: biodiesel feedstock quality. Ind. Crops Prod. 84, 80–86.

    Article  Google Scholar 

  • Franca, F.R.M., Freitas, L.D.S., Ramos, A.L.D., Da Silva, G.F., and Brandao, S.T. 2017. Storage and oxidation stability of commercial biodiesel using Moringa oleifer Lam as an antioxidant additive. Fuel 203, 627–632.

    Article  Google Scholar 

  • Ganapathy, T., Gakkhar, R.P., and Murugesan, K. 2011. Influence of injection timing on performance, combustion and emission characteristics of Jatropha biodiesel engine. Appl. Energy 88, 4376–4386.

    Article  Google Scholar 

  • Gangil, S., Singh, R., Bhavate, P., Bhagat, D., and Modhera, B. 2016. Evaluation of engine performance andemission with methyl ester of Karanja oil. Perspect Sci. 8, 241–243.

    Article  Google Scholar 

  • Gautman, R., Kumar, N., and Sharma, P. 2013. Comparative assessment of performance, emission and combustion characteristics of blends of methyl and ethyl ester of jatropha oil and diesel in compression ignition engine. SAE technical paper 2013-01-2664.

    Google Scholar 

  • Ghazali, W.N.M.W., Mamat, R., Masjuki, H.H., and Najafi, G. 2015. Effects of biodiesel from different feedstocks on engine performance and emissions: a review. Renew. Sustain. Energy Rev. 51, 585–602.

    Article  Google Scholar 

  • Giwa, S., Abdullah, L.C., and Adam, N.M. 2010. Investigating “Egusi” (Citrullus Colocynthis L.) seed oil as potential biodiesel feedstock. Energies 3, 607–618.

    Article  Google Scholar 

  • Gogoi, T.K., and Baruah, D.C. 2011. The use of Koroch seed oil methyl ester blends as fuel in a diesel engine. Appl. Energy 88, 2713–2725.

    Article  Google Scholar 

  • Gupta, J.G., and Agarwal, A.K. 2016. Macroscopic and microscopic spray characteristics of diesel and Karanja biodiesel blends. SAE technical paper 2016-01-0869.

    Google Scholar 

  • Habibullah, M., Masjuki, H.H., Kalam, M.A., Ashrafur Rahman, S.M., Mofijur, M., and Mobarak, H.M. et al. 2015a. Potential of biodiesel as a renewable energy source in Bangladesh. Renew. Sustain. Energy Rev. 50, 819–834.

    Article  Google Scholar 

  • Habibullah, M., Masjuki, H.H., Kalam, M.A., Zulkifli, N.W.M., Masum, B.M., and Arslan, A. et al. 2015b. Friction and wear characteristics of Calophyllum inophyllum biodiesel. Ind. Crops Prod. 76, 188–197.

    Article  Google Scholar 

  • Hazar, H. 2010. Cotton methyl ester usage in a diesel engine equipped with insulated combustion chamber. Appl. Energy 87, 134–140.

    Article  Google Scholar 

  • He, B.-Q. 2016. Advances in emission characteristics of diesel engines using different biodiesel fuels. Renew. Sustain. Energy Rev. 60, 570–586.

    Article  Google Scholar 

  • Hoseini, S.S., Najafi, G., Ghobadian, B., Mamat, R., Sidik, N.A.C., and Azmi, W.H. 2017. The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends. Renew. Sustain. Energy Rev. 73, 307–331.

    Article  Google Scholar 

  • How, H.G., Masjuki, H.H., Kalam, M.A., Teoh, Y.H., and Chuah, H.G. 2018. Effect of Calophyllum inophyllum biodiesel-diesel blends on combustion, performance, exhaust particulate matter and gaseous emissions in a multi-cylinder diesel engine. Fuel 227, 154–164.

    Article  Google Scholar 

  • Hudaya, T., Lina, and Soerawidjaja, T.H. 2013. A study on low temperature and pressure hydrogenation of cyclopropenoid-group containing non-edible oil for biodiesel feedstock. Energy Procedia 32, 209–215.

    Article  Google Scholar 

  • Imdadul, H.K., Zulkifli, N.W.M., Masjuki, H.H., Kalam, M.A., Kamruzzaman, M., and Rashed, M.M. et al. 2017. Experimental assessment of non-edible candlenut biodiesel and its blend characteristics as diesel engine fuel. Environ. Sci. Pollut. Res. 24, 2350–2363.

    Article  Google Scholar 

  • Imtenan, S., Ashrafur Rahman, S.M., Masjuki, H.H., Varman, M., and Kalam, M.A. 2015a. Effect of dynamic injection pressure on performance, emission and combustion characteristics of a compression ignition engine. Renew. Sustain. Energy Rev. 52, 1205–1211.

    Article  Google Scholar 

  • Imtenan, S., Masjuki, H.H., Varman, M., Kalam, M.A., Arbab, M.I., and Sajjad, H. et al. 2014. Impact of oxygenated additives to palm and jatropha biodiesel blends in the context of performance and emissions characteristics of a light-duty diesel engine. Energy Convers. Manag. 83, 149–158.

    Article  Google Scholar 

  • Imtenan, S., Masjuki, H.H., Varman, M., Rizwanul Fattah, I.M., Sajjad, H., and Arbab, M.I. 2015b. Effect of n-butanol and diethyl ether as oxygenated additives on combustion–emission-performance characteristics of a multiple cylinder diesel engine fuelled with diesel–jatropha biodiesel blend. Energy Convers. Manag. 94, 84–94.

    Article  Google Scholar 

  • Iqbal, M.A., Varman, M., Hassan, M.H., Kalam, M.A., Hossain, S., and Sayeed, I. 2015. Tailoring fuel properties using jatropha, palm and coconut biodiesel to improve CI engine performance and emission characteristics. J. Clean. Prod. 101, 262–270.

    Article  Google Scholar 

  • Islam, M.M., Hassan, M.H., Kalam, M.A., Zukifli, N.W.B.M., Habibullah, M., and Hossain, M.M. 2016. Improvement of cold flow properties of Cocos nucifera and Calophyllum inophyllum biodiesel blends using polymethyl acrylate additive. J. Clean. Prod. 137, 322–329.

    Article  Google Scholar 

  • Islam, M.A., Heimann, K., and Brown, R.J. 2017. Microalgae biodiesel: current status and future needs for engine performance and emissions. Renew. Sustain. Energy Rev. 79, 1160–1170.

    Article  Google Scholar 

  • Issariyakul, T., and Dalai, A.K. 2010. Biodiesel production from Greenseed Canola oil. Energy Fuels 24, 4652–4658.

    Article  Google Scholar 

  • Jahirul, M.I., Brown, R.J., Senadeera, W., Ashwath, N., Rasul, M.G., and Mahman, M.M. et al. 2015. Physico-chemical assessment of beauty leaf (Calophyllum inophyllum) as second-generation biodiesel feedstock. Energy Rep. 1, 204–215.

    Article  Google Scholar 

  • Jain, M., Chandrakant, U., Orsat, V., and Raghavan, V. 2018. A review on assessment of biodiesel production methodologies from Calophyllum inophyllum seed oil. Ind. Crops Prod. 114, 28–44.

    Article  Google Scholar 

  • Jain, S., and Sharma, M.P. 2010. Stability of biodiesel and its blends: a review. Renew. Sustain. Energy Rev. 14, 667–678.

    Article  Google Scholar 

  • Jain, S., and Sharma, M.P. 2012. Application of thermogravimetric analysis for thermal stability of Jatropha curcas biodiesel. Fuel 93, 252–257.

    Article  Google Scholar 

  • Jain, S., and Sharma, M.P. 2013. Engine performance and emission analysis using oxidatively stabilized Jatropha curcas biodiesel. Fuel 106, 152–156.

    Article  Google Scholar 

  • Javed, S., Murthy, Y.V.V.S., Baig, R.U., and Rao, D.P. 2015. Development of ANN model for prediction of performance and emission characteristics of hydrogen dual fueled diesel engine with Jatropha Methyl Ester biodiesel blends. J. Nat. Gas Sci. Eng. 26, 549–557.

    Article  Google Scholar 

  • Javed, S., Satyanarayana Murthy, Y.V.V., Satyanarayana, M.R.S., Rajeswara Reddy, R., and Rajagopal, K. 2016. Effect of a zinc oxide nanoparticle fuel additive on the emission reduction of a hydrogen dual-fuelled engine with jatropha methyl ester biodiesel blends. J. Clean. Prod. 137, 490–506.

    Article  Google Scholar 

  • Jiaqiang, E., Pham, M., Zhao, D., Deng, Y., Le, D., and Zuo, W. et al. 2017. Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: a review. Renew. Sustain. Energy Rev. 80, 620–647.

    Article  Google Scholar 

  • Jindal, S., Nandwana, B.P., Rathore, N.S., and Vashistha, V. 2010. Experimental investigation of the effect of compression ratio and injection pressure in a direct injection diesel engine running on Jatropha methyl ester. Appl. Therm. Eng. 30, 442–448.

    Article  Google Scholar 

  • Jiotode, Y., and Agarwal, A.K. 2017. Endoscopic combustion characterization of Jatropha biodiesel in a compression ignition engine. Energy 119, 845–851.

    Article  Google Scholar 

  • Kafuku, G., Lam, M.K., Kansedo, J., Lee, K.T., and Mbrarawa, M. 2010. Croton megalocarpus oil: a feasible non-edible oil source for biodiesel production. Bioresour. Technol. 10, 7000–7004.

    Article  Google Scholar 

  • Kafuku, G., and Mbarawa, M. 2010. Biodiesel production from croton megalocarpus oil and its process optimization. Fuel 89(9), 2556–2560.

    Article  Google Scholar 

  • Kaisan, M.U., Anafi, F.O., Nuszkowski, J., Kulla, D.M., and Umaru, S. 2017. Exhaust emissions of biodiesel binary and multi-blends from Cotton, Jatropha and Neem oil from stationary multi-cylinder CI engine. Transp. Res. Pard D 53, 403–414.

    Article  Google Scholar 

  • Kaisan, M.U., Anafi, F.O., Nuszkowski, J., Kulla, D.M., and Umaru, S. 2018. Effects of blend ratio of binary and multi-blends of biodiesel from Cotton, Jatropha and Neem oils on CI engine performance at various speeds. Korean J. Chem. Eng. (Accepted 2018).

    Google Scholar 

  • Kannan, G.R., Karvembu, R., and Anand, R. 2011. Effect of metal based additive on performance emission and combustion characteristics of diesel engine fueled with biodiesel. Appl. Energy 88, 3694–3703.

    Article  Google Scholar 

  • Kannan, D., Pachamuthu, S., Nabi, M.N., Hustad, J.E., and Løvas, T. 2012. Theoretical and experimental investigation of diesel engine performance, combustion and emissions analysis fuelled with the blends of ethanol, diesel and jatropha methyl ester. Energy Convers. Manag. 53, 322–331.

    Article  Google Scholar 

  • Kansedo, J., and Lee, K.T. 2013. Process optimization and kinetic study for biodiesel production from non-edible see mango (Cerbera odollam) oil using response surface methodology. Chem. Eng. J. 214, 157–164.

    Article  Google Scholar 

  • Kareem, M.O., Pena, G.D.J.G., Raj, A., Alrefaai, M.M., Sephen, S., and Anjana, T. 2017. Effects of Neem oil-Derived biodiesel addition to diesel on the reactivity and characteristics of combustion-generated soot. Energy Fuels 31, 10822–10832.

    Article  Google Scholar 

  • Karmakar, A., Karmakar, S., and Mukherjess, S. 2012. Biodiesel production from neem towards feedstock diversification: Indian perspective. Renew. Sustain. Energy Rev. 16, 1050–1060.

    Article  Google Scholar 

  • Karthickeyan, V. 2018a. Experimental analysis on thermally coated diesel engine with neem oil methyl ester and its blends. Heat Mass Transf. 54(7), 1916–1974.

    Article  Google Scholar 

  • Karthickeyan, V. 2018b. Effect of nature based antioxidant from Zingiber officinale Rosc. On the oxidation stability, engine performance and emission characteristics with neem oil methyl ester. Heat Mass Transf. 54(11), 3409–3420.

    Article  Google Scholar 

  • Keskin, A., Guru, M., and Altiparmak, D. 2008. Influence of tall oil biodiesel with Mg and Mo based fuel additives on diesel engine performance and emission. Bioresour. Technol. 99, 6434–6438.

    Article  Google Scholar 

  • Khan, T.M.Y., Atabani, A.E., Badruddin, I.A., Ankalgi, R.F., Khan, T.K.M., and Badarudin, A. 2015. Ceiba pentandra, Negella sativa and their blend as prospective feedstocks for biodiesel. Ind. Crops Prod. 65, 367–373.

    Article  Google Scholar 

  • Khan, T.M.Y., Atabani, A.E., Badruddin, I.A., Badarudin, A., Khayoon, M.S., and Triwahyono, S. 2014. Recent scenario and technologies to utilize non-edible oils for biodiesel production. Renew. Sustain. Energy Rev. 37, 840–851.

    Article  Google Scholar 

  • Khurana, D., and Agarwal, A.K. 2011. Stability, engine performance and emissions investigations of Karanja, Neem and Jatropha Biodiesel and blends. SAE technical paper 2011-01-0617.

    Google Scholar 

  • Kibazohi, O., and Sangwan, R.S. 2011. Vegetable oil production potential from Jatropha curcas, Croton megalocarpus, Aleurites moluccana, Moringa oleifer and Pachira glabra: assessment of renewable energy resources for bio-energy production in Africa. Biomass Bioenergy 35, 1352–1356.

    Article  Google Scholar 

  • Kibet, J.K., Mosonik, B., Nyamori, V.O., and Ngari, S.M. 2018. Free radicals and ultrafine particulate emissions from the co-pyrolysis of Croton megalocarpus biodiesel and fossil diesel. Chem. Cent. J. 12, 89.

    Article  Google Scholar 

  • Kivevele, T., Agawal, A.K., Gupta, T., and Mbarawa, M. 2011a. Oxidation stability of biodiesel produced from non-edible oils of Africa origin. SAE technical paper 2011-01-1202.

    Google Scholar 

  • Kivevele, T.T., and Huan, Z. 2013. Effects of antioxidants on the cetane number, viscosity, oxidation stability, and thermal properties of biodiesel produced from nonedible oils. Energy Technol. 1, 537–543.

    Article  Google Scholar 

  • Kivevele, T., and Huan, Z. 2015. Influence of metal contaminats and antioxidant additives on storage stability of biodiesel produced from non-edible oils of Eastern Africa origin (Cronton megalocarpus and Moringa oleifera oils). Fuel 158, 530–537.

    Article  Google Scholar 

  • Kivevele, T.T., Kristof, L., Bereczky, A., and Mbarawa, M.M. 2011b. Engine performance, exhaust emissions and combustion characteristics of a CI engine fueled with croton megalocarpus methyl ester with antioxidant. Fuel 90, 2782–2789.

    Article  Google Scholar 

  • Kivevele, T., and Mbarawa, M.M. 2010. Comprehensive analysis of fuel properties of biodiesel from Croton megalocarpus oil. Energy Fuels 24, 6151–6155.

    Article  Google Scholar 

  • Kivevele, T.T., Mbarawa, M.M., Bereczky, A., Laza, T., and Madarasz, J. 2011c. Impact of antioxidant additives on the oxidation stability of biodiesel produced from Croton megalocarpus oil. Fuel Process. Technol. 92, 1244–1248.

    Article  Google Scholar 

  • Knothe, G. 2014. Cuphea oil as a potential biodiesel feedstock to improve fuel properties. J. Energy Eng. 140(3), A5014001–A5014003.

    Article  Google Scholar 

  • Knothe, G., and Razon, L.F. 2017. Biodiesel fuels. Prog. Energy Combust. Sci. 58, 36–59.

    Article  Google Scholar 

  • Krupakaran, R.L., Hariprasad, T., and Gopalakrishna, A. 2018. Impact of various blends of Mimusops elengi methyl esters on performance and emission characteristics of a diesel engine. Int. J. Green Energy 15(7), 415–426.

    Article  Google Scholar 

  • Kumar, N. 2017. Oxidative stability of biodiesel: causes, effects and prevention. Fuel 190, 328–350.

    Article  Google Scholar 

  • Kumar, V., Kumar, N., Tomar, V., and Kalsi, G. 2014. Comparative study of performance and emission characteristics of fish oil and calophyllum inophyllum oil bio-diesel in a light duty diesel engine. SAE technical paper 2014-01-2773.

    Google Scholar 

  • Kumar, K., and Sharma, S. 2011. Potential no-edible oil resources as biodiesel feedstock: an Indian perspective. Renew. Sustain. Energy Rev. 15, 1791–1800.

    Article  Google Scholar 

  • Kumar, N., Varun, and Chauhan, S.R. 2015. Evaluation of endurance characteristics for a modified diesel engine runs on jatropha biodiesel. Appl. Energy 155, 253–269.

    Article  Google Scholar 

  • Kumar, A., Shukla, S.K., and Tierkey, J.V. 2016. A review of research and policy on using different biodiesel oils as fuel for CI engine. Energy Procedia 90, 292–304.

    Article  Google Scholar 

  • Kumar, N., Varun, and Chauhan, S.R. 2013. Performance and emission characteristics of biodiesel from different origins: a review. Renew. Sustain. Energy Rev. 21, 633–658.

    Article  Google Scholar 

  • Kushwah, Y.S., Mahanta, P., and Mishra, S.C. 2008. Some studies on fuel characteristics of mesua ferra. Heat Transf. Eng. 29(4), 405–409.

    Article  Google Scholar 

  • Kusumo, F., Silitonga, A.S., Hasjuki, H.H., Ong, H.C., Siswantoro, J., and Mahlia, T.M.I. 2017. Optimization of transesterification process for Ceiba pentandra oil: a comparative study between kernel-based extreme learning machine and artificial neural networks. Energy 134, 24–34.

    Article  Google Scholar 

  • Lanjekar, R.D., and Deshmukh, D. 2016. A review of the effect of the composition of biodiesel on NOx emission, oxidative stability and cold flow properties. Renew. Sustain. Energy Rev. 54, 1401–1411.

    Article  Google Scholar 

  • Lujaji, F., Bereczky, A., and Mbarawa, M. 2010. Performance evaluation of fuel blends containing croton oil, butanol, and diesel in a compression ignition engine. Energy Fuels 24, 4490–4496.

    Article  Google Scholar 

  • Lujaji, F., Kristof, L., Bereczky, A., and Mbarawa, M. 2011. Experimental investigation of fuel properties, engine performance, combustion and emissions of blends containing croton oil, butanol, and diesel on a CI engine. Fuel 90, 505–510.

    Article  Google Scholar 

  • Mahmudul, H.M., Hagos, F.Y., Mamat, R., Adam, A.A., Ishak, W.F.W., and Alenezi, R. 2017. Production, characterization and performance of biodiesel as an alternative fuel in diesel engines—a review. Renew. Sustain. Energy Rev. 72, 497–509.

    Article  Google Scholar 

  • Mallen, E., and Najdanovic-visak, V. 2018. Brewers’ spent grains: drying kinetics and biodiesel production. Bioresour. Technol. Rep. 1, 16–23.

    Article  Google Scholar 

  • Mallikarjun, M.V., Mamilla, V.R., and Rao, G.L.N. 2013. NOx emission control techniques when CI engine is fuelled with blends of Manua methyle esters and diesel. Int. J. Eng. Sci. Emerg. Technol. 4(2), 96–104.

    Google Scholar 

  • Mamilla, V.R., Mallikarjun, M.V., and Rao, G.L.N. 2013. Effect of combustion chamber design on a DI diesel engine fuelled with Jatropha methyl esters blends with diesel. Procedia Eng. 64, 479–490.

    Article  Google Scholar 

  • Manoharan, A.K., Ashok, B., and Kumarasamy, S. 2016. Numerical prediction of NOx in the exhaust of a CI engine fuelled with biodiesel using in-cylinder combustion pressure based variables. SAE technical paper 2016-28-0153.

    Google Scholar 

  • Manoj Kumar, A.P., Sreekumar, J.S., and Mohanan, P. 2015. The effect of cordierite/Pt catalyst on the NOx reduction in a diesel and Jatropha bio-diesel operated single cylinder engine. J. Environ. Chem. Eng. 3, 1125–1136.

    Article  Google Scholar 

  • Mardhiah, H.H., Ong, H.C., Masjuki, H.H., Lim, S., and Lee, H.V. 2017. A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils. Renew. Sustain. Energy Rev. 67, 1225–1236.

    Article  Google Scholar 

  • Melo-Espinosa, E.A., Piloto-Rodriguez, R., Goyos-Perez, L., Sierens, R., and Verhelst, S. 2015. Emulsification of animal fats and vegetable oils for their use as a diesel fuel: an overview. Renew. Sustain. Energy Rev. 47, 623–633.

    Article  Google Scholar 

  • Mishra, C., Kumar, N., Mishar, P., and Kar, B. 2016. In-cylinder combustion and emission characteristics of an agricultural diesel engine fuelled with blends of diesel and oxidatively stabilized calophyllum methyl ester. SAE technical paper 2016-28-0140.

    Google Scholar 

  • Mofijur, M., Atabani, A.E., Masjuki, H.H., Kalam, M.A., and Masum, B.M. 2013a. A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions productions: a comparative evaluation. Renew. Sustain. Energy Rev. 23, 391–404.

    Article  Google Scholar 

  • Mofijur, M., Hazrat, M.A., Rasul, M.G., and Mahmudul, H.M. 2015a. Comparative evaluation of edible and non-edible oil methyl ester performance in a vehicular engine. Energy Procedia 75, 37–43.

    Article  Google Scholar 

  • Mofijur, M., Masjuki, H.H., Kalam, M.A., and Atabani, A.E. 2013b. Evaluation of biodiesel blending, engine performance and emissions characteristics of Jatropha curcas methyl ester: Malaysian perspective. Energy 55, 879–887.

    Article  Google Scholar 

  • Mofijur, M., Masjuki, H.H., Kalam, M.A., Atabani, A.E., Arbab, M.I., and Cheng, S.F. et al. 2014b. Properties and use of Moringa oleifera biodiesel and diesel fuel blends in a multi-cylinder diesel engine. Energy Convers. Manag. 82, 169–176.

    Article  Google Scholar 

  • Mofijur, M., Masjuki, H.H., Kalam, M.A., Rasul, M.G., Atabani, A.E., and Hazrat, M.A. et al. 2015b. Effect of biodiesel-diesel blending on physico-chemical properties of biodiesel produced from Moring oleifera. Procedia Eng. 105, 665–669.

    Article  Google Scholar 

  • Mofijur, M., Masjuki, H.H., Kalam, M.A., Atabani, A.E., Rizwanul Fattah, I.M., and Mobarak, H.M. 2014a. Comparative evaluation of performance and emission characteristics of Moringa oleifera and Palm oil based biodiesel in a diesel engine. Ind. Crops Prod. 53, 78–84.

    Article  Google Scholar 

  • Mofijur, M., Masjuki, H.H., Kalam, M.A., Atabani, A.E., Shahabuddin, M., and Palash, S.M. et al. 2013c. Effect of biodiesel from various feedstocks on combustion characteristics, engine durability and materials compatibility: a review. Renew. Sustain. Energy Rev. 28, 441–455.

    Article  Google Scholar 

  • Mohamed Shameer, P., and Ramesh, K. 2017a. FTIR assessment and investigation of synthetic antioxidant on the fuel stability of Calophyllum inophyllum biodiesel. Fuel 209, 411–416.

    Article  Google Scholar 

  • Mohamed Shameer, P., and Ramesh, K. 2017b. Green technology and performance consequences of an eco-firendly substance on a 4-stroke diesel engine at standard injection timing and compression ratio. J. Mech. Sci. Technol. 31(3), 1497–1507.

    Article  Google Scholar 

  • Mohamed Shameer, P.M., and Ramesh, K. 2017c. Experimental evaluation on performance, combustion behavior and influence of in-cylinder temperature on NOx emission in a DI diesel engine using thermal imager for various alternate fuel blends. Energy 118, 1334–1344.

    Article  Google Scholar 

  • Mohamed Shameer, P., and Ramesh, K. 2018. Assessment on the consequences of injection timing and injection pressure on combustion characteristics of sustainable biodiesel fueled engine. Renew. Sustain. Energy Rev. 81, 45–61.

    Article  Google Scholar 

  • Mohamed Shameer, P.M., Ramesh, K., Sakthivel, R., and Purnachandran, R. 2017. Effects of fuel injection parameters on emission characteristics of diesel engines operating on various biodiesel: a review. Renew. Sustain. Energy Rev. 67, 1267–1281.

    Article  Google Scholar 

  • Mohd Noor, C.W., Noor, M.M., and Mamat, R. 2018. Biodiesel as alternative fuel for marine diesel engine applications: a review. Renew. Sustain. Energy Rev. 94, 127–142.

    Article  Google Scholar 

  • Monirul, I.M., Masjuki, H.H., Kalam, M.A., Mosarof, M.H., Zulkifli, N.W.M., and Teoh, Y.H. et al. 2016. Assessment of performance, emission and combustion characteristics of palm, jatropha and Calophyllum inophyllum biodiesel blends. Fuel 181, 985–995.

    Article  Google Scholar 

  • Mosarof, M.H., Kalam, M.A., Masjuki, H.H., Alabdulkarem, A., Habibullah, M., and Arslan, A. et al. 2016a. Assessment of friction and wear characteristics of Calophyllum inophyllum and palm biodiesel. Ind. Crops Prod. 83, 470–483.

    Article  Google Scholar 

  • Mosarof, M.H., Kalam, M.A., Masjuki, H.H., Alabdulkarem, A., and Sashraful, A.M. et al. 2016b. Optimization of performance, emission, friction and wear characteristics of palm and Calophyllum inophyllum biodiesel blends. Energy Convers. Manag. 118, 119–134.

    Article  Google Scholar 

  • Moser, B.R. 2016. Fuel property enhancement of biodiesel fuels from common and alternative feedstocks via complementary blending. Renew. Energy 85, 819–825.

    Article  Google Scholar 

  • Muthukumaran, N., Saravanan, C.G., Yadav, S.P.R., Vallinayagam, R., Vedharaj, S., and Roberts, W.L. 2015. Synthesis of cracked Calophyllum inophyllum oil using fly ash catalyst for diesel engine application. Fuel 155, 68–76.

    Article  Google Scholar 

  • Mwangi, J.K., Lee, W.-J., Chang, Y.-C., Chen, C.-Y., and Wang, L.-C. 2015. An overview: energy saving and pollution reduction by using green fuel blends in diesel engines. Appl. Energy 159, 214–236.

    Article  Google Scholar 

  • Nalgundwar, A., Paul, B., and Sharma, S.K. 2016. Comparison of performance and emissions characteristics of DI CI engine fueled with dual biodiesel blends of palm and jatropha. Fuel 173, 172–179.

    Article  Google Scholar 

  • Nanthagopal, K., Ashok, B., and Raj, R.T.K. 2016. Influence of fuel injection pressures on Calophyllum inophyllum methyl ester fueled direct injection diesel engine. Energy Convers. Manag. 116, 165–173.

    Article  Google Scholar 

  • Nanthagopal, K., Ashok, B., Saravanan, B., Korah, S.M., and Chadra, S. 2018a. Effect of next generation higher alcohols and Calophyllum inophyllum methyl ester blends in diesel engine. J. Clean. Prod. 80, 50–63.

    Article  Google Scholar 

  • Nanthagopal, K., Ashok, B., Saravanan, B., Patel, D., Sudarshan, B., and Ramasamy, R.A. 2018b. An assessment on the effects of 1-pentanol and 1-butanol as additives with Calophyllum Inophyllum biodiesel. Energy Convers. Manag. 158, 70–80.

    Article  Google Scholar 

  • Nanthagopal, K., Ashok, B., Tamilarasu, A., Johny, A., and Mohan, A. 2017. Influence on the effect of zinc oxide and titanium dioxide nanoparticles as an additive with Calophyllum inophyllum methyl ester in a CI engine. Energy Convers. Manag. 146, 8–19.

    Article  Google Scholar 

  • Nayak, S.K., and Pattanaik, B.P. 2014. Experimental investigation on performance and emission characteristics of a diesel engine fuelled with mahua biodiesel using additive. Energy Procedia 54, 569–579.

    Article  Google Scholar 

  • No, S.-Y. 2011. Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: a review. Renew. Sustain. Energy Rev. 15, 131–149.

    Article  Google Scholar 

  • Obadiah, A., Kannan, R., Ramasubbu, A., and Kumar, S.V. 2012. Studies on the effect of antioxidants on the long-term storage and oxidation stability of Pongamia pinnata (L.) Pierre biodiesel. Fuel Process. Technol. 99, 56–63.

    Article  Google Scholar 

  • Okey, E.N., and Okey, P.A. 2013. Optimization of biodiesel production from non-edible seeds of Delonix regia (Gul Mohr). Int. J. Bioresour. Technol. 1(1), 1–8.

    MathSciNet  Google Scholar 

  • Ong, H.C., Mahlia, T.M.I., Masjuki, H.H., and Norhasyima, R.S. 2011. Comparison of palm oil, jatropha curcas and Calophyllum inophyllum for bidiesel: a review. Renew. Sustain. Energy Rev. 15, 3501–3515.

    Article  Google Scholar 

  • Ong, H.C., Masjuki, H.H., Mahlia, T.M.I., Silitonga, A.S., Chong, W.T., and Leong, K.Y. 2014a. Optimization of biodiesel production and engine performance from high free fatty acid Calophyllum inophyllum oil in CI diesel engine. Energy Convers. Manag. 81, 30–40.

    Article  Google Scholar 

  • Ong, H.C., Masjuki, H.H., Mahlia, T.M.I., Silitonga, A.S., Chong, W.T., and Yusaf, T. 2014b. Engine performance and emissions using Jatropha curcas, Ceiba pentadra and Calophyllum inophyllum biodiesel in a CI diesel engine. Energy 69, 427–445.

    Article  Google Scholar 

  • Ong, H.C., Silitonga, A.S., Masjuki, H.H., Mahlia, T.M.I., Chong, W.T., and Boosroh, M.H. 2013a. Production and comparative fuel properties of biodiesel from non-edible oils: Jatropha curcas, Sterculia foetida and Ceiba pentandra. Energy Convers. Manag. 73, 245–255.

    Article  Google Scholar 

  • Ong, L.K., Effendi, C., Kurniawan, A., Lin, C.X., Zhao, X.S., and Ismadji, S. 2013b. Optimization of catalyst-free production of biodiesel from Ceiba pentandra (kapok) oil with high free fatty acid contents. Energy 57, 615–623.

    Article  Google Scholar 

  • Ong, Z.C., Mishani, M.B.M., Chong, W.T., Soon, R.S., Ong, H.C., and Ismail, Z. 2017. Identification of optimum Calophyllum inophyllum bio-fuel blend in diesel engine using advanced vibration analysis technique. Renew. Energy 109, 295–304.

    Article  Google Scholar 

  • Onoji, S.E., Iyuke, S.E., Igbafe, A.I., and Nkazi, D.B. 2016. Rubber seed oil: a potential renewable source of biodiesel for sustainable development in sub-Saharan Africa. Energy Convers. Manag. 110, 125–134.

    Article  Google Scholar 

  • Osawa, W.O., Sahool, P.K., Onyari, J.M., and Mulaa, F.J. 2016. Effects of antioxidants on oxidation and storage stability of Croton megalocarpus biodiesel. Int. J. Energy Environ. Eng. 7, 85–91.

    Article  Google Scholar 

  • Osawa, W.O., Sahool, P.K., Onyari, J.M., and Mulaa, F.J. 2015. Experimental investigation on performance, emission and combustion characteristics of Croton megalocarpus biodiesel blends in a direct injection diesel engine. Int. J. Sci. Technol. 4(10), 26–33.

    Google Scholar 

  • Palash, S.M., Kalam, M.A., Masjuki, H.H., Arbab, M.I., Masum, B.M., and Sanjid, A. 2014. Impacts of NOx reducing antioxidant additive on performance and emissions of a multi-cylinder diesel engine fueled with Jatropha biodiesel blends. Energy Convers. Manag. 77, 577–585.

    Article  Google Scholar 

  • Pandey, A.K., and Nandgaonkar, M. 2011. Wear assessment in a Karanja oil methyl ester biodiesel fueled 38.8 L military CIDI engine. SAE technical paper 2011-01-1192.

    Google Scholar 

  • Pandey, A.K., Nandgaonkar, M., Pandey, U., Suresh, S., and Varghese, A. 2018a. The effect of cerium oxide nano particles fuel additive on performance and emission of Karanja biodiesel fueled compression ignition military 585 kW heavy duty diesel engine. SAE technical paper 2018-01-1818.

    Google Scholar 

  • Pandey, A.K., Nandgaonkar, M., Suresh, S., and Pandey, U. 2018b. Comparison and evaluation of peformance, combustion, NOx reduction and nano particle emission of diesel, Jatropha and Karanja oil methyl ester biodiesel in a military 38.8 L CI DI engine applying EGR with turbo charging. SAE technical paper 2018-01-0919.

    Google Scholar 

  • Panneerselvam, N., Murugesan, A., Vijayakumar, C., Kumaravel, A., Subramaniam, D., and Avinash, A. 2015. Effects of injection timing on bio-diesel fueled engine characteristics—an overview. Renew. Sustain. Energy Rev. 50, 17–31.

    Article  Google Scholar 

  • Panneerselvam, N., Murugesan, A., Vijayakumar, C., and Subramanlam, D. 2017. Performance, emissions and combustion characteristics of CI engine fuel with watermelon (Citrullus vulgaris) methyl esters. Int. J. Ambient. Energy 3, 308–313.

    Article  Google Scholar 

  • Panneerselvam, N., Ramesh, M., Murugesan, A., Vijayakumar, C., Subramanian, D., and Kumaravel, A. 2016. Effect on direct injection naturally aspirated diesel engine characteristics fueled by pine oil, ceiba pentandra methyl ester compared with diesel. Transp. Res. Part D Transp. Environ. 48, 225–234.

    Article  Google Scholar 

  • Patel, C., Agarwal, A.K., Tiwari, N., Lee, S., Lee, C.S., and Park, S. 2016a. Combustion, noise, vibrations and spray characterization for Karanja biodiesel fueled engine. Appl. Therm. Eng. 6, 506–517.

    Article  Google Scholar 

  • Patel, C., Lee, S., Tiwari, N., Agarwal, A.K., Lee, C.S., and Park, S. 2016b. Spray characterization, combustion, noise and vibrations investigations of Jatropha biodiesel fueled genset engine. Fuel 185, 410–420.

    Article  Google Scholar 

  • Patel, C., Sharma, N., Tiwari, N., and Agarwal, A.K. 2016c. Effects of spray droplet size and velocity distributions on emissions from a single cylinder biofuel engine. SAE technical paper 2016-01-0994.

    Google Scholar 

  • Patel, C., Tiwari, N., and Agarwal, A.K. 2015. Noise, vibrations and combustion investigations of preheated jatropha oil in a single cylinder genset engine. SAE technical paper 2015-01-1668.

    Google Scholar 

  • Paul, G., Datta, A., and Mandal, B.K. 2014. An experimental and numerical investigation of the performance, combustion and emission characteristics of a diesel engine fueled with Jatropha biodiesel. Energy Procedia 54, 455–467.

    Article  Google Scholar 

  • Pham, X.P. 2015. Influence of molecular profiles of biodiesels on atomization, combustion and emission characteristics. Ph.D. thesis, School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney.

    Google Scholar 

  • Piloto-Rodriguez, R., Sanchez-Borroto, Y., Melo-Espinosa, E.A., and Verhelst, S. 2017. Assessment of diesel engine performance when fueled with biodiesel from algae and microalgae: an overview. Renew. Sustain. Energy Rev. 69, 833–842.

    Article  Google Scholar 

  • Prasad, G., and Gupta, A. 2016. Role of nano additive blended Karanja biodiesel emulsion fuel on performance and emission characteristics of diesel engine. SAE technical paper 2016-28-0165.

    Google Scholar 

  • Prasad, L., and Agarwal, A. 2012. Experimental investigation of performance of diesel engine working on diesel and neem oil blends. Carbon 86, 78–92.

    Google Scholar 

  • Prasad, L., Pradhan, S., Das, L.M., and Naik, S.N. 2012. Experimental assessment of toxic phorbol ester in oil, biodiesel and seed cake of Jatropha curcas and use of biodiesel in diesel engine. Appl. Energy 93, 245–250.

    Article  Google Scholar 

  • Prasada Rao, K., and Appa Rao, B.V. 2017. Parametric optimization for performance and emissions of an IDI engine with Mahua biodiesel. Egypt. J. Pet. 26, 733–743.

    Article  Google Scholar 

  • Praveen, A., Rao, G.L.N., and Balakrishna, B. 2017. Performance and emission characteristics of a diesel engine using Calophyllum inophyllum biodiesel blends with TiO2 nanoadditives and EGR. Egypt. J. Pet. (in press).

    Google Scholar 

  • Premnath, S., and Devaradjane, G. 2015. Improving the performance and emission characteristics of a single cylinder diesel engine having reentrant combustion chamber using diesel and Jatropha methyl esters. Ecotoxicol. Environ. Saf. 121, 10–15.

    Article  Google Scholar 

  • Puhan, S., Jegan, R., Balasubbramanian, K., and Nagarajan, G. 2009. Effect of injection pressure on performance, emission and combustion characteristics of high linolenic linseed oil methyl ester in a DI diesel engine. Renew. Energy 34, 1227–1233.

    Article  Google Scholar 

  • Ragu, R., Saikrishnan, G., and Dasaprakash, J. 2017. A critical investigation on performance and wear characteristics in engine piston rings by using neem oil biodiesel. J. Balk. Tribol. Assoc. 23(3), 534–541.

    Google Scholar 

  • Raheman, H., and Kumari, S. 2014. Combustion characteristics and emissions of accompression ignition engine using emulsified Jatropha biodiesel blend. Biosys. Eng. 123, 29–39.

    Article  Google Scholar 

  • Rahman, M.M., Hassan, M.H., Kalam, M.A., Atabani, A.E., Memon, L.A., and Rahman, S.M.A. 2014. Performance and emission analysis of Jatropha curcas and Moringa oleifera methyl ester fuel blends in a multi-cylinder diesel engine. J. Clean. Prod. 65, 304–310.

    Article  Google Scholar 

  • Rajasekar, E., and Selvi, S. 2014. Review of combustion characteristics of CI engines fueled with biodiesel. Renew. Sustain. Energy Rev. 35, 390–399.

    Article  Google Scholar 

  • Rakopoulos, D.C. 2012. Heat release analysis of combustion in heavy-duty turbocharged diesel engine operating on blends of diesel fuel with cottonseed or sunflower oils and their bio-diesel. Fuel 96, 524–534.

    Article  Google Scholar 

  • Rakopoulos, D.C. 2013. Combustion and emissions of cottonseed oil and its bio-diesel in blends with either n-butanol or diethyl ether in HSDI diesel engine. Fuel 105, 603–613.

    Article  Google Scholar 

  • Rakopoulos, C.D., Rakopoulos, D.C., Giakoumis, E.G., and Dimaratos, A.M. 2010. Investigation of the combustion of neat cottonseed oil or its neat bio-diesel in a HSDI diesel engine by experimental heat release and statistical analyses. Fuel 89, 3814–3826.

    Article  Google Scholar 

  • Ramalingam, S., Govindasamy, M., Ezhumalai, M., and Kaliyaperumal, A. 2016. Effect of leaf extract from Pongamia pinnata on the oxidation stability, performance and emission characteristics of calophyllum biodiesel. Fuel 180, 263–269.

    Article  Google Scholar 

  • Ramalingam, S., Rajendran, S., Ganesan, P., and Govindasamy, M. 2018. Effect of operating parameters and antioxidant additives with biodiesels to improve the performance and reducing the emissions in a compression ignition engine—a review. Renew. Sustain. Energy Rev. 81, 775–788.

    Article  Google Scholar 

  • Ramalingam, S., Rajendran, S., and Nattan, R. 2015. Influence of injection timing and compression ratio on performance, emission and combustion characteristics of Annona methyl ester operated diesel engine. Alex. Eng. J. 54, 295–302.

    Article  Google Scholar 

  • Ramesh Bapu, B.R., Saravanakumar, L., and Prasad, B.D. 2017. Effects of combustion chamber geometry on combustion characteristics of a DI diesel engine fueled with Calophyllum inophyllum methyl ester. J. Energy Inst. 90, 82–100.

    Article  Google Scholar 

  • Rashed, M.M., Kalam, M.A., Masjuki, H.H., Habibullah, M., Imdadul, H.K., and Shahin, M.M. et al. 2016a. Improving oxidation stability and NOx reduction of biodiesel blends using aromatic and synthetic antioxidant in a light duty diesel engine. Ind. Crops Prod. 89, 273–284.

    Article  Google Scholar 

  • Rashed, M.M., Kalam, M.A., Masjuki, H.H., Mofijur, M., Rasul, M.G., and Zulkifli, N.W.M. 2016b. Peformance and emission characteristics of a diesel engine fueled with palm, jatropha and moringa oil methyl ester. Ind. Crops Prod. 79, 70–76.

    Article  Google Scholar 

  • Rashed, M.M., Masjuki, H.H., Kalam, M.A., Alabdulkarem, A., Imdadul, H.K., and Rashedul, H.K. et al. 2016d. A comprehensive study on the improvement of oxidation stability and NOx emission levels by antioxidant addition to biodiesel blends in a light-duty diesel engine. RSC Adv. 6, 22436–22446.

    Article  Google Scholar 

  • Rashed, M.M., Masjuki, H.H., Kalam, M.A., Alabdulkarem, A., Rahman, M.M., and Imdadul, H.K. et al. 2016c. Study of the oxidation stability and exhaust emission analysis of Moringa oleifera biodiesel in a multi-cylinder diesel engine with aromatic amine antioxidants. Renew. Energy 94, 294–303.

    Article  Google Scholar 

  • Rashedul, H.K., Masjuki, H.H., Kalam, M.A., Ashraful, A.M., Ashrafur Rahman, S.M., and Shahir, S.A. 2014. The effect of additives on properties, performance and emission of biodiesel fueled compression ignition engine. Energy Convers. Manag. 88, 348–364.

    Article  Google Scholar 

  • Rashedul, H.K., Masjuki, H.H., Kalam, M.A., Teoh, Y.H., How, H.G., and Rizwanul Fattah, I.M. 2015. Effect of antioxidant on the oxidation stability and combustion-performance-emission characteristics of a diesel engine fueled with diesel-biodiesel blend. Energy Convers. Manag. 106, 849–858.

    Article  Google Scholar 

  • Rashid, U., Anwar, F., Ashraf, M., Saleem, M., and Yusup, S. 2011. Application of response surface methodology for optimizing transesterification of Moringa Oleifera oil: biodiesel production. Energy Convers. Manag. 52, 3034–3042.

    Article  Google Scholar 

  • Rashid, U., Anwar, F., Moser, B.R., and Knothe, G. 2008. Moringa oleifera oil: a possible source of biodiesel. Bioresour. Technol. 99, 8175–8179.

    Article  Google Scholar 

  • Rashid, U., Knother, G., Yunus, R., and Evangelista, R.L. 2014. Kapok oil methyl esters. Biomass Bioenergy 66, 419–425.

    Article  Google Scholar 

  • Reshad, A.S., Barman, P., Chaudhari, A.J., Tiwari, P., Kulkarni, V., and Goud, V.V. et al. 2015. Rubber seed oil methyl ester synthesis, engine performance, and emission characteristics of blends. Energy Fuels 29, 5136–5144.

    Article  Google Scholar 

  • Rizwanul Fattah, I.M., Masjuki, H.H., Kalam, M.A., Hazrat, M.A., Masum, B.M., and Imtenan, S. et al. 2014a. Effect of antioxidants on oxidation stability of biodiesel derived from vegetabale and animal based feedstocks. Renew. Sustain. Energy Rev. 30, 356–370.

    Article  Google Scholar 

  • Rizwanul Fattah, I.M., Masjuki, H.H., Kalam, M.A., Wakil, M.A., Ashraful, A.M., and Shahir, S.A. 2014b. Experimental investigation of performance and regulated emissions of a diesel engine with Calophyllum inophyllum biodiesel blends accompanied by oxidation inhibitors. Energy Convers. Manag. 83, 232–240.

    Article  Google Scholar 

  • Rizwanul Fattah, I.M., Masjuki, H.H., Kalam, M.A., Wakil, M.A., Rashedul, H.K., and Abedin, M.J. 2014c. Performance and emission characteristics of a CI engine fueled with Cocos nucifera and Jatropha curcas B20 blends accompanying antioxidants. Ind. Crops Prod. 57, 132–140.

    Article  Google Scholar 

  • Roji, S.S.S., Raj, R.E., and Jose, D.F.M. 2016. Experimental evaluation of performance and emission characteristics of a diesel engine fueled with neem methyl ester. Trans. FAMENA 40(3), 81–90.

    Article  Google Scholar 

  • Rozina, S. Asif, Ahmad, M., Zafar, M., and Ali, N. 2017. Prospects and potential of fatty acid methyl esters of some non-edible seed oils for use as biodiesel in Pakistan. Renew. Sustain. Energy Rev. 74, 687–702.

    Article  Google Scholar 

  • Ruhul, A.M., Kalam, M.A., Masjuki, H.H., Alabdulkarem, A., Atabani, A.W., and Rizwanul Fattah, I.M. et al. 2016. Production, characterization, engine performance and emission characteristics of Croton megalocarpus and Ceiba pentandra complementary blends in a single-cylinder diesel engine. RSC Adv. 6, 24584–24595.

    Article  Google Scholar 

  • Ruhul, A.M., Kalam, M.A., Masjuki, H.H., Shahir, S.A., Alabdulkarem, A., and Teoh, Y.H. et al. 2017. Evaluating combustion, performance and emission characteristics of Millettia pinnata and Croton meglocarpus biodiesel blends in a diesel engine. Energy 141, 2362–2376.

    Article  Google Scholar 

  • Sadeghinezhad, E., Kazi, S.N., Badarudin, A., Oon, C.S., Zubir, M.N.M., and Mehrali, M. 2013. A comprehensive review of bio-diesel as alternative fuel for compression ignition engines. Renew. Sustain. Energy Rev. 28, 410–424.

    Article  Google Scholar 

  • Sadhik Basha, J. 2015. Preparation of water-biodiesel emulsion fuels with CNT & Alumina nano-additives and their impact on the diesel engine operation. SAE technical paper 2015-01-0904.

    Google Scholar 

  • Sadhik Basha, J., and Anand, R.B. 2010. Effects of nanoparticle-blended water-biodiesel emulsion fuel on working characteristics of a diesel engine. Int. J. Global Warming 2(4), 330–346.

    Article  Google Scholar 

  • Sadhik Basha, J., and Anand, R.B. 2014. Performance, emission and combustion characteristics of a diesel engine using Carbon Nanotubes blended Jatropha Methyl Ester Emulsions. Alex. Eng. J. 53, 259–273.

    Article  Google Scholar 

  • Sahoo, P.K., Das, L.M., Babu, M.K.G., Arora, P., Singh, V.P., and Jumar, N.R. et al. 2009. Comparative evaluation of performance and emission characteristics of jatropha, karanja and polanga based biodiesel as fuel in a tractor engine. Fuel 88, 1698–1707.

    Article  Google Scholar 

  • Sajjad, H., Masjuki, H.H., Varman, M., Kalam, M.A., Arbab, M.I., and Imtenan, S. et al. 2015. Influence of gas-to-liquid (GTL) fuel in the blends of Calophyllum inophyllum biodiesel and diesel: an analysis of combustion-performance-emission characteristics. Energy Convers. Manag. 97, 42–52.

    Article  Google Scholar 

  • Sajjadi, B., Raman, A.A.A., and Arandiyan, H. 2016. A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: composition, specifications and prediction models. Renew. Sustain. Energy Rev. 63, 62–92.

    Article  Google Scholar 

  • Sakhare, N.M., Shelkea, P.S., and Lahanea, S. 2016. Experimental investigation of effect of exhaust gas recirculation and cottonseed B20 biodiesel fuel on diesel engine. Procedia Technol. 25, 869–876.

    Article  Google Scholar 

  • Sakthivel, R., Ramesh, K., Purnachandran, R., and Mohamed Shameer, P. 2018. A review on the properties, performance and emission aspects of the third generation biodiesels. Renew. Sustain. Energy Rev. 82, 2970–2992.

    Article  Google Scholar 

  • Salaheldeen, M., Aroua, M.K., Mariod, A.A., Cheng, S.F., and Abdelrahman, M.A. 2014. An evaluation of Moringa peregrina seeds as a source for bio-fuel. Ind. Crops Prod. 61, 49–61.

    Article  Google Scholar 

  • Salaheldeen, M., Aroua, M.K., Mariod, A.A., Cheng, S.F., Abdelrahman, M.A., and Atabani, A.E. 2015. Physicochemical characterization and thermal behavior of biodiesel and biodiesel-diesel blends derived from crude Moringa pererina seed oil. Energy Convers. Manag. 92, 535–542.

    Article  Google Scholar 

  • Saleh, H.E. 2011. The preparation and shock tube investigation of comparative ignition delays using blends of diesel fuel with bio-diesel of cottonseed oil. Fuel 90, 421–429.

    Article  Google Scholar 

  • Saluja, R.K., Kumar, V., and Sham, R. 2016. Stability of biodiesel—a review. Renew. Sustain. Energy Rev. 62, 866–881.

    Article  Google Scholar 

  • Sanjid, A., Masjuki, H.H., Kalam, M.A., Ashrafur Rahman, S.M., Abedin, M.J., and Palash, S.M. 2014a. Production of palm and jatropha based biodiesel and investigation of palm-jatropha combined blend properties, performance, exhaust emission and noise in an unmodified diesel engine. J. Clean. Prod. 65, 295–303.

    Article  Google Scholar 

  • Sanjid, A., Masjukia, H.H., Kalam, M.A., Ashrafur Rahmana, S.M., Abedin, M.J., and Rezab, M.I. et al. 2014b. Experimental investigation of palm-jatropha combined blend properties, performance, exhaust emission and noise in an unmodified diesel engine. Procedia Eng. 90, 397–402.

    Article  Google Scholar 

  • Sanjid, A., Masjuki, H.H., Kalam, M.A., Rahman, A., Abedin, M.J., and Palash, S.M. 2013. Impact of palm, mustard, waste cooking oil and Calophyllum inophyllum biofuels on performance and emission of CI engine. Renew. Sustain. Energy Rev. 27, 664–682.

    Article  Google Scholar 

  • Sanjid, A., Kalam, M.A., Masjuki, H.H., Varman, M., Zulkifli, N.W.B.M., and Abedin, M.J. 2016. Performance and emission of multi-cylinder diesel engine using biodiesel blends obtained from mixed inedible feedstocks. J. Clean. Prod. 112, 4114–4122.

    Article  Google Scholar 

  • Saxena, V., Kumar, N., and Saxena, V.K. 2017. A comprehensive review on combustion and stability aspects of metal nanoparticles and its additive effect on diesel and biodiesel fueled CI engine. Renew. Sustain. Energy Rev. 70, 563–588.

    Article  Google Scholar 

  • Senthil Kumar, K., and Raj, R.T.K. 2016. Effect of Di-Tertiary Butyl Peroxide on the performance, combustion and emission characteristics of ethanol blended cotton seed methyl ester fuelled automotive diesel engine. Energy Convers. Manag. 127, 1–10.

    Article  Google Scholar 

  • Senthil Kumar, S., Purushothaman, K., and Rajan, K. 2016. Performance analysis of compression ignition engine using rubber seed oil methyl ester blend with the effect of various injection pressures. Therm. Sci. 60(4), S1083–S1090.

    Article  Google Scholar 

  • Senthil Kumar, T., Senthil Kumar, P., and Annamilai, K. 2015. Experimental study on the performance and emission measures of direct injection diesel engine with Kapok methyl ester and its blends. Renew. Energy 74, 903–909.

    Article  Google Scholar 

  • Senthil, M., Visagavel, K., Saravananb, C.G., and Rajendran, K. 2016. Investigations of red mud as a catalyst in Mahua oil biodiesel production and its engine performance. Fuel Process. Technol. 149, 7–14.

    Article  Google Scholar 

  • Senthil, R., and Silambarasan, R. 2015. Annona: a new biodiesel for diesel engine: a comparative experimental investigation. J. Energy Inst. 88, 459–469.

    Article  Google Scholar 

  • Senthil, R., Silambrasan, R., and Pranesh, G. 2017. Antioxidant (A-tocopherol acetate) effect on oxidation stability and NOx emissions reduction in methyl ester of Annona oil operated diesel engine. Heat Mass Transf. 53, 1797–1804.

    Article  Google Scholar 

  • Senthilraja, R., Sivakumar, V., Thirugnanasambandham, K., and Nedunchezhian, N. 2016. Performance, emission and combustion characteristics of a dual fuel engine with DieseleEthanol e Cotton seed oil Methyl ester blends and Compressed Natural Gas (CNG) as fuel. Energy 112, 899–907.

    Article  Google Scholar 

  • Serin, H., and Akar, N.Y. 2014. The performance and emissions of a diesel engine fueled with tea seed (Camellia sinensis) oil biodiesel-diesel fuel blends. Int. J. Green Energy 11, 291–301.

    Article  Google Scholar 

  • Serin, H., Ozcanli, M., Gokee, M.K., and Tuccar, G. 2013. Biodiesel production from a Tea Seed (Camellia Sinensis) oil and its blends with diesel fuel. Int. J. Green Energy 10, 370–377.

    Article  Google Scholar 

  • Shaffi, T., Sairam, K., Gopinath, A., Kumaresan, G., and Velraj, R. 2015. Effect of dispersion of various nanadditives on the performance and emission characteristics of a CI engine fueled with diesel, biodiesel and blends—a review. Renew. Sustain. Energy Rev. 49, 563–573.

    Article  Google Scholar 

  • Shehata, M.S. 2013. Emissions, performance and cylinder pressure of diesel engine fueled by biodiesel fuel. Fuel 112, 512–522.

    Article  Google Scholar 

  • Shelke, P.S., Sakhare, N.M., and Lahane, S. 2016. Investigation of combustion characteristics of a cottonseed biodiesel fuelled diesel engine. Procedia Technol. 25, 1049–1055.

    Article  Google Scholar 

  • Shukla, P.C., Gupta, T., Labhsetwar, N.K., and Agarwal, A.K. 2015. Physico-chemical speciation of particulates emanating from Karanja biodiesel fuelled automotive engine. Fuel 162, 84–90.

    Article  Google Scholar 

  • Silitonga, A.S., Masjuki, H.H., Mahlia, T.M.I., Ong, H.C., and Chong, W.T. 2013a. Experimental study on performance and exhaust emissions of a diesel engine fueled with Ceiba pentandra biodiesel blends. Energy Convers. Manag. 76, 828–836.

    Article  Google Scholar 

  • Silitonga, A.S., Masjuki, H.H., Mahlia, T.M.I., Ong, H.C., Chong, W.T., and Boosroh, M.H. 2013b. Overview properties of biodiesel diesel blends from edible and non-edible feedstock. Renew. Sustain. Energy Rev. 22, 346–360.

    Article  Google Scholar 

  • Silitonga, A.S., Masjuki, H.H., Ong, H.C., Kusumo, F., Mahlia, T.M.I., and Bahar, A.H. 2016. Pilot-scale production and the physicochemical properties of palm and Calophyllum inophyllum biodiesels and their blends. J. Clean. Prod. 126, 654–656.

    Article  Google Scholar 

  • Silitonga, A.S., Ong, H.C., Mahlia, T.M.I., Masjuki, H.H., and Chong, W.T. 2014. Biodiesel conversion from high FFA crude jatropha curcas, calophyllum inophyllum and ceiba pentandra oil. Energy Procedia 61, 480–483.

    Article  Google Scholar 

  • Silitonga, A.S., Ong, H.C., Mahlia, T.M.I., Masjuki, H.H., and Chong, W.T. 2013c. Characterization and production of Ceiba pentandra biodiesel and its blends. Fuel 108, 855–858.

    Article  Google Scholar 

  • Singh, D., Singal, S.K., Garg, M.O., Maiti, P., Mishra, S., and Ghosh, P.K. 2015. Transient performance and emission characteristics of a heavy-duty diesel engine fuelled with microalga Chlorella variabilis and Jatropha curcas biodiesels. Energy Convers. Manag. 106, 892–900.

    Article  Google Scholar 

  • Singh, H.K.A.P.G., Yusup, S., and Wai, C.K. 2016. Physicochemical properties of crude rubber seed oil for biogasoline production. Procedia Eng. 148, 426–431.

    Article  Google Scholar 

  • Singh, K., Singh, B., Verma, S.K., and Patra, D.D. 2014. Jatropha curcas: a ten year story from hope to despair. Renew. Sustain. Energy Rev. 35, 356–360.

    Article  Google Scholar 

  • Singh, P., Varun, and Chauhan, S.R. 2016. Carbonyl and aromatic hydrocarbon emissions from diesel engine exhaust using different feedstock: a review. Renew. Sustain. Energy Rev. 63, 269–291.

    Article  Google Scholar 

  • Singh, P., Varun, and Chauhan, S.R. 2017. Feasibility of a new non-edible feedstock in diesel engine: investigation of performance, emission and combustion characteristics. J. Mech. Sci. Technol. 31(4), 1979–1986.

    Article  Google Scholar 

  • Singh, Y., Farooq, A., Raza, A., Mahmood, M.A., and Jain, S. 2017. Sustainability of a non-edible vegetable oil based bio-lubricant for automotive applications: a review. Process Saf. Environ. Prot. 111, 701–703.

    Article  Google Scholar 

  • Sivakumar, P., Sindhanaiselvan, S., Gandhi, N.N., Devi, S.S., and Renganathan, S. 2013. Optimization and kinetic studies on biodiesel production from underutilized Ceiba Pentandra oil. Fuel 103, 693–698.

    Article  Google Scholar 

  • Sivalakshmi, S., and Balusamy, T. 2011. Experimental investigation on a diesel engine fueled with neem oil and its methyl ester. Therm. Sci. 15(4), 1193–1204.

    Article  Google Scholar 

  • Sivalakshmi, S., and Balusamy, T. 2013. Effect of biodiesel and its blends with diethyl ether on the combustion, performance and emissions from a diesel engine. Fuel 106, 106–110.

    Article  Google Scholar 

  • Sivalakshmi, S., and Balusamy, T. 2014. The performance, combustion and emission characteristics of neem oil methyl ester and its diesel blends in a diesel engine. Energy Sources Part A Recover Util. Environ. Eff. 36(2), 142–149.

    Article  Google Scholar 

  • Subbarayan, M.R., Kumaar, J.S.S., and Padmanaban, M.R.A. 2016. Experimental investigation of evaporation rate and exhaust emissions of diesel engine fuelled with cotton seed methyl ester and its blend with petro-diesel. Transp. Res. Part D 48, 369–377.

    Article  Google Scholar 

  • Syed, A., Quadri, S.A.P., Rao, G.A.P., and Wajid, M. 2017. Experimental investigations on DI (direct injection) diesel engine operated on dual fuel mode with hydrogren and mahua oil methyl ester (MOME) as injected fuels and effects of injection opening pressure. Appl. Therm. Eng. 114, 118–129.

    Article  Google Scholar 

  • Takase, M., Zhao, T., Zhang, M., Chen, Y., Liu, H., and Yang, L. et al. 2015. An expatiate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties. Renew. Sustain. Energy Rev. 43, 495–520.

    Article  Google Scholar 

  • Tamilselvan, P., Nallusamy, N., and Rajkumar, S. 2017. A comprehensive review on performance, combustion and emission characteristics of biodiesel fueled diesel engines. Renew. Sustain. Energy Rev. 79, 1134–1159.

    Article  Google Scholar 

  • Tamilselvan, R., Rameshbabu, R., Thirunavukkarasu, R., and Periyasamy, D. 2018. Effect of fuel injection timing on performance and emission characteristics of ceiba pentandra biodiesel. Mater. Today Proc. Part 2 5(2), 677–6779.

    Google Scholar 

  • Tan, P., Hu, Z., Lou, D., and Li, Z. 2012. Exhaust emissions from a light-duty diesel engine with Jatropha biodiesel fuel. Energy 39, 356–362.

    Article  Google Scholar 

  • Tye, Y.Y., Lee, K.T., Abdullah, W.N.W., and Leh, C.P. 2012. Potential of Ceiba pentandra (L.) Gaertn. (kapok fiber) as a resource for second generation bioethanol: effect of various simple pretreatment methods on sugar production. Bioresour. Technol. 116, 536–539.

    Article  Google Scholar 

  • Vairamuthu, G., Sundarapandian, S., Kailasanathan, C., and Thangagiri, B. 2016. Experimental investigation on the effects of cerium oxide nanparticle on Calophyllum inophyllum (Punnai) biodiesel blended with diesel fuel in DI diesel engine modified by nozzle geometry. J. Energy Inst. 89, 668–682.

    Article  Google Scholar 

  • Vallinayagam, R., Vedharaj, S., Yang, W.M., Lee, P.S., Chua, K.J.E., and Chou, S.K. 2014. Pine oil-biodiesel blends: a double biofuel strategy to completely eliminate the use of diesel in a diesel engine. Appl. Energy 130, 466–473.

    Article  Google Scholar 

  • Varatharajan, K., Cheralathan, M., and Velraj, R. 2011. Mitigation of NOx emissions from a jatropha biodiesel fuelled DI diesel engine using antioxidant additives. Fuel 90, 2721–2725.

    Article  Google Scholar 

  • Varatharajan, K., and Pushparani, D.S. 2018. Screening of antioxidant additives for biodiesel fuels. Renew. Sustain. Energy Rev. 82, 2017–2018.

    Article  Google Scholar 

  • Varun, P. Singh, Tiwari, S.K., Singh, R., and Kumar, N. 2017. Modification in combustion chamber geometry of CI engines for suitability of biodiesel: a review. Renew. Sustain. Energy Rev. 79, 1016–1033.

    Article  Google Scholar 

  • Vedharaj, S., Vallinayagam, R., Yang, W.M., Chou, S.K., Chua, K.J.E., and Lee, P.S. 2013. Experimental investigation of kapok (Ceiba Pentandra) oil biodiesel as an alternate fuel for diesel engine. Energy Convers. Manag. 75, 773–779.

    Article  Google Scholar 

  • Vedharaj, S., Vallinayagam, R., Yang, W.M., Saravanan, C.G., Chou, S.K., and Chua, K.J.E. et al. 2014b. Reduction of harmful emissions from a diesel engine fueled by kapok methyl ester using combined coating and SNCR technology. Energy Convers. Manag. 79, 581–589.

    Article  Google Scholar 

  • Vedharaj, S., Vallinayagam, R., Yang, W.M., Saravanan, C.G., and Lee, P.S. 2015. Optimization of combustion bowl geometry for the operation of kapok biodiesel – diesel blends in a stationary diesel engine. Fuel 139, 561–567.

    Article  Google Scholar 

  • Vedharaj, S., Vallinayagam, R., Wang, W.M., Choul, S.K., and Lee, P.S. 2014a. Effect of adding 1,4-Dioxane with kapok biodiesel on the characteristics of a diesel engine. Appl. Energy 136, 1166–1173.

    Article  Google Scholar 

  • Verma, P., Sharma, M.P., and Dwivedi, G. 2016. Impact of alcohol on biodiesel production and properties. Renew. Sustain. Energy Rev. 56, 319–333.

    Article  Google Scholar 

  • Vijay Kumar, M., Veeresh Babu, A., and Ravi Kumar, P. 2018. The impacts on combustion, performance and emissions of biodiesel by using additives in direct injection diesel engine. Alex. Eng. J. 57, 509–516.

    Article  Google Scholar 

  • Wakil, M.A., Kalam, M.A., Masjuki, H.H., Atabani, A.E., and Fattah, I.M.R. 2015. Influence of biodiesel blending on physicochemical properties and importance of mathematical model for predicting the properties of biodiesel blend. Energy Convers. Manag. 94, 51–67.

    Article  Google Scholar 

  • Wang, L. 2013. Properties of Manchurian apricto (Prunus mandshurica Skv.) and Siberian apricot (Prunus sibirica L.) seed kernel oils and evaluation as biodiesel feedstocks. Ind. Crops Prod. 50, 838–843.

    Article  Google Scholar 

  • Wang, L., and Yu, H. 2012. Biodiesel from Siberian apricot (Prunus sibirica L.) seed kernel oil. Bioresour. Technol. 112, 355–358.

    Article  Google Scholar 

  • Xu, H., Yin, B., Liu, S., and Jia, H. 2017. Performance optimization of diesel engine fueled with diesel-jatropha curcas biodiesel blend using response surface methodology. J. Mech. Sci. Technol. 31(8), 4051–4059.

    Article  Google Scholar 

  • Xue, J. 2013. Combustion characteristics, engine performance and emissions of waste edible oil biodiesel in diesel engine. Renew. Sustain. Energy Rev. 23, 350–365

    Article  Google Scholar 

  • Yaakob, Z., Narayanan, B.N., and Padikkaparambil, S. 2014. A review on the oxidation stability of biodiesel. Renew. Sustain. Energy Rev. 35, 136–153.

    Article  Google Scholar 

  • Yaliwal, V.S., Banapurmath, N.R., Gireesh, N.M., Hosmath, R.S., Donateo, R., and Tewari, P.G. 2016. Effect of nozzle and combustion chamber geometry on the performance of a diesel engine operated on dual fuel model using renewable fuels. Renew. Energy 93, 483–501.

    Article  Google Scholar 

  • Yang, L., Takase, M., Zhang, M., Zhao, T., and Wu, X. 2014. Potential non-edible oil feedstock for biodiesel production in Africa: a survey. Renew. Sustain. Energy Rev. 38, 461–477.

    Article  Google Scholar 

  • Zaharin, M.S.M., Abdullah, N.R., Najafi, G., Sharudin, H., and Yusaf, T. 2017. Effects of physicochemical properties of biodiesel fuel blends with alcohol on diesel engine performance and exhaust emissions: a review. Renew. Sustain. Energy Rev. 79, 475–493.

    Article  Google Scholar 

  • Zainal, N.A., Zulkifli, N.W.M., Gulzar, M., and Hasjuki, H.H. 2018. A review on the chemistry, production, and technological potential of bio-based lubricants. Renew. Sustain. Energy Rev. 82, 80–102.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo-Young No .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

No, SY. (2019). Biodiesel. In: Application of Liquid Biofuels to Internal Combustion Engines. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-6737-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6737-3_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6736-6

  • Online ISBN: 978-981-13-6737-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics