Skip to main content

Arsenic Distribution and Pollution Characteristics

Abstract

Arsenic is abundant in the earth’s crust and has been found in more than 300 minerals in nature. As a compound with other elements such as oxygen, chlorine, and sulfur, arsenic is widely distributed in minerals and ores that contain copper or lead. Arsenic present in the minerals is usually mobilized through geogenic and anthropogenic activities. Anthropogenic sources of arsenic pollution originate in several industries, such as mining, smelting or refining of metal, fossil fuel combustion, and wood preservation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bowell, R.J., Alpers, C.N., Jamieson, H.E., et al.: The environmental geochemistry of arsenic—an overview. Rev. Mineral. Geochem. 79(1), 1–16 (2014)

    Google Scholar 

  2. Drahota, P., Filippi, M.: Secondary arsenic minerals in the environment: a review. Environ. Int. 35(8), 1243–1255 (2009)

    CAS  Google Scholar 

  3. Walker, S.R., Parsons, M.B., Jamieson, H.E., et al.: Arsenic mineralogy of near-surface tailings and soils: influences on arsenic mobility and bioaccessibility in the Nova Scotia gold mining districts. Can. Miner. 47(3), 533–556 (2009)

    CAS  Google Scholar 

  4. Utsunomiya, S., Peters, S.C., Blum, J.D., et al.: Nanoscale mineralogy of arsenic in a region of New Hampshire with elevated As-concentrations in the groundwater. Am. Miner. 88(11–12), 1844–1852 (2003)

    CAS  Google Scholar 

  5. Morin, G., Rousse, G., Elkaim, E.: Crystal structure of tooeleite, Fe6(AsO3)4SO4(OH)4·4H2O, a new iron arsenite oxyhydroxysulfate mineral relevant to acid mine drainage. Am. Miner. 92(1), 193–197 (2007)

    CAS  Google Scholar 

  6. Nishimura, T., Robins, R.G.: Confirmation that tooeleite is a ferric arsenite sulfate hydrate, and is relevant to arsenic stabilization. Miner. Eng. 21(4), 246–251 (2008)

    CAS  Google Scholar 

  7. Akter, A., Ali, M.H.: Arsenic contamination in groundwater and its proposed remedial measures. Int. J. Environ. Sci. Technol. 8(2), 433–443 (2011)

    CAS  Google Scholar 

  8. Smedley, P.L., Kinniburgh, D.G.: A review of the source, behavior and distribution of arsenic in natural waters. Appl. Geochem. 17(5), 517–568 (2002)

    CAS  Google Scholar 

  9. How Does Arsenic Get into the Groundwater. Civil and Environmental Engineering. University of Maine. https://umaine.edu/arsenic/how-does-arsenic-get-into-the-groundwater/. Accessed 27 Nov 2018

  10. Zeng, Z.H., Zhang, Z.L.: The formation of As element in groundwater and the controlling factor. Shanghai Geol. 87(3), 11–15 (2002)

    Google Scholar 

  11. Zheng, Y., Stute, M., Geen, A.V., et al.: Redox control of arsenic mobilization in Bangladesh groundwater. Appl. Geochem. 19(2), 201–214 (2004)

    CAS  Google Scholar 

  12. Thomas, M.A.: The association of arsenic with redox conditions, depth, and ground-water age in the glacial aquifer system of the northern United States. USGS U.S. Geological Survey, Virginia, pp. 1–18(2007)

    Google Scholar 

  13. Hong, B.: Influence of microbes on biogeochemistry of arsenic mechanism of arsenic-mechanism of arsenic mobilization in groundwater. Adv. Earth Sci. 21(1), 77–82 (2006)

    Google Scholar 

  14. Su, C.: Environmental implications and applications of engineered nanoscale magnetite and its hybrid nanocomposites: a review of recent literature. J. Hazard. Mater. 322(Part A), 48–84 (2017)

    Google Scholar 

  15. Kim, E.J., Batchelor, B.: Macroscopic and X-ray photoelectron spectroscopic investigation of interactions of arsenic with synthesized pyrite. Environ. Sci. Technol. 43(8), 2899–2904 (2009)

    CAS  Google Scholar 

  16. Paktunc, D., Dutrizac, J., Gertsman, V.: Synthesis and phase transformations involving scorodite, ferric arsenate and arsenical ferrihydrite: implications for arsenic mobility. Geochim. Cosmochim. Acta 72(11), 2649–2672 (2008)

    CAS  Google Scholar 

  17. Henke, K.: Arsenic: Environmental Chemistry, Health Threats and Waste Treatment, vol. 20, no. 3, pp. 199–201. Wiley (2009)

    Google Scholar 

  18. Pollutants, M.A.B.E.: Arsenic, vol. vii, p. 332. National Academy of Sciences, Washington, D.C. (1977)

    Google Scholar 

  19. Singh, R., Singh, S., Parihara, P., et al.: Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicol. Environ. Saf. 112, 247–270 (2015)

    CAS  Google Scholar 

  20. Yang, B., Zhang, G.L., Deng, W., et al.: Review of arsenic pollution and treatment progress in nonferrous metallurgy industry. Adv. Mater. Res. 634–638(1), 3239–3243 (2013)

    Google Scholar 

  21. Luo, T., Cui, J.L., Hu, S., et al.: Arsenic removal and recovery from copper smelting wastewater using TiO2. Environ. Sci. Technol. 44(23), 9094–9098 (2010)

    CAS  Google Scholar 

  22. Morales, A., Cruells, M., Roca, A., et al.: Treatment of copper flash smelter flue dusts for copper and zinc extraction and arsenic stabilization. Hydrometallurgy 105(1–2), 148–154 (2010)

    CAS  Google Scholar 

  23. Li, Y.C., Min, X.B., Chai, L.Y., et al.: Co-treatment of gypsum sludge and Pb/Zn smelting slag for the solidification of sludge containing arsenic and heavy metals. J. Environ. Manag. 181, 756–761 (2016)

    CAS  Google Scholar 

  24. Ke, Y., Shen, C., Min, X.B., et al.: Separation of Cu and As in Cu-As-containing filter cakes by Cu2+-assisted acid leaching. Hydrometallurgy 172, 45–50 (2017)

    CAS  Google Scholar 

  25. Peng, Y.L., Zheng, Y.J., Chen, W.M., et al.: The oxidation of arsenic from As(III) to As(V) during copper electrorefining. Hydrometallurgy 129–130, 156–160 (2012)

    Google Scholar 

  26. Zheng, Y.J., Peng, Y.L., Lang, K.E., et al.: Separation and recovery of Cu and As from copper electrolyte through electrowinning and SO2 reduction. Trans. Nonferrous Met. Soc. China 23(7), 2166–2173 (2013)

    CAS  Google Scholar 

  27. Shankar, S., Shikha, U.: Arsenic contamination of groundwater: a review of sources, prevalence, health risks, and strategies for mitigation. Sci. World J. 2014(1), 179–186 (2014)

    Google Scholar 

  28. Pena-Pereira, F., Villar-Blanco, L., Lavilla, I., et al.: Test for arsenic speciation in waters based on a paper-based analytical device with scanometric detection. Anal. Chim. Acta 1011, 1–10 (2018)

    CAS  Google Scholar 

  29. Michael, H.A.: An arsenic forecast for China. Science 341(6148), 852–853 (2013)

    CAS  Google Scholar 

  30. Mukherjee, A., Sengupta, M.K., Hossain, M.A., et al.: Arsenic contamination in groundwater: a global perspective with emphasis on the Asian scenario. J. Health Popul. Nutr. 24(2), 142–163 (2006)

    Google Scholar 

  31. Nordstrom, D.K.: Worldwide occurrences of arsenic in ground water. Science 296(5576), 2143–2145 (2002)

    CAS  Google Scholar 

  32. He, Y., Luo, Y.: Status of arsenic pollution in Xinjiang and research progress in prevention and treatment of arsenism. People’s Military Surg. (06), 616–618 (2017)

    Google Scholar 

  33. Zhang, L., Xie, X., Li, J., et al.: Hydrochemical and geochemical investigations on high arsenic groundwater from Datong Basin, Northern China. Asian J. Ecotoxicol. 02, 215–221 (2013)

    Google Scholar 

  34. Deng, Y.: Geochemical Processes of High Arsenic Groundwater System at Western Hetao Basin. China University of Geosciences, Wuhan (2008)

    Google Scholar 

  35. Zhao, S., Liu, G., Yang, B., et al.: Screening report on endemic arsenism and high content of arsenic in Xiantao City, Hubei Province. Chin. J. Endemiol. 28(1), 71–74 (2009)

    CAS  Google Scholar 

  36. Deng, Y., Wang, Y., Li, H., et al.: Seasonal variation of arsenic speciation in shallow groundwater from endemic arsenicosis area in Jianghan Plain. Editor. Comm. Earth Sci. J. China Univ. Geosci. 40(11), 1876–1886 (2015)

    Google Scholar 

  37. Matschullat, J.: Arsenic in the geosphere—a review. Sci. Total Environ. 249(1–3), 297–312 (2000)

    CAS  Google Scholar 

  38. Pacyna, J.M., Pacyna, E.G.: An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ. Rev. 9(4), 269–298 (2001)

    CAS  Google Scholar 

  39. Sánchez-Rodas, D., Campa, A.M.A.S.D.L., Rosa, J.D.D.L., et al.: Arsenic speciation of atmospheric particulate matter (PM10) in an industrialised urban site in southwestern Spain. Chemosphere 66(8), 1485–1493 (2007)

    Google Scholar 

  40. Chilvers, D., Peterson, P.: Global cycling of arsenic. Lead, mercury, cadmium and arsenic in the environment. 279–301 (1987)

    Google Scholar 

  41. Goldberg, S.: Geochemistry, groundwater and pollution. Vadose Zone J. 5(1), 510–510 (2006)

    Google Scholar 

  42. Turner, A.W.: Bacterial oxidation of arsenite. Nature 164(4158), 76–77 (1949)

    Google Scholar 

  43. Francesconi, K.A., Kuehnelt, D.: Arsenic compounds in the environment. Environ. Chem. Arsen. (Boca Raton) 51–94 (2002)

    Google Scholar 

  44. Wang, P., Wang, S.L., Liu, S.Q., et al.: Occurrence, speciation, source and genochemical cycle of arsenic. Environ. Sci. Technol. 33(7), 96–103 (2010)

    CAS  Google Scholar 

  45. Garelick, H., Jones, H., Dybowska, A., et al.: Arsenic pollution sources. Rev. Environ. Contam. Toxicol. 197, 17–60 (2008)

    CAS  Google Scholar 

  46. Aurilio, A.C., Mason, R.P., Hemond, H.F.: Speciation and fate of arsenic in three lakes of the aberjona watershed. Environ. Sci. Technol. 28(4), 577–585 (1994)

    CAS  Google Scholar 

  47. Fu, Q.Y., Zhuang, G.S., Li, J., et al.: Source, long-range transport, and characteristics of a heavy dust pollution event in Shanghai. J. Geophys. Res. 115, 1–12 (2010)

    Google Scholar 

  48. Pey, J., Alastuey, A., Querol, X., et al.: A simplified approach to the indirect evaluation of the chemical composition of atmospheric aerosols from PM mass concentrations. Atmos. Environ. 44(39), 5112–5121 (2010)

    CAS  Google Scholar 

  49. Song, C.H.: Analysis of arsenic speciation in atmospheric particulate matters. J. Wuhan Univ. Technol. 32(13), 45–47 (2010)

    Google Scholar 

  50. He, T.T.: Analysis of Total Arsenic and Speciation in Atmospheric Particles in Shijing, Beijing. Nanhua University, Hengyang

    Google Scholar 

  51. He, T.T., Li, B., Xu, D.D., et al.: Ultrasonic extraction of arsenic speciation in atmospheric particles with phosphoric acid. Chin. J. Anal. Chem. 39(4), 491–495 (2011)

    CAS  Google Scholar 

  52. Gupta, D.K., Chatterjee, S.: Arsenic Contamination in the Environment. The Issues and Solutions. Springer, Cham, Springer International Publishing (2017). ISBN: 9783319543543

    Google Scholar 

  53. Mandal, B.K., Suzuki, K.T.: Arsenic round the world: a review. Talanta 58(1), 201–235 (2002)

    CAS  Google Scholar 

  54. García-Sánchez, A., Alonso-Rojo, P., Santos-Francés, F.: Distribution and mobility of arsenic in soils of a mining area (Western Spain). Sci. Total Environ. 408(19), 4194–4201 (2010)

    Google Scholar 

  55. Kien, C.N., Noi, V.N., Bang, N.D., et al.: Arsenic and heavy metal concentrations in agricultural soils around tin and tungsten mines in the Dai Tu district, N. Vietnam. Water Air Soil Pollut. 197(1–4), 75–89 (2009)

    Google Scholar 

  56. Krysiak, A., Karczewska, A.: Arsenic extractability in soils in the areas of former arsenic mining and smelting, SW Poland. Sci. Total Environ. 379(2–3), 190–200 (2007)

    CAS  Google Scholar 

  57. Niazi, N.K., Singh, B., Shah, P.: Arsenic speciation and phytoavailability in contaminated soils using a sequential extraction procedure and XANES spectroscopy. Environ. Sci. Technol. 45(17), 7135–7142 (2011)

    CAS  Google Scholar 

  58. Otones, V., Álvarez-Ayuso, E., García-Sánchez, A., et al.: Arsenic distribution in soils and plants of an arsenic impacted former mining area. Environ. Pollut. 159(10), 2637–2647 (2011)

    CAS  Google Scholar 

  59. Mikutta, C., Mandaliev, P.N., Mahler, N., et al.: Bioaccessibility of arsenic in mining-impacted circumneutral river floodplain soils. Environ. Sci. Technol. 48(22), 13468–13477 (2014)

    CAS  Google Scholar 

  60. Adriano, D.C.: Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals, 2nd edn. Springer, New York (2001)

    Google Scholar 

  61. Kim, E.J., Yoo, J.C., Baek, K.: Arsenic speciation and bioaccessibility in arsenic-contaminated soils: sequential extraction and mineralogical investigation. Environ. Pollut. 186, 29–35 (2014)

    CAS  Google Scholar 

  62. Kabata-Pendias, A.: Trace Elements in Soils and Plants, 4th edn. CRC Press, Boca Raton (2010)

    Google Scholar 

  63. Tang, J.W., Liao, Y.P., Yang, Z.H., et al.: Characterization of arsenic serious-contaminated soils from Shimen realgar mine area, the Asian largest realgar deposit in China. J. Soils Sediments 16(5), 1519–1528 (2016)

    CAS  Google Scholar 

  64. Zhu, X.Y., Wang, R.C., Lu, X.C., et al.: Secondary minerals of weathered orpiment-realgar-bearing tailings in Shimen carbonate-type realgar mine, Changde, Central China. Mineral. Petrol. 109(1), 1–15 (2015)

    Google Scholar 

  65. Li, H., Ben, B.: Arsenic pollution sows despair in Chinese cancer village. Reuters. HESHAN China Mon Jun 23, 2014 6:42am EDT. www.360doc.com/content/14/0625/08/26286_389523917.shtml. Accessed 27 Nov 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Yan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, YY., Chai, LY., Yang, WC. (2019). Arsenic Distribution and Pollution Characteristics. In: Chai, LY. (eds) Arsenic Pollution Control in Nonferrous Metallurgy. Springer, Singapore. https://doi.org/10.1007/978-981-13-6721-2_1

Download citation

Publish with us

Policies and ethics