Skip to main content

Community Aware Personalized Hashtag Recommendation in Social Networks

Part of the Communications in Computer and Information Science book series (CCIS,volume 996)

Abstract

In the literature of social networks research, community detection algorithms and hashtag recommendation models have been studied extensively but treated separately. Community detection algorithms study the inter-connection between users based on the social structure of the network. Hashtag recommendation models suggest useful hashtags to the users while they are typing in their tweets. In this paper, we aim to bridge the gap between these two problems and consider them as inter-dependent. We propose a new hashtag recommendation model which predicts the top-y hashtags to the user based on a hierarchical level of feature extraction over communities, users, tweets and hashtags. Our model detects two pools of users: in the first level, users are detected using their topology-based connections; in the second level, users are detected based on the similarity of the topics of the tweets they previously posted. Our hashtag recommendation model finds influential users, reweighs their tweets, searches for the top-n similar tweets from the tweets pool of users who are socially and topically related. All hashtags are then extracted, ranked and the top-y are recommended. Our model shows better performance of the recommended hashtags than when considering the topology-based connections only.

Keywords

  • Social networks
  • Twitter
  • Hashtag recommendation
  • Community detection
  • Topics model

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-13-6661-1_17
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-981-13-6661-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

References

  1. Alsini, A., Datta, A., Li, J., Huynh, D.: Empirical analysis of factors influencing twitter hashtag recommendation on detected communities. In: Cong, G., Peng, W.-C., Zhang, W.E., Li, C., Sun, A. (eds.) ADMA 2017. LNCS (LNAI), vol. 10604, pp. 119–131. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69179-4_9

    CrossRef  Google Scholar 

  2. Alvarez-Melis, D., Saveski, M.: Topic modeling in Twitter: aggregating tweets by conversations. In: ICWSM, pp. 519–522. AAAI Press (2016)

    Google Scholar 

  3. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  4. Ding, Y.: Community detection: topological vs topical. J. Inf. 5(4), 498–514 (2011)

    Google Scholar 

  5. Dovgopol, R., Nohelty, M.: Twitter Hash Tag Recommendation. CoRR abs/1502.00094 (2015)

    Google Scholar 

  6. Godin, F., Slavkovikj, V., De Neve, W., Schrauwen, B., Van de Walle, R.: Using topic models for Twitter hashtag recommendation. In: Proceedings of the 22nd International Conference on World Wide Web, WWW, pp. 593–596. ACM, New York, NY, USA (2013)

    Google Scholar 

  7. Guo, R.: Research on information spreading model of social network. In: 2012 Second International Conference on Instrumentation, Measurement, Computer, Communication and Control, pp. 918–921, December 2012

    Google Scholar 

  8. Kowald, D., Pujari, S.C., Lex, E.: Temporal effects on hashtag reuse in Twitter: a cognitive-inspired hashtag recommendation approach. In: Proceedings of the 26th International Conference on World Wide Web, WWW 2017, pp. 1401–1410. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland (2017)

    Google Scholar 

  9. Kywe, S.M., Hoang, T.-A., Lim, E.-P., Zhu, F.: On recommending hashtags in Twitter networks. In: Aberer, K., Flache, A., Jager, W., Liu, L., Tang, J., Guéret, C. (eds.) SocInfo 2012. LNCS, vol. 7710, pp. 337–350. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35386-4_25

    CrossRef  Google Scholar 

  10. Li, D., et al.: Modeling topic and community structure in social tagging: the TTR-LDA-community model. J. Assoc. Inf. Sci. Technol. 62(9), 1849–1866 (2011)

    CrossRef  Google Scholar 

  11. Li, R., Wang, S., Deng, H., Wang, R., Chang, K.: Towards social user profiling: unified and discriminative influence model for inferring home locations. In: KDD, pp. 1023–1031 (2012)

    Google Scholar 

  12. Mazzia, A., Juett, J.: Suggesting hashtags on Twitter. In: EECS 545 Project, Winter Term (2011)

    Google Scholar 

  13. Mehrotra, R., Sanner, S., Buntine, W.L., Xie, L.: Improving LDA topic models for microblogs via Tweet pooling and automatic labeling. In: SIGIR, pp. 889–892. ACM (2013)

    Google Scholar 

  14. Palla, G.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(814), 814–818 (2005)

    CrossRef  Google Scholar 

  15. Reihanian, A., Minaei-Bidgoli, B., Alizadeh, H.: Topic-oriented community detection of rating-based social networks. J. King Saud Univ. Comput. Inf. Sci. 28(3), 303–310 (2016)

    Google Scholar 

  16. Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral marketing. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2002, pp. 61–70. ACM, New York, NY, USA (2002)

    Google Scholar 

  17. Riquelme, F., Cantergiani, P.G.: Measuring user influence on Twitter: a survey. Inf. Process. Manag. 52(5), 949–975 (2016)

    CrossRef  Google Scholar 

  18. Sarkar, D. (ed.): Text Analytics with Python. Apress, Bangalore (2016)

    Google Scholar 

  19. Tran, V.C., Hwang, D., Nguyen, N.T.: Hashtag recommendation approach based on content and user characteristics. Cybern. Syst., 1–16 (2018), https://doi.org/10.1080/01969722.2017.1418724

    CrossRef  Google Scholar 

  20. Weng, J., Lim, E.P., Jiang, J., He, Q.: Twitterrank: finding topic-sensitive influential Twitterers. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, WSDM, pp. 261–270. ACM, New York, NY, USA (2010)

    Google Scholar 

  21. Yan, X., Guo, J., Lan, Y., Cheng, X.: A biterm topic model for short texts. In: Proceedings of the 22nd International Conference on World Wide Web, WWW, pp. 1445–1456. ACM, New York, NY, USA (2013)

    Google Scholar 

  22. Yin, J., Wang, J.: A Dirichlet multinomial mixture model-based approach for short text clustering. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 233–242. ACM, New York, NY, USA (2014)

    Google Scholar 

  23. Yu, J., Zhu, T.: Combining long-term and short-term user interest for personalized hashtag recommendation. Front. Comput. Sci. 9(4), 608–622 (2015)

    CrossRef  Google Scholar 

  24. Zangerle, E., Gassler, W., Specht, G.: On the impact of text similarity functions on hashtag recommendations in microblogging environments. Soc. Netw. Anal. Min. 3(4), 889–898 (2013)

    CrossRef  Google Scholar 

  25. Zhao, F., Zhu, Y., Jin, H., Yang, L.T.: A personalized hashtag recommendation approach using LDA-based topic model in microblog environment. Future Gener. Comput. Syst. 65(Supplement C), 196–206 (2016). special Issue on Big Data in the Cloud

    CrossRef  Google Scholar 

  26. Zhou, D., Manavoglu, E., Li, J., Giles, C.L., Zha, H.: Probabilistic models for discovering e-Communities. In: Proceedings of the 15th International Conference on World Wide Web, WWW, pp. 173–182. ACM, New York, NY, USA (2006)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the ARC Discovery Project under Grant No. DP160102114 and a Titan Xp GPU from Nvidia Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Areej Alsini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Alsini, A., Datta, A., Huynh, D.Q., Li, J. (2019). Community Aware Personalized Hashtag Recommendation in Social Networks. In: , et al. Data Mining. AusDM 2018. Communications in Computer and Information Science, vol 996. Springer, Singapore. https://doi.org/10.1007/978-981-13-6661-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6661-1_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6660-4

  • Online ISBN: 978-981-13-6661-1

  • eBook Packages: Computer ScienceComputer Science (R0)