Skip to main content

Massive Access with Channel Statistical Information

  • Chapter
  • First Online:
Massive Access for Cellular Internet of Things Theory and Technique

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

  • 315 Accesses

Abstract

In this chapter, we study the problem of massive access in the 5G cellular IoT, where the channels are fast-varying. To address the challenging issue of channel state information (CSI) acquisition and beam design for a massive number of IoT devices over fast time-varying fading channels, we design a non-orthogonal beamspace multiple access framework. In particular, the user equipments (UEs) are non-orthogonal not only in the temporal-frequency domain, but also in the beam domain. We analyze the performance of the proposed non-orthogonal beamspace multiple access scheme, and derive an upper bound on the weighted sum rate in terms of channel conditions and system parameters. For further improving the performance, we propose three non-orthogonal beam construction methods with different beamspace resolutions. Finally, extensively simulation results show the performance gain of the proposed non-orthogonal beamspace multiple access scheme over the baseline ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The proposed non-orthogonal beamspace multiple access technique can be easily extended to the multiple-cell scenario.

  2. 2.

    Note that the subspace is determined by the angular resolution of the large-scale antenna array. Thus, the maximum number of clusters is N t, but we also can use multiple subspaces to form a cluster. As a result, the number of clusters can be decreased.

  3. 3.

    The system may have N t clusters at most, but only M clusters are non-empty. Thus, we have 1 ≤ M ≤ N t.

References

  1. Z. Wei, J. Yuan, D.W.K. Ng, E. Maged, Z. Ding, A survey of downlink non-orthogonal multiple access for 5G wireless communication networks. ZTE Commun. 14(4), 17–25 (2016)

    Google Scholar 

  2. L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-Lin, Z. Wang, Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends. IEEE Commun. Mag. 53(9), 74–81 (2015)

    Article  Google Scholar 

  3. Z. Ding, Z. Yang, P. Fan, H.V. Poor, On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Signal Process. Lett. 21(12), 1501–1505 (2014)

    Article  Google Scholar 

  4. J. Seo, Y. Sung, Beam design and user scheduling for nonorthogonal multiple access with multiple antennas based on pareto optimality. IEEE Trans. Signal Process. 66(11), 2876–2891 (2018)

    Article  MathSciNet  Google Scholar 

  5. V.-D. Nguyen, H.D. Tuan, T.Q. Duong, H.V. Poor, O.-S. Shin, Precoder design for signal superposition in MIMO-NOMA multicell networks. IEEE J. Sel. Areas Commun. 35(12), 2681–2695 (2017)

    Article  Google Scholar 

  6. X. Chen, Z. Zhang, C. Zhong, D.W.K. Ng, Exploiting multiple-antenna for non-orthogonal multiple access. IEEE J. Sel. Areas Commun. 35(10), 2207–2220 (2017)

    Article  Google Scholar 

  7. H.V. Cheng, E. Björnson, E.G. Larsson, Performance analysis of NOMA in training-based multiuser MIMO systems. IEEE Trans. Wirel. Commun. 17(1), 372–385 (2018)

    Article  Google Scholar 

  8. X. Chen, Z. Zhang, C. Zhong, R. Jia, D.W.K. Ng, Fully non-orthogonal communication for massive access. IEEE Trans. Commun. 66(4), 1717–1731 (2018)

    Article  Google Scholar 

  9. X. Chen, Z. Zhang, H.-H. Chen, On distributed antenna system with limited deedback precoding-opportunities and challenges. IEEE Wirel. Commun. 17(2), 80–88 (2010)

    Article  Google Scholar 

  10. X. Chen, C. Yuen, Performance analysis and optimization for interference alignment over MIMO interference channels with limited feedback. IEEE Trans. Signal Process. 62(7), 1785–1795 (2014)

    Article  MathSciNet  Google Scholar 

  11. C. Sun, X. Gao, S. Jin, M. Matthaiou, Z. Ding, C. Xiao, Beam division multiple access transmission for massive MIMO communications. IEEE Trans. Commun. 63(6), 2170–2784 (2015)

    Article  Google Scholar 

  12. L. You, X. Gao, G.Y. Li, X.-G. Xia, N. Ma, BDMA for millimeter-wave/terahertz massive MIMO transmission with per-beam synchronization. IEEE J. Sel. Areas Commun. 35(7), 1550–1563 (2017)

    Article  Google Scholar 

  13. J. Zhao, F. Gao, W. Jia, S. Zhang, S. Jin, H. Lin, Angular domain hybrid precoding and channel tracking for millimeter wave massive MIMO systems. IEEE Trans. Wirl. Commun. 16(10), 6868–6880 (2017)

    Article  Google Scholar 

  14. X. Chen, Z. Zhang, Exploiting angular domain information for precoder design in distributed antenna system. IEEE Trans. Signal Process. 58(11), 5791–5801 (2010)

    Article  MathSciNet  Google Scholar 

  15. B. Wang, L. Dai, Z. Wang, N. Ge, S. Zhou, Spectrum and energy-efficient beamspace MIMO-NOMA for millimeter-wave communications using lens antenna array. IEEE J. Sel. Areas Commun. 35(10), 2370–2382 (2017)

    Article  Google Scholar 

  16. Y.I. Choi, J.W. Lee, M. Rim, C.G. Kang, On the performance of beam division nonorthogonal multiple access for FDD-based large-scale multi-user MIMO systems. IEEE Trans. Wirel. Commun. 16(8), 5077–5089 (2017)

    Article  Google Scholar 

  17. H. Lin, F. Gao, S. Jin, G.Y. Li, A new view of multi-user hybrid massive MIMO: non-orthogonal angular division multiple access. IEEE J. Sel. Areas Commun. 35(10), 2268–2280 (2017)

    Article  Google Scholar 

  18. J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, W. Zhao, A survey on Internet of things: Architecture, enabling technologies, security and privacy, and application. IEEE Internet Things J. 4(5), 1125–1142 (2017)

    Article  Google Scholar 

  19. H. Bolcskei, M. Borgmann, A.J. Paulray, Impact of the propagation environment on the performance of space-frequency coded MIMO-OFDM. IEEE J. Sel. Areas Commun. 21(3), 427–439 (2003)

    Article  Google Scholar 

  20. A.J. Barabell, J. Capon, D.F. Delong, J.R. Johnson, K. Senne, Performance comparison of superresolution array processing algorithms. Technical report TST-72, Lincoln Laboratory, Massachusetts Institute of Technology, Cambridge (1984)

    Google Scholar 

  21. V. Raghavan, J.H. Kotecha, A.M. Sayeed, Why does the kronecker model result in misleading capacity estimates? IEEE Trans. Inf. Theory 56(10), 4843–4864 (2010)

    Article  MathSciNet  Google Scholar 

  22. S.S. Christensen, R. Agarwal, E. de Carvalho, J.M. Cioffi, Weighted sum-rate maximization using weighted MMSE for MIMO-BC beamforming design. IEEE Trans. Wirel. Commun. 7(12), 4792–4799 (2008)

    Article  Google Scholar 

  23. Q. Shi, M. Razaviyayn, Z.-Q. Luo, C. He, An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel. IEEE Trans. Signal Process. 59(9), 4331–4340 (2011)

    Article  MathSciNet  Google Scholar 

  24. 3GPP TR 45.820, Technical specification group GSM/EDGE radio access network; Cellular system support for ultra-low complexity and low throughput Internet of things (CIoT) (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix The Proof of Theorem 1

Appendix The Proof of Theorem 1

Prior to proving Theorem 1, we first provide the following lemma [11]:

Lemma 3

If A , B , and X are symmetric positive semi-definite matrices, the matrix function f(X) in below is concave with respect to X.

$$\displaystyle \begin{aligned} f(\mathbf{X})=\log_2\det(\mathbf{I}+\mathbf{A}\mathbf{X})-\log_2\det(\mathbf{I}+\mathbf{B}\mathbf{X}).{} \end{aligned} $$
(5.43)

According to the definition, the achievable rate of the UEm,n in (5.13) can be transformed as

$$\displaystyle \begin{aligned} \begin{array}{rcl} r_{m,n}&\displaystyle =&\displaystyle \log_2\left(\frac{\sum_{j=1,j\neq m}^{M}\sum_{i=1}^{N_j}|\bar{\mathbf{h}}_{m,n}^H{\mathbf{v}}_{m,n,j,i}|{}^2+\sum_{i=1}^{n}|\bar{\mathbf{h}}_{m,n}^H{\mathbf{v}}_{m,n,m,i}|{}^2+1} {\sum_{j=1,j\neq m}^{M}\sum_{i=1}^{N_j}|\bar{\mathbf{h}}_{m,n}^H{\mathbf{v}}_{m,n,j,i}|{}^2+\sum_{i=1}^{n-1}|\bar{\mathbf{h}}_{m,n}^H{\mathbf{v}}_{m,n,m,i}|{}^2+1}\right)\\ &\displaystyle =&\displaystyle \log_2\det\left(\bar{\mathbf{h}}_{m,n}\bar{\mathbf{h}}_{m,n}^H\left(\sum_{j=1,j\neq m}^{M}\sum_{i=1}^{N_m}{\mathbf{V}}_{m,n,j,i}+\sum_{i=1}^{n}{\mathbf{V}}_{m,n,m,i}\right)+\mathbf{I}\right)\\ &\displaystyle &\displaystyle -\log_2\det\left(\bar{\mathbf{h}}_{m,n}\bar{\mathbf{h}}_{m,n}^H\left(\sum_{j=1,j\neq m}^{M}\sum_{i=1}^{N_m}{\mathbf{V}}_{m,n,j,i}+\sum_{i=1}^{n-1}{\mathbf{V}}_{m,n,m,i}\right)+\mathbf{I}\right),\\{} \end{array} \end{aligned} $$
(5.44)

where \({\mathbf {v}}_{m,n,j,i}=\varLambda _{m,n}^{\frac {1}{2}}{\mathbf {P}}_{j,i}^{\frac {1}{2}}{\mathbf {s}}_{j,i}\) and \({\mathbf {V}}_{m,n,j,i}={\mathbf {v}}_{m,n,j,i}{\mathbf {v}}_{m,n,j,i}^H\). Equation (5.44) holds true due to the fact that \(\det (\mathbf {I}+\mathbf {AB})=\det (\mathbf {I}+\mathbf {BA})\). Based on Lemma 3, r m,n is a concave function of \(\|\bar {\mathbf {h}}_{m,n}\|{ }^2\). Thus, applying the Jensen’s inequality yields

$$\displaystyle \begin{aligned} \begin{array}{rcl} \mathrm{E}\{r_{m,n}\}&\displaystyle \leq&\displaystyle \log_2\det\left(\mathrm{E}[\bar{\mathbf{h}}_{m,n}\bar{\mathbf{h}}_{m,n}^H]\left(\sum_{j=1,j\neq m}^{M}\sum_{i=1}^{N_m}{\mathbf{V}}_{m,n,j,i}+\sum_{i=1}^{n}{\mathbf{V}}_{m,n,m,i}\right)+\mathbf{I}\right)\\ &\displaystyle &\displaystyle -\log_2\det\left(\mathrm{E}[\bar{\mathbf{h}}_{m,n}\bar{\mathbf{h}}_{m,n}^H]\left(\sum_{j=1,j\neq m}^{M}\sum_{i=1}^{N_m}{\mathbf{V}}_{m,n,j,i}+\sum_{i=1}^{n-1}{\mathbf{V}}_{m,n,m,i}\right)+\mathbf{I}\right)\\ &\displaystyle =&\displaystyle \log_2\det\left(\sum_{j=1,j\neq m}^{M}\sum_{i=1}^{N_m}{\mathbf{V}}_{m,n,j,i}+\sum_{i=1}^{n}{\mathbf{V}}_{m,n,m,i}+\mathbf{I}\right)\\ &\displaystyle &\displaystyle -\log_2\det\left(\sum_{j=1,j\neq m}^{M}\sum_{i=1}^{N_m}{\mathbf{V}}_{m,n,j,i}+\sum_{i=1}^{n-1}{\mathbf{V}}_{m,n,m,i}+\mathbf{I}\right).{} \end{array} \end{aligned} $$
(5.45)

Then, the upper bound of the weighted sum of the ergodic rates can be written as

$$\displaystyle \begin{aligned} \begin{array}{rcl} R_{\mathrm{ub}}&\displaystyle =&\displaystyle \sum_{m=1}^{M}\sum_{n=1}^{N_m}\alpha_{m,n}\left(\log_2\det\left(\sum_{j=1,j\neq m}^{M}\sum_{i=1}^{N_m}{\mathbf{V}}_{m,n,j,i}+\sum_{i=1}^{n}{\mathbf{V}}_{m,n,m,i}+\mathbf{I}\right)\right.\\ &\displaystyle &\displaystyle \left.-\log_2\det\left(\sum_{j=1,j\neq m}^{M}\sum_{i=1}^{N_m}{\mathbf{V}}_{m,n,j,i}+\sum_{i=1}^{n-1}{\mathbf{V}}_{m,n,m,i}+\mathbf{I}\right)\right)\\ &\displaystyle =&\displaystyle \sum_{m=1}^{M}\sum_{n=1}^{N_m}\sum_{c=1}^{N_t}\alpha_{m,n}\left(\log_2\left(\left(\sum_{j=1,j\neq m}^{M}\sum_{i=1}^{N_j}s_{j,i,c}p_{j,i,c}+\sum_{i=1}^{n}s_{m,i,c}p_{m,i,c}\right)\eta_{m,n,c}+1\right)\right.\\ &\displaystyle &\displaystyle \left.-\log_2\left(\left(\sum_{j=1,j\neq m}^{M}\sum_{i=1}^{N_j}s_{j,i,c}p_{j,i,c}+\sum_{i=1}^{n-1}s_{m,i,c}p_{m,i,c}\right)\eta_{m,n,c}+1\right)\right),{} \end{array} \end{aligned} $$
(5.46)

where Eq. (5.46) follows the fact that V m,n,j,i is a diagonal matrix. The proof completes.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, X. (2019). Massive Access with Channel Statistical Information. In: Massive Access for Cellular Internet of Things Theory and Technique. SpringerBriefs in Electrical and Computer Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-6597-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6597-3_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6596-6

  • Online ISBN: 978-981-13-6597-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics