Advertisement

Nonlinear Schrödinger Equations of Single Transmission Lines

  • Wu-Ming LiuEmail author
  • Emmanuel Kengne
Chapter

Abstract

The present chapter deals with the investigation of the dynamics of modulated waves propagating through a modified single nonlinear transmission network in both cases when the second-neighbor interactions are neglected and when the second-neighbor interactions are taken into account. Using the reductive perturbation approach in the semidiscrete approximation, we show that the dynamics of modulated wave in the two systems are governed by equations of Schrödinger type. With the help of these equations, we investigate quantitatively and qualitatively the properties of modulated waves including bright solitons, dark solitons, kink, and anti-kink solitonic pulses in the networks under consideration.

References

  1. 1.
    Abdourahman and Emmanuel Kengne: Generation of nonlinear modulated waves in a modified Noguchi electrical transmission network. Chaos, Solitons Fractals 92, 8 (2016)ADSzbMATHGoogle Scholar
  2. 2.
    Afshari, E., Bhat, H.S., Hajimiri, A., Marsden, J.E.: Extremely wideband signal shaping using one and two dimensional non-uniform nonlinear transmission lines. J. Appl. Phys. 99(5), 054901 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    Afshari, E., Hajimiri, A.: Nonlinear transmission lines for pulse shaping in silicon. IEEE J. Solid-State Circuits 40, 744 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Bhat, H.S., Afshari, E.: Nonlinear constructive inter-ference in electrical lattices. Phys. Rev. E 77(6), 066602 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Dabrowska, B.J., Ostrovskaya, E.A., Kivshar, Y.S.: Interaction of matter-wave gap solitons in optical lattices. J. Opt. B: Quantum Semiclass. Opt. 6, 423 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    Fukushima, K., Wadati, M., Narahara, Y.: Envelope solition in a new nonlinear transmission line. J. Phys. Soc. Jpn. 49, 1593 (1980)ADSCrossRefGoogle Scholar
  7. 7.
    Hirota, R., Suzuki, K.: Theoretical and experimental studies of lattice solitons in nonlinear lumped networks. Proc IEEE 61, 1483 (1973)CrossRefGoogle Scholar
  8. 8.
    Hirota, R., Suzuki, K.: Studies on lattice solitons by using electrical networks. Phys. Soc. Jpn. 28, 1366 (1970)ADSCrossRefGoogle Scholar
  9. 9.
    Kasamatsu, K., Tsubota, M.: Vortex molecules in coherently coupled two-component Bose-Einstein condensates. Phys. Rev. Lett. 93, 100402 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Kengne, E.: Ginzburg-Landau system of complex modulation equations for a distributed nonlinear-dispersive transmission line. J. Phys. A: Math. Gen. 37, 6053 (2004)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Kengne, E., Chui, S.T., Liu, W.M.: Modulational instability criteria for coupled nonlinear transmission lines with dispersive elements. Phys. Rev. E 74, 036614 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    Kengne, E., Lakhssassi, A., Liu, W.M.: Modeling of matter-wave solitons in a nonlinear inductor-capacitor network through a Gross-Pitaevskii equation with time-dependent linear potential. Phys. Rev. E 96, 022221 (2017)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Kengne, E., Lakhssassi, A., Liu, W.M.: Dynamics of modulated waves in a lossy modified Noguchi electrical transmission line. Phys. Rev. E 91, 062915 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Kengne, E., Liu, W.M.: Solitonlike pulses along a modified Noguchi nonlinear electrical network with second-neighbor interactions: analytical studies. Phys. Rev. E 97, 052205 (2018)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Kengne, E., Liu, W.M.: Exact solutions of the derivative nonlinear Schrödinger equation for a nonlinear transmission line. Phys. Rev. E 73, 026603 (2006)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Kengne, E., Talla, P.K.: Dynamics of bright matter wave solitons in Bose-Einstein condensates in an expulsive parabolic and complex potential. J. Phys. B: At. Mol. Opt. Phys. 39, 3679 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    Kengne, E., Vaillancourt, R., Malomed, B.A.: Coupled nonlinear Schrödinger equations for solitary-wave and kink signals propagating in discrete nonlinear dispersive transmission lines. Int. J. Mod. Phys. B 23, 133 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    Kofane, T.C., Michaux, B., Remoissenet, M.: Theoretical and experimental studies of diatomic lattice solitons using an electrical transmission line. J. Phys. C: Solid State Phys. 21, 1395 (1988)ADSCrossRefGoogle Scholar
  19. 19.
    Lange, C.G., Newell, A.C.: A stability criterion for envelope equations. SIAM J. Appl. Math. 27(3), 441 (1974)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Lonngren, K.: Observation of solitons on nonlinear dispersive transmission lines. In: Lonngren, K., Scott, A. (eds.) Solitons in Action. Academic, New York (1978)Google Scholar
  21. 21.
    Marquié, R., Bilbault, J.M., Remoissenet, M.: Nonlinear Schrödinger models and modulational instability in real electrical lattices. Phys. D 87, 371 (1995)CrossRefGoogle Scholar
  22. 22.
    Marquié, P., Bilbault, J.M., Remoissenet, M.: Observation of nonlinear localized modes in an electrical lattice. Phys. Rev. E 51, 6127 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    Marquié, P., Bilbault, J.M., Remoissenet, M.: Generation of envelope and hole solitons in an experimental transmission line. Phys. Rev. E 49, 828 (1994)ADSCrossRefGoogle Scholar
  24. 24.
    Nejoh, Y.: Cusp solitons, shock waves and envelope solitons in a new non-linear transmission line. J. Phys. A 20, 1733 (1987)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Nejoh, Y.: Envelope soliton of the electron plasma wave in a nonlinear transmission line. Phys. Scr. 31, 415 (1985)ADSCrossRefGoogle Scholar
  26. 26.
    Noguchi, A.: Solitons in a nonlinear transmission line. Electron. Commun. Jpn. A 57, 9 (1974)ADSGoogle Scholar
  27. 27.
    Remoissenet, M.: Waves Called Solitons, 3rd edn. Springer, Berlin (1999)Google Scholar
  28. 28.
    Riecke, H., Kramer, L.: The stability of standing waves with small group velocity. Phys. D 137, 124 (2000)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Rodwell, M.J., Allen, S.T., Yu, R.Y., Case, M.G., Bhattacharya, U., Reddy, M., Carman, E., Kamegawa, M., Konishi, Y., Pus, J., Pullela, R.: Active and nonlinear wave propagation devices in ultrafast electronics and optoelectronics. Proc. IEEE 82, 1037 (1994)CrossRefGoogle Scholar
  30. 30.
    Rodwell, M.J.W., Kamegawa, M., Yu, R., Case, M., Carman, E., Giboney, K.S.: GaAs nonlinear transmission lines for picosecond pulse generation and millimeter-wave sampling. IEEE Trans. Microw. Theory Tech. 39, 1194 (1991)ADSCrossRefGoogle Scholar
  31. 31.
    Abdoulkary, S., Beda, T., Doka, S.Y., Ndzana, F.I., Kavitha, L., Mohamadou, A.: Dissipative discrete system with nearest-neighbor interaction for the nonlinear electrical lattice. J. Mod. Phys. 3, 438 (2012)Google Scholar
  32. 32.
    Sato, M., Yasui, S., Kimura, M., Hikihara, T., Sievers, A.J.: Management of localized energy in discrete nonlinear transmission lines. Eur. Lett. 80(3), 30002 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    Schürmann, H.W.: Traveling-wave solutions of the cubic-quintic nonlinear Schrödinger equation. Phys. Rev. E 54, 4312 (1996)ADSCrossRefGoogle Scholar
  34. 34.
    Scott, A.C.: Active and Nonlinear Wave Propagation in Electronics. Wiley-Interscience, New York (1970)Google Scholar
  35. 35.
    Sekulic, D.L., Zivanov, M.B.: Computational study on soliton–like pulses in the nonlinear RLC transmission lines. In: MIPRO, Proceedings of the 35th International Convention (2012)Google Scholar
  36. 36.
    Shi, H., Zhang, W.M., Domier, C.W., Luhmann, N.C., Sjogren, Jr. L.B., Liu, H.X.L.: Novel concepts for improved nonlinear transmission line performance. IEEE Trans. Microw. Theory Tech. MTT 43, 780 (1995)Google Scholar
  37. 37.
    Smerzi, A., Trombettoni, A., Kevrekidis, P.G., Bishop, A.R.: Dynamical superfluid-insulator transition in a chain of weakly coupled Bose-Einstein condensates. Phys. Rev. Lett. 89, 170402 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    Yoshinaga, Takao, Kakutani, Tsunehiko: Solitary and shock waves on a coupled transmission line. J. Phys. Soc. Jpn. 49, 2072 (1980)ADSCrossRefGoogle Scholar
  39. 39.
    Taniuti, T., Yajima, N.: Perturbation method for a nonlinear wave modulation I. J. Math. Phys. 10, 1369 (1969)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Dhaene, Tom, De Zutter, Daniel: Selection of lumped models for coupled lossy transmission lines. IEEE Trans. Comput.-Aided Des. 11(7), 805 (1992)CrossRefGoogle Scholar
  41. 41.
    Yagi, Tsuneo: Solitons in a nonlinear inhomogeneous transmission line. J. Phys. Soc. Jpn. 50, 2737 (1981)ADSCrossRefGoogle Scholar
  42. 42.
    Volyak, K.I., Marchenko, V.F., Strel’Tsov, A.M.: Envelope solitons in a transmission line with quadratic-cubic nonlinearity. Radiophys. Quantum Electron. 31, 954 (1988)Google Scholar
  43. 43.
    Yagi, T., Noguchi, A.: Experimental studies on modulational instability by using nonlinear transmission lines. Trans. Inst. Electron. Commun. Eng. Jpn., Part E 59, 17 (1976)Google Scholar
  44. 44.
    Yemele, D., Kenmogne, F.: Compact envelope dark solitary wave in a discrete nonlinear electrical transmission line. Phys. Lett. A 373(42), 3801 (2009)ADSCrossRefGoogle Scholar
  45. 45.
    Yoneda, H., Tokuyama, K., Ueda, K., Yamamoto, H., Baba, K.: High power terahertz radiation with diamond photoconductive antenna array. In: Liu, S., Chen, X. (eds.), 25th International Conference on Infrared and Millimeter Waves Conference Digest, Beijing, p. 61 (2000)Google Scholar
  46. 46.
    Weierstrass, K.: Mathematische Werke V, pp. 4–16. Johnson, New York (1915)Google Scholar
  47. 47.
    Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, p. 454. Cambridge University Press, Cambridge (1927)Google Scholar
  48. 48.
    Zhang, W.M., Hsia, R.P., Liang, C., Song, G., Domier, C.W., Luhman, N.C.: Novel low-loss delay line for broadband phased antenna array applications. IEEE Microw. Guid. Wave Lett. 6, 395 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Physics Chinese Academy of SciencesBeijingChina
  2. 2.Department of Computer Science and EngineeringUniversity of Quebec at OutaouaisGatineauCanada

Personalised recommendations