Skip to main content

Social Group Optimization Algorithm for Pattern Optimization in Antenna Arrays

  • Chapter
  • First Online:
Socio-cultural Inspired Metaheuristics

Abstract

Over a decade, the evolutionary and social inspired computing techniques have revolutionarised the nonlinear problem-solving methods with their efficiency in searching for the global optimum solutions. Several engineering problems are dealt with such nature-inspired techniques. In the recent past, the evolutionary computing and socio-inspired algorithms have been applied to antenna array synthesis problems. In this chapter, the novel social group optimization algorithm (SGOA) is used for the antenna array synthesis. Three different and potential pattern synthesis problems like sidelobe level (SLL) optimization, null positioning, and failure compensation are dealt for demonstrating the effectiveness of the SGOA over the conventional uniform patterns. In all the cases, the simulation-based experimentation is repeated for 20-element and 28-element linear array. The robustness of the algorithm to deal with the constrained objectives of antenna array synthesis is discussed with relevant outcomes from the simulations in terms of the convergence plots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balanis CA (2005) Antenna theory: analysis and design. Wiley, Hoboken, NJ, USA

    Google Scholar 

  2. Rabinovich V, Alexandrov N (2013) Antenna arrays and automotive applications. Springer Science + Bussiness Media, New York

    Book  Google Scholar 

  3. Monzingo RA, Miller TW (2005) Introduction to adaptive arrays. SciTech Publishing

    Google Scholar 

  4. Hansen RC (2009) Phased array antennas, 2nd edn. Wiley, New York

    Book  Google Scholar 

  5. Haupt RL (2010) Antenna arrays: a computational approach. Wiley, New York

    Book  Google Scholar 

  6. Anguera J, Puente C, Borja C, Montero R, Soler J (2001) Small and high directivity Bowtie patch antenna based on the Sierpinski fractal. Microwave Optical Technol Lett 31(3):239–241

    Article  Google Scholar 

  7. Anguera J, Daniel JP, Borja C, Mumbrú J, Puente C, Leduc T, Laeveren N, Van Roy P (2008) Metallized foams for fractal-shaped microstrip antennas. IEEE Antennas Propag Mag 50(6):20–38

    Article  Google Scholar 

  8. Jayasinghe JMJW, Anguera J, Uduwawala DN (2013) Genetic algorithm optimization of a high-directivity microstrip patch antenna having a rectangular profile. Radioengineering 22(3):700–707

    Google Scholar 

  9. Anguera J, Andújar A, Benavente S, Jayasinghe J, Kahng S (2018) High-directivity microstrip antenna with mandelbrot fractal boundary. IET Microwaves Antennas Propag 12(4):569–575

    Article  Google Scholar 

  10. Godara LC (ed) (2002) Handbook of antennas in wireless communications. CRC, Boca Raton, FL

    Google Scholar 

  11. Chandran S (ed) (2004) Adaptive antenna arrays: trends and applications. Springer, Netherlands

    Google Scholar 

  12. Tsoulos GV (ed) (2001) Adaptive antennas for wireless communications. IEEE Press, Piscataway, NJ

    Google Scholar 

  13. Heath T et al (2005) Two-dimensional, nonlinear oscillator array antenna. In: Aerospace conference. IEEE, p 1104

    Google Scholar 

  14. Goldberg D (1989) genetic algorithms in search, optimization, and machine learning. Addison-Wesley Professional, Boston, USA

    MATH  Google Scholar 

  15. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings IEEE international conference on neural networks, p 1942. https://doi.org/10.1109/icnn.1995.488968

  16. Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  MathSciNet  Google Scholar 

  17. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    Article  MathSciNet  Google Scholar 

  18. Das S, Suganthan PN (2011) Differential evolution—a survey of the state-of-the-art. IEEE Trans Evol Comput 15(1):4–31

    Article  Google Scholar 

  19. Chakravarthy VVSSS, Chowdary PSR, Panda G et al (2017) On the linear antenna array synthesis techniques for sum and difference patterns using flower pollination algorithm. Arab J Sci Eng 43(8):3965–3977

    Article  Google Scholar 

  20. Chakravarthy VSSS, Rao PM (2015) On the convergence characteristics of flower pollination algorithm for circular array synthesis. In: 2015 2nd international conference on electronics and communication systems (ICECS), pp 485–489, 26–27 Feb 2015

    Google Scholar 

  21. Terlapu SK, Raju GRLVNS, Raju GSN (2016) Array pattern synthesis using flower pollination algorithm. In: IEEE international conference on electromagnetic interference & compatibility (INCEMIC), Bengaluru, India, p 1, Dec 2016

    Google Scholar 

  22. Ram G, Kar R, Mandal D, Ghoshal SP (2018) Optimal design of linear antenna arrays of dipole elements using flower pollination algorithm. IETE J Res. https://doi.org/10.1080/03772063.2018.1452639

  23. Singh U, Salgotra R (2017) Pattern synthesis of linear antenna arrays using enhanced flower pollination algorithm. Int J Antennas Propag. https://doi.org/10.1155/2017/7158752

  24. Singh U, Salgotra R (2018) Synthesis of linear antenna array using flower pollination algorithm. Neural Comput Appl 29:435. https://doi.org/10.1007/s00521-016-2457-7

  25. Yang X-S (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-Inspir Comput 2(2010):78–84

    Article  Google Scholar 

  26. Ahammed MJ, Swathi A, Sanku D et al (2017) Performance of firefly algorithm for null positioning in linear arrays. In: Proceedings of 2nd international conference on micro-electronics, electromagnetics and telecommunications. Springer, pp 383–391

    Google Scholar 

  27. Taguchi G, Chowdhury S, Wu Y (2015) Taguchi’s quality engineering handbook. Wiley, NewYork

    MATH  Google Scholar 

  28. Chakravarthy VVSSS et al (2015) Linear array optimization using teaching learning based optimization. In: Advances in intelligent systems and computing. Springer, Berlin, pp 183–187. https://doi.org/10.1007/978-3-319-13731-5_21

  29. Chakravarthy VVSSS, Chowdary PSR, Satpathy SC et al (2018) Antenna array synthesis using social group optimization. In: Anguera J et al (eds) Microelectronics, electromagnetics and telecommunications. Lecture notes in electrical engineering, vol 471, pp 895–905. https://doi.org/10.1007/978-981-10-7329-8_93

  30. Yagi H, Uda S (1926) Projector of the sharpest beam of electric waves. In: Proceedings of imperial academy (Tokyo), vol 2, pp 49–52, Feb 1926

    Google Scholar 

  31. Yagi H (1928) Beam transmission of ultra short waves. Proc Inst Radio Eng 16(6):715–740. https://doi.org/10.1109/jrproc.1928.221464

  32. Schelkunoff SA (1943) A mathematical theory of linear arrays. Bell Syst Tech J 22:80–107. https://doi.org/10.1002/j.1538-7305.1943.tb01306.x

  33. Dolph CL (1946) A current distribution for broadside arrays which optimizes the relationship between beam width and side-lobe level. Proc IRE 34(6):335–348

    Google Scholar 

  34. Yaru N (1951) A note on super-gain antenna arrays. Proc IRE 39(9):1081–1085

    Google Scholar 

  35. Han J-H, Lim S-H, Myung N-H (2012) Array antenna TRM failure compensation using adaptively weighted beam pattern mask based on genetic algorithm. IEEE Antennas Wirel Propag Lett 11:18–21

    Google Scholar 

  36. Yeo BK, Lu Y (1999) Array failure correction with a genetic algorithm. IEEE Trans Antennas Propag 47(5):823–828

    Article  Google Scholar 

  37. Rodriguez JA, Ares F (1998) Optimization of the performance of arrays with failed elements using simulated annealing technique. J Electromagn Waves Appl 12(12):1625–1638

    Article  Google Scholar 

  38. Mitilineos SA, Thomopoulos SCA, Capsalis CN (2006) Genetic design of dual-band, switched-beam dipole arrays, with elements failure correction, retaining constant excitation coefficients. J Electromagn Waves Appl 20(14):1925–1942

    Article  Google Scholar 

  39. Acharya OP, Patnaik A, Sinha SN (2014) Limits of compensation in a failed antenna array. Int J RF Microwave Comput Aided Eng 24(6):635–645

    Article  Google Scholar 

  40. Acharya OP, Patnaik A (2017) Antenna array failure correction [antenna applications corner]. IEEE Antennas Propag Mag 59(6):106–115. https://doi.org/10.1109/MAP.2017.2752683

    Article  Google Scholar 

  41. Hua D, Wu W, Fang D (2017) Linear array synthesis to obtain broadside and endfire beam patterns using element-level pattern diversity. IEEE Trans Antennas Propag 65(6):2992–3004. https://doi.org/10.1109/TAP.2017.2694457

    Article  MathSciNet  MATH  Google Scholar 

  42. Chatterjee S, Chatterjee S, Poddar DR (2015) Synthesis of linear array using Taylor distribution and particle swarm optimisation. Int J Electron 102(3):514–528. https://doi.org/10.1080/00207217.2014.905993

    Article  Google Scholar 

  43. Murata T, Ishibuchi H, Tanaka H (1996) Multi-objective genetic algorithm and its applications to flowshop scheduling. Comput Ind Eng 30(4):957–968

    Article  Google Scholar 

  44. Ares F, Rengarajan SR, Villanueva E, Skochinski E, Moreno E (1996) Application of genetic algorithms and simulated annealing technique in optimizing the aperture distributions of antenna arrays. In: 1996 antennas and propagation society international symposium, AP-S. Digest, vol 2, pp 806, 809, 21–26 July 1996

    Google Scholar 

  45. Ares F, Rengarajan SR, Moreno E (1996) Optimization of aperture distributions for sum patterns. Electromagnetics 16(2):129–143

    Article  Google Scholar 

  46. Ares F, Rengarajan SR, Vieiro A et al (1996) Optimization of aperture distributions for difference patterns. J Electromagn Waves Appl 10(3):383–402

    Article  Google Scholar 

  47. Orchard HJ, Elliott RS, Stern GJ (1985) Optimizing the synthesis of shaped beam antenna patterns. IEE Proc H-Microwaves Antennas Propag 132:63–68

    Google Scholar 

  48. Vaskelainen LI (2000) Phase synthesis of conformal array antennas. IEEE Trans Antennas Propag 48(6):987–991

    Article  Google Scholar 

  49. Li Z (2001) Design and optimization techniques for printed antennas and periodic structures. PhD thesis, University of Michigan

    Google Scholar 

  50. Stutzman WL, Thiele GA (1997) Antenna theory and design. Wiley, NY

    Google Scholar 

  51. Orfanidis SJ (2008) Electromagnetic waves and antennas, 1st edn. Rutgers University

    Google Scholar 

  52. Raju GSN (2004) Antennas and wave propagation. Pearson Education (Singapore) Pvt. Ltd., International Edition

    Google Scholar 

  53. Satapathy S, Naik A (2016) Social group optimization (SGO): a new population evolutionary optimization technique. Complex Intell Syst 2:173–203

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. S. S. S. Chakravarthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakravarthy, V.V.S.S.S., Chowdary, P.S.R., Satapathy, S.C., Anguera, J., Andújar, A. (2019). Social Group Optimization Algorithm for Pattern Optimization in Antenna Arrays. In: Kulkarni, A.J., Singh, P.K., Satapathy, S.C., Husseinzadeh Kashan, A., Tai, K. (eds) Socio-cultural Inspired Metaheuristics. Studies in Computational Intelligence, vol 828. Springer, Singapore. https://doi.org/10.1007/978-981-13-6569-0_13

Download citation

Publish with us

Policies and ethics