Quorum Sensing Molecules of Rhizobacteria: A Trigger for Developing Systemic Resistance in Plants

  • Mahejibin KhanEmail author
  • Prachi Bhargava
  • Reeta Goel
Part of the Microorganisms for Sustainability book series (MICRO, volume 12)


Induced systemic resistance (ISR) is a widespread phenomenon by which plants develop resistance against various pathogens. A number of plant growth-promoting rhizobacteria are reported to evoke ISR in plants through their surface components, secretion of metabolites, or production of volatile compounds. These compounds in return activate the signaling pathway in plant and allow plants to withstand pathogen attack. Quorum sensing (QS), which is defined as the intercellular communication process, is a crucial feature of rhizobacteria to sense the ecological niche and distribute their population. Signaling process involves the exchange of diffusible signal molecules that serve as autoinducers. The concentration of these QS molecules is a key factor in mediating the gene expression for EPS production, biofilm formation, extracellular enzyme production, etc. and helps bacteria to adapt in a particular environmental condition. In general bacteria have a conserved QS system with central components such as LuxR-type regulator and LuxI-type protein as receptors. At low population density, bacteria produce a low level of QS signals, which are then released in the environment. N-acyl homoserine lactones (AHLs) are the major signaling molecules in Gram-negative bacteria, and cyclic peptides serve as signaling molecules in Gram-positive bacteria. Recent studies revealed that AHL molecules play important role in plant growth and defense. In this chapter, we will discuss the role of different signaling molecules in inducing plant defense and their mechanism.


Rhizobacteria Quorum sensing ISR Signaling molecules 


  1. Audenaert K, Pattery T, Cornelis P, Höfte M (2002) Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: the role of salicylic acid, pyochelin, and pyocyanin. Mol Plant-Microbe Interact 15(11):1147–1156PubMedCrossRefGoogle Scholar
  2. Bai X, Todd CD, Desikan R, Yang Y, Hu X (2012) N-3-oxo-decanoyl-L-homoserine-lactone activates auxin-induced adventitious root formation via hydrogen peroxide- and nitric oxide-dependent cyclic GMP signaling in mung bean. Plant Physiol 158:725–736CrossRefGoogle Scholar
  3. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266PubMedCrossRefGoogle Scholar
  4. Bakker PA, Berendsen RL, Doornbos RF, Wintermans PC, Pieterse CM (2013) The rhizosphere revisited: root microbiomics. Front Plant Sci 4:165PubMedPubMedCentralCrossRefGoogle Scholar
  5. Balmer A, Pastor V, Gamir J, Flors V, Mauch-Mani B (2015) The “prime-ome”: towards a holistic approach to priming. Trends Plant Sci 20:443–452PubMedCrossRefGoogle Scholar
  6. Barriuso J, Solano BR, Lucas JA, Lobo AP, Villaraco AG, Mañero FJG (2008) Ecology, genetic diversity and screening strategies of plant growth promoting rhizobacteria (PGPR). In: Ahmad I, Pichtel J, Hayat S (eds) Wiley-Vch, Weinheim, pp 1–17Google Scholar
  7. Beckers GJM, Jaskiewicz M, Liu Y, Underwood WR, He SY, Zhang S, Conrath U (2009) Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell 21:944–953PubMedPubMedCentralCrossRefGoogle Scholar
  8. Benhamou N, Gagné S, Le Quéré D, Dehbi L (2000) Bacterial-mediated induced resistance in cucumber: beneficial effect of the endophytic bacterium Serratia plymuthica on the protection against infection by Pythium ultimum. Phytopathology 90:45–56PubMedCrossRefGoogle Scholar
  9. Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486PubMedCrossRefGoogle Scholar
  10. Bhargava P, Singh AK, Goel R (2017) Microbes: bioresource in agriculture and environmental sustainability. In: Plant-microbe interactions in agro-ecological perspectives. Springer, pp 361–376Google Scholar
  11. Boyen F, Eeckhaut V, Van Immerseel F, Pasmans F, Ducatelle R, Haesebrouck F (2009) Quorum sensing in veterinary pathogens: mechanisms, clinical importance and future perspectives. Vet Microbiol 135:187–195PubMedCrossRefGoogle Scholar
  12. Britigan BE, Rasmussen GT, Cox CD (1997) Augmentation of oxidant injury to human pulmonary epithelial cells by the Pseudomonas aeruginosa siderophore pyochelin. Infect Immun 65(3):1071–1076PubMedPubMedCentralGoogle Scholar
  13. Buysens S, Heungens K, Poppe J, Hofte M (1996) Involvement of pyochelin and pyoverdin in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl Environ Microbiol 62(3):865–871PubMedPubMedCentralGoogle Scholar
  14. Chen JW, Koh CL, Sam CK, Yin WF, Chan KG (2013) Short chain N-acyl homoserine lactone production by soil isolate Burkholderia sp. strain A9. Sensors (Basel) 13(10):13217–13227. Scholar
  15. Chhabra SR, Philipp B, Eberl L, Givskov M, Williams P, Ca’mara M (2005) Extracellular communication in bacteria. In: Schulz S (ed) Chemistry of pheromones and other semiochemicals, vol 2. Springer, Berlin, pp 279–315Google Scholar
  16. Chin-A-Woeng TFC, Bloemberg GV, Lugtenberg BJJ (2003) Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol 157:503–523CrossRefGoogle Scholar
  17. Chinchilla D, Bauer Z, Regenass M, Boller T, Felix G (2006) The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18(2):465–476PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124(4):803–814CrossRefGoogle Scholar
  19. Cho SM, Kang BR, Han SH, Anderson AJ, Park JY, Lee YH, Kim YC (2008) 2R, 3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant-Microbe Interact 21(8):1067–1075CrossRefGoogle Scholar
  20. Conrath U (2009) Priming of induced plant defense responses. Adv Bot Res 51:361–395CrossRefGoogle Scholar
  21. Conrath U, Beckers GJ, Flors V, García-Agustín P, Jakab G, Mauch F, Newman MA, Pieterse CM, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071CrossRefGoogle Scholar
  22. Coventry HS, Dubery IA (2001) Lipopolysaccharides from Burkholderiacepacia contribute to an enhanced defensive capacity and the induction of pathogenesis-related proteins in Nicotianaetabacum. Physiol Mol Plant Pathol 58(4):149–158CrossRefGoogle Scholar
  23. De Vleesschauwer D, Höfte M (2009) Rhizobacteria-induced systemic resistance. Adv Bot Res 51:223–281CrossRefGoogle Scholar
  24. Denoux C, Galletti R, Mammarella N, Gopalan S, Werck D, De Lorenzo G, Dewdney J (2008) Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings. Mol Plant 1(3):423–445PubMedPubMedCentralCrossRefGoogle Scholar
  25. Dow M, Newman MA, von Roepenack E (2000) The induction and modulation of plant defense responses by bacterial lipopolysaccharides. Annu Rev Phytopathol 38(1):241–261PubMedCrossRefGoogle Scholar
  26. Drogue B, Combes-Meynet E, Moënne-Loccoz Y, Wisniewski-Dyé F, Prigent-Combaret C (2013) Control of the cooperation between plant growth-promoting rhizobacteria and crops by rhizosphere signals. Mol Microb Ecol Rhizosphere 1 & 2:279–293CrossRefGoogle Scholar
  27. Duffy B, Schouten A, Raaijmakers JM (2003) Pathogen self-defense: mechanisms to counteract microbial antagonism. Annu Rev Phytopathol 41(1):501–538PubMedCrossRefGoogle Scholar
  28. Elasri M, Delorme S, Lemanceau P, Stewart G, Laue B, Glickmann E, Oger PM, Dessaux Y (2001) Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soilborne Pseudomonas spp. Appl Environ Microbiol 67:1198–1209PubMedPubMedCentralCrossRefGoogle Scholar
  29. Erbs G, Newman MA (2003) The role of lipopolysaccharides in induction of plant defence responses. Mol Plant Pathol 4(5):421–425PubMedCrossRefGoogle Scholar
  30. Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10(4):366–371CrossRefGoogle Scholar
  31. Farag MA, Ryu CM, Sumner LW, Paré PW (2006) GC–MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67(20):2262–2268PubMedCrossRefGoogle Scholar
  32. Fekete A, Kuttler C, Rothballer M, Hense BA, Fischer D, Buddrus-Schiemann K, Lucio M, Müller J, Schmitt-Kopplin P, Hartmann A (2010) Dynamic regulation of N-acyl-homoserine lactone production and degradation in Pseudomonas putida IsoF. FEMS Microbiol Ecol 72(1):22–34PubMedCrossRefGoogle Scholar
  33. Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18(3):265–276CrossRefGoogle Scholar
  34. Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9:275–296CrossRefGoogle Scholar
  35. Gao M, Teplitski M, Robinson JB, Bauer WD (2003) Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol Plant-Microbe Interact 16:827–834PubMedCrossRefGoogle Scholar
  36. Gill US, Lee S, Mysore KS (2015) Host versus nonhost resistance: distinct wars with similar arsenals. Phytopathology 105:580–587PubMedCrossRefGoogle Scholar
  37. Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119(3):329–339CrossRefGoogle Scholar
  38. Gómez-Gómez L, Boller T (2002) Flagellin perception: a paradigm for innate immunity. Trends Plant Sci 7(6):251–256PubMedCrossRefGoogle Scholar
  39. Götz C, Fekete A, Gebefuegi I, Forczek ST, Fuksová K, Li X et al (2007) Uptake, degradation and chiral discrimination of N-acyl-D/L-homoserine lactones by barley (Hordeum vulgare) and yam bean (Pachyrhizus erosus) plants. Anal Bioanal Chem 389:1447–1457PubMedCrossRefGoogle Scholar
  40. Götz-Rösch C, Sieper T, Fekete A, Schmitt-Kopplin P, Hartmann A, Schröder P (2015) Influence of bacterial N-acyl-homoserine lactones on growth parameters, pigments, antioxidative capacities and the xenobiotic phase II detoxification enzymes in barley and yam bean. Front Plant Sci 6:205PubMedPubMedCentralCrossRefGoogle Scholar
  41. Han SH, Lee SJ, Moon JH, Park KH, Yang KY, Cho BH, Kim YC (2006) GacS-dependent production of 2R, 3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Mol Plant-Microbe Interact 19(8):924–930PubMedCrossRefGoogle Scholar
  42. Hartmann A, Gantner S, Schuhegger R, Steidle A, Dürr C, Schmid M, Langebartels C, Dazzo FB, Eberl L (2004) N-acyl homoserine lactones of rhizosphere bacteria trigger systemic resistance in tomato plants. In: Lugtenberg B, Tikhonovich I, Provorov N (eds) Biology of molecular plant–microbe interactions, vol 4. IS-MPMI, MinnesotaGoogle Scholar
  43. Hosni T, Moretti C, Devescovi G, Suarez-Moreno ZR, Fatmi M’B, Guarnaccia C, Pongor S, Onofri A, Buonaurio R, Venturi V (2011) Sharing of quorum-sensing signals and role of interspecies communities in a bacterial plant disease. ISMEJ 5:1857–1870CrossRefGoogle Scholar
  44. Iavicoli A, Boutet E, Buchala A, Métraux JP (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant-Microbe Interact 16(10):851–858PubMedCrossRefGoogle Scholar
  45. Jaskiewicz M, Conrath U, Peterhänsel C (2011) Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep 12:50–55PubMedCrossRefGoogle Scholar
  46. Jones JD, Dangl JL (2006) The plant immune system. Nature 444(7117):323CrossRefGoogle Scholar
  47. Joseph CM, Phillips DA (2003) Metabolites from soil bacteria affect plant water relations. Plant Physiol Biochem 41:189–192CrossRefGoogle Scholar
  48. Khan SR, Mavrodi DV, Jog GJ, Suga H, Thomashow LS, Farrand SK (2005) Activation of the phz operon of pseudomonas fluorescens 2-79 requires the LuxR homolog PhzR, N-(3-OH-Hexanoyl)-L-homoserine lactone produced by the LuxI homolog PhzI, and a cis-acting phz box. J Bacteriol 187(18):6517–6527. Scholar
  49. Leeman M, Van Pelt JA, Den Ouden FM, Heinsbroek M, Bakker PAHM, Schippers B (1995) Induction of systemic resistance against Fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85(9):1021–1027CrossRefGoogle Scholar
  50. Li Q, Ning P, Zheng L, Huang J, Li G, Hsiang T (2010) Fumigant activity of volatiles of Streptomyces globisporus JK-1 against Penicillium italicum on Citrus microcarpa. Postharvest Biol Technol 58(2):157–165CrossRefGoogle Scholar
  51. Liu X, Bimerew M, Ma Y, Muller H, Ovadis M, Eberl L, Berg G, Chernin L (2007) Quorum-sensing signaling is required for production of the antibiotic pyrrolnitrin in a rhizospheric biocontrol strain of Serratia plymuthica. FEMS Microbiol Lett 270:299–305PubMedCrossRefGoogle Scholar
  52. Liu X, Jia J, Popat R, Ortori CA, Li J, Diggle SP, Gao K, Cámara M (2011) Characterisation of two quorum sensing systems in the endophytic Serratia plymuthica strain G3: differential control of motility and biofilm formation according to life-style. BMC Microbiol 11:26PubMedPubMedCentralCrossRefGoogle Scholar
  53. Liu F, Bian Z, Jia Z, Zhao Q, Song S (2012) The GCR1 and GPA1 participate in promotion of Arabidopsis primary root elongation induced by N-acyl-homoserine lactones, the bacterial quorum-sensing signals. Mol Plant-Microbe Interact 25:677–683PubMedCrossRefGoogle Scholar
  54. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556PubMedCrossRefPubMedCentralGoogle Scholar
  55. Mathesius U, Mulders S, Gao M, Teplitski M, Caetano-Anollés G, Rolfe BG, Bauer WD (2003) Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci USA 100:1444–1449PubMedCrossRefGoogle Scholar
  56. McGowan S, Sebaihia M, Jones S, Yu B, Bainton N, Chan P, Bycroft B, Stewart GSAB, Williams P, Salmond GPC (1995) Carbapenem antibiotic production in Erwinia carotovora is regulated by CarR, a homologue of the LuxR transcriptional activator. Microbiology 41:541–550CrossRefGoogle Scholar
  57. Mellbye B, Schuster M (2014) Physiological framework for the regulation of quorum sensing-dependent public goods in pseudomonas aeruginosa. J Bacteriol 196(6):1155–1164PubMedPubMedCentralCrossRefGoogle Scholar
  58. Meziane H, Van Der Sluis I, Van Loon LC, Höfte M, Bakker PA (2005) Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol Plant Pathol 6(2):177–185PubMedCrossRefGoogle Scholar
  59. Miao C, Liu F, Zhao Q, Jia Z, Song S (2012) A proteomic analysis of Arabidopsis thaliana seedling responses to 3-oxo-octanoyl-homoserine lactone, a bacterial quorum-sensing signal. Biochem Biophys Res Commun 427:293–298PubMedCrossRefGoogle Scholar
  60. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55(1):165–199PubMedCrossRefGoogle Scholar
  61. Nieto-Peñalver CG, Bertini EV, de Figueroa LIC (2012) Identification of N-acyl homoserine lactones produced by Gluconacetobacter diazotrophicus PAL5 cultured in complex and synthetic media. Arch Microbiol 194:615–622PubMedCrossRefGoogle Scholar
  62. Ortíz-Castro R, Martínez-Trujillo M, Lopez-Bucio J (2008) N-acyl-L-homoserine lactones: a class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana. Plant Cell Environ 31:1497PubMedCrossRefGoogle Scholar
  63. Palmer AG, Senechal AC, Mukherjee A, Ané J-M, Blackwell HE (2014) Plant responses to bacterial N-Acyl l-homoserine lactones are dependent on enzymatic degradation to L-homoserine. ACS Chem Biol 9:1834–1845PubMedPubMedCentralCrossRefGoogle Scholar
  64. Pang Y, Liu X, Ma Y, Chernin L, Berg G, Gao K (2009) Induction of systemic resistance, root colonisation and biocontrol activities of the rhizospheric strain of Serratia plymuthica are dependent on N-acyl homoserine lactones. Eur J Plant Pathol 124:261–268CrossRefGoogle Scholar
  65. Pare PW, Farag MA, Krishnamachari V, Zhang H, Ryu CM, Kloepper JW (2005) Elicitors and priming agents initiate plant defense responses. Photosynth Res 85(2):149–159PubMedCrossRefGoogle Scholar
  66. Pierson LS III, Wood DW, Pierson EA (1998) Homoserine lactone-mediated gene regulation in plant associated bacteria. Annu Rev Phytopathol 36:207–225PubMedCrossRefGoogle Scholar
  67. Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, van Wees SCM, Bakker PAHM (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375PubMedCrossRefGoogle Scholar
  68. Rajput A, Kaur K, Kumar M (2016) SigMol: repertoire of quorum sensing signaling molecules in prokaryotes. Nucleic Acids Res 44:D634–D639PubMedCrossRefGoogle Scholar
  69. Ramos HC, Rumbo M, Sirard JC (2004) Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa. Trends Microbiol 12(11):509–517PubMedCrossRefGoogle Scholar
  70. Ran LX, Van Loon LC, Bakker P (2005) No role for bacterially produced salicylic acid in rhizobacterial induction of systemic resistance in Arabidopsis. Phytopathology 95(11):1349–1355PubMedCrossRefGoogle Scholar
  71. Rankl S, Gunsé B, Sieper T, Schmid C, Poschenrieder C, Schröder P (2016) Microbial homoserine lactones (AHLs) are effectors of root morphological changes in barley. Plant Sci 253:130–140PubMedCrossRefGoogle Scholar
  72. Ryan RP, An SQ, Allan JH, McCarthy Y, Dow JM (2015) The DSF family of cell–cell signals: an expanding class of bacterial virulence regulators. PLoS Pathog 11(7):e1004986. Scholar
  73. Ryals J, Ward E, Métraux JP (1992) Systemic acquired resistance: an inducible defense mechanism in plants. In: Wray JL (ed) Lnducible plant proteins: their biochemistry and molecular biology. Cambridge University Press, Cambridge, pp 205–229CrossRefGoogle Scholar
  74. Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134(3):1017–1026PubMedPubMedCentralCrossRefGoogle Scholar
  75. Ryu CM, Choi HK, Lee CH, Murphy JF, Lee JK, Kloepper JW (2013) Modulation of quorum sensing in acyl-homoserine lactone-producing or -degrading tobacco plants leads to alteration of induced systemic resistance elicited by the rhizobacterium Serratia marcescens 90–166. Plant Pathol J 29:182–192PubMedPubMedCentralCrossRefGoogle Scholar
  76. Sanchez-Contreras M, Bauer WD, Gao M, Robinson JB, Downie JA (2007) Quorum-sensing regulation in rhizobia and its role in symbiotic interactions with legumes. Philos Trans R Soc Lond Ser B Biol Sci 362(1483):1149–1163CrossRefGoogle Scholar
  77. Schenk ST, Schikora A (2015) AHL-priming functions via oxylipin and salicylic acid. Front Plant Sci 5:1–7CrossRefGoogle Scholar
  78. Schenk ST, Stein E, Kogel K-H, Schikora A (2012) Arabidopsis growth and defense are modulated by bacterial quorum sensing molecules. Plant Signal Behav 7:178–181PubMedPubMedCentralCrossRefGoogle Scholar
  79. Schikora A, Schenk ST, Stein E, Molitor A, Zuccaro A, Kogel K-H (2011) N-acylhomoserine lactone confers resistance toward biotrophic and hemibiotrophic pathogens via altered activation of AtMPK6. Plant Physiol 157:1407–1418PubMedPubMedCentralCrossRefGoogle Scholar
  80. Schippers B, Bakker AW, Bakker PA (1987) Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu Rev Phytopathol 25(1):339–358CrossRefGoogle Scholar
  81. Schuhegger RM, Ihring A, Gantner S, Bahnweg G, Knappe C, Vogg G, Hutzler P, Schmid M, van Breusegem F, Eberl L, Hartmann A, Langebartels C (2006) Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 29:909–918PubMedCrossRefGoogle Scholar
  82. Sessitsch A, Coenye T, Sturz AV, Vandamme P, Ait Barka E, Salles JF, van Elsas JD, Faure D, Reiter B, Glick BR, Wang-Pruski G, Nowak J (2005) Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant beneficial properties. Int J Syst Evol Microbiol 55:1187–1192PubMedCrossRefGoogle Scholar
  83. Siddiqui IA, Shaukat SS (2003) Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: importance of bacterial secondary metabolite, 2, 4-diacetyl pholoroglucinol. Soil Biol Biochem 35(12):1615–1623CrossRefGoogle Scholar
  84. Silipo A, Molinaro A, Sturiale L, Dow JM, Erbs G, Lanzetta R, Parrilli M (2005) The elicitation of plant innate immunity by lipooligosaccharide of Xanthomonas campestris. J Biol Chem 280(39):33660–33668PubMedCrossRefGoogle Scholar
  85. Slaughter A, Daniel X, Flors V, Luna E, Hohn B, Mauch-Mani B (2012) Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol 158:835–843PubMedCrossRefGoogle Scholar
  86. Song GC, Ryu CM (2013) Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions. Int J Mol Sci 14(5):9803–9819PubMedPubMedCentralCrossRefGoogle Scholar
  87. Sperandio V, Torres AG, Jarvis B, Nataro JP, Kaper JB (2003) Bacteria-host communication: the language of hormones. Proc Natl Acad Sci USA 100:8951–8956PubMedCrossRefGoogle Scholar
  88. Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119(3):243–254CrossRefGoogle Scholar
  89. Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36(1):453–483PubMedPubMedCentralCrossRefGoogle Scholar
  90. Van Wees SC, Pieterse CM, Trijssenaar A, Van’t Westende YA, Hartog F, Van Loon LC (1997) Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol Plant-Microbe Interact 10(6):716–724PubMedCrossRefGoogle Scholar
  91. Veliz-Vallejos DF, van Noorden GE, Yuan M, Mathesius U (2014) A Sinorhizobium meliloti-specific N-acyl homoserine lactone quorum-sensing signal increases nodule numbers in Medicago truncatula independent of autoregulation. Front Plant Sci 5:551PubMedPubMedCentralCrossRefGoogle Scholar
  92. Venturi V, Keel C (2016) Signaling in the rhizosphere. Trends Plant Sci 21(3):187PubMedCrossRefGoogle Scholar
  93. Visca P, Imperi F, Lamont IL (2007) Pyoverdinesiderophores: from biogenesis to biosignificance. Trends Microbiol 15(1):22–30PubMedCrossRefGoogle Scholar
  94. Von Rad U, Klein I, Dobrev PI, Kottova J, Zazimalova E, Fekete A, Hartmann A, Schmitt-Kopplin P, Durner J (2008) Response of Arabidopsis thaliana to N-hexanoyl-DL-homoserine-lactone, a bacterial quorum sensing molecule produced in the rhizosphere. Planta 229:73–85CrossRefGoogle Scholar
  95. Wang H, Zhong Z, Cai T, Li S, Zhu J (2004) Heterologous overexpression of quorum-sensing regulators to study cell-density-dependent phenotypes in a symbiotic plant bacterium Mesorhizobium huakuii. Arch Microbiol 182:520–525PubMedCrossRefGoogle Scholar
  96. Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97(2):250–256PubMedCrossRefGoogle Scholar
  97. Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40(1):309–348PubMedCrossRefGoogle Scholar
  98. Williams P (2007) Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology 153:3923–3938PubMedCrossRefGoogle Scholar
  99. Williams P, Winzer K, Chan WC, Cámara M (2007) Look who’s talking: communication and quorum sensing in the bacterial world. Philos Trans R Soc B 362:1119–1134CrossRefGoogle Scholar
  100. Zarkani AA, Stein E, Röhrich CR, Schikora M, Evguenieva-Hackenberg E, Degenkolb T, Vilcinskas A, Klug G, Kogel K-H, Schikora A (2013) Homoserine lactones influence the reaction of plants to rhizobia. Int J Mol Sci 14:17122–17146PubMedPubMedCentralCrossRefGoogle Scholar
  101. Zavil’gel’skiĭ GB, Manukhov IV (2001) “Quorum sensing”, or how bacteria “talk” to each other. Mol Biol 35(2):268–277Google Scholar
  102. Zeidler D, Zähringer U, Gerber I, Dubery I, Hartung T, Bors W, Durner J (2004) Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc Nat Acad of Sci USA 101(44):15811–15816CrossRefGoogle Scholar
  103. Zhang H-B, Wang L-H, Zhang L-H (2002) Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens. Proc Natl Acad Sci 99(7):4638–4643PubMedCrossRefGoogle Scholar
  104. Zhao J, Favero DS, Peng H, Neff MM (2013) Arabidopsis thaliana AHL family modulates hypocotyls growth redundantly by interacting with each other via the PPC/DUF296 domain. PNAS 110:E4688–E4697PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Central Food Technological Research Institute, Resource CenterLucknowIndia
  2. 2.Metagenomics LabInstitute of Biosciences and Technology, Sri Ram Swaroop Memorial UniversityLucknowIndia
  3. 3.Department of MicrobiologyG. B. Pant University of Agriculture and TechnologyPantnagarIndia

Personalised recommendations