Skip to main content

Plant Growth-Promoting Rhizobacteria and Salinity Stress: A Journey into the Soil

  • Chapter
  • First Online:
Plant Growth Promoting Rhizobacteria for Sustainable Stress Management

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 12))

Abstract

A large number of studies have indicated that salinity stress and saline soils are cruel environmental limiting factors that retard the growth of crop plants. Present scenario of climate change will further increase the border of the area affected by saline soils, and therefore this phenomenon will threaten the productivity of crops leading to depletion of food sources of human societies. Various strategies including soil quality management policies, improving crop resistance against salinity stress, detoxification of noxious ions, improving the quality of irrigation water, and many other effects need to be examined to decrease the detrimental consequences associated with saline soils. In this context, the use of microorganisms especially plant growth-promoting rhizobacteria (PGPR) has been proposed as a sustainable way to fortify the quality of soils to help crop plants grow under salinity stress. Recent advances in molecular soil biology studies suggested that PGPR are involved in the important physiological process associated with plant growth and development. Among the other mechanisms, improvement in water and nutrient uptake, decrease in the toxicity of hazardous ions, amelioration of photosynthesis, improvement in nitrogen fixation, regulation/modulation of physiological signaling networks are the common features exhibited by PGPR to enhance the growth of plants in saline soils. Thus, it should be noted that these miracle bacterial species are legendary soil guards to protect both soil texture and crop plants from salinity stress in the light of present and upcoming global climate changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbar M, Yabuno T, Nakao S (1972) Breeding for saline-resistant varieties of rice: I. variability for salt tolerance among some rice varieties. Jpn J Breed 22(5):277–284

    Article  Google Scholar 

  • Ali-Soufi M, Shahriari A, Shirmohammadi E, Fazeli-Nasab B (2017) Seasonal changes biological characteristics of airborne dust in Sistan plain, Eastern Iran. In: Proceedings of the International Conference on Loess Research. Gorgan University of Agricultural Sciences and Natural Resources, Gorgan. https://www.researchgate.net/publication/326984018_Seasonal_changes_biological_characteristics_of_airborne_dust_in_Sistan_plain_Eastern_Iran

  • Amozadeh S, Fazeli-Nasab B (2012) Improvements methods and mechanisms to salinity tolerance in agricultural crops. In: Proceedings of the first national agricultural conference in difficult environments. Islamic Azad University, Ramhormoz Branch

    Google Scholar 

  • Arshad M, Frankenberger WT Jr (2012) Ethylene: agricultural sources and applications. Springer Science & Business Media, New York. ISBN: 1461506751

    Google Scholar 

  • Ashraf M, Wu L (1994) Breeding for salinity tolerance in plants. Crit Rev Plant Sci 13(1):17–42

    Article  Google Scholar 

  • Azad H, Fazeli-Nasab B, Sobhanizade A (2017) A study into the effect of Jasmonic and humic acids on some germination characteristics of Roselle (Hibiscus sabdariffa) seed under salinity stress. Iran J Seed Res 4(1):1–18. http://yujs.yu.ac.ir/jisr/article-1-235-fa.html. https://doi.org/10.29252/yujs.4.1.1

    Article  Google Scholar 

  • Babalola OO, Osir EO, Sanni AI, Odhiambo GD, Bulimo WD (2003) Amplification of 1-amino-cyclopropane-1-carboxylic (ACC) deaminase from plant growth promoting rhizobacteria in Striga-infested soil. Afr J Biotechnol 2(6):157–160

    Article  CAS  Google Scholar 

  • Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47(7):642–652

    Article  CAS  PubMed  Google Scholar 

  • Blaha D, Prigent-Combaret C, Mirza MS, Moënne-Loccoz Y (2006) Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 56(3):455–470

    Article  CAS  PubMed  Google Scholar 

  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2(2):48–54

    Article  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46(3):237–245

    Article  CAS  PubMed  Google Scholar 

  • Cao D, Li Y, Liu B, Kong F, Tran LSP (2017) Adaptive mechanisms of soybean grown on salt-affected soils. Land Degrad Dev 29(4):1054–1064. https://doi.org/10.1002/ldr.2754

    Article  Google Scholar 

  • Carter D L, Chapman V, Doneen L, Kylin A, Peck A, Quatrano S, Shainberg I, Thomson W (2012) Plants in saline environments. Springer Science & Business Media. ISBN: 3642809294

    Google Scholar 

  • Cheng Z, Park E, Glick BR (2007) 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53(7):912–918

    Article  CAS  PubMed  Google Scholar 

  • Cicek N, Cakirlar H (2002) The effect of salinity on some physiological parameters in two maize cultivars. Bulg J Plant Physiol 28(1–2):66–74

    Google Scholar 

  • Ding W, Clode PL, Clements JC, Lambers H (2018) Effects of calcium and its interaction with phosphorus on the nutrient status and growth of three Lupinus species. Physiol Plant 163(3):386–398. PMID: 29570221. https://doi.org/10.1111/ppl.12732

    Article  CAS  Google Scholar 

  • Drew MC, Hold PS, Picchioni GA (1990) Inhibition by NaCl of net CO2 fixation and yield of cucumber. J Am Soc Hortic Sci 115(3):472–477

    Article  CAS  Google Scholar 

  • Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10(1):1–9

    CAS  PubMed  Google Scholar 

  • Elad Y (1990) Production of ethylene by tissues of tomato, pepper, French-bean and cucumber in response to infection by Botrytis cinerea. Physiol Mol Plant Pathol 36(4):277–287

    Article  CAS  Google Scholar 

  • Esashi Y (2017) Ethylene and seed germination. In: The plant hormone ethylene. CRC Press, pp 133–157

    Google Scholar 

  • Fazeli-Nasab B (2018) The effect of explant, BAP and 2,4-D on callus induction of trachyspermum ammi. Potravinarstvo Slovak J Food Sci 12(1):578–586. https://doi.org/10.5219/953

    Article  Google Scholar 

  • Ghosh S, Penterman JN, Little RD, Chavez R, Glick BR (2003) Three newly isolated plant growth-promoting bacilli facilitate the seedling growth of canola, Brassica campestris. Plant Physiol Biochem 41(3):277–281

    Article  CAS  Google Scholar 

  • Gleason SM, Wiggans DR, Bliss CA, Young JS, Cooper M, Willi KR, Comas LH (2017) Embolized stems recover overnight in Zea mays: the role of soil water, root pressure, and nighttime transpiration. Front Plant Sci 8:662

    Article  PubMed  PubMed Central  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190(1):63–68

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119(3):329–339

    Article  CAS  Google Scholar 

  • Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol Biochem 39(1):11–17

    Article  CAS  Google Scholar 

  • Grichko VP, Filby B, Glick BR (2000) Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb, and Zn. J Biotechnol 81(1):45–53

    Article  CAS  PubMed  Google Scholar 

  • Hairmansis A, Nafisah N, Jamil A (2017) Towards developing salinity tolerant rice adaptable for coastal regions in Indonesia. KnE Life Sci 2(6):72–79

    Article  Google Scholar 

  • Hall JA, Peirson D, Ghosh S, Glick B (1996) Root elongation in various agronomic crops by the plant growth promoting rhizobacterium Pseudomonas putida GR12–2. Isr J Plant Sci 44(1):37–42

    Article  Google Scholar 

  • Han H, Lee K (2005) Plant growth promoting rhizobacteria effect on antioxidant status, photosynthesis, mineral uptake and growth of lettuce under soil salinity. Res J Agric Biol Sci 1(3):210–215

    Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Biol 51(1):463–499

    Article  CAS  Google Scholar 

  • Hontzeas N, Saleh SS, Glick BR (2004) Changes in gene expression in canola roots induced by ACC-deaminase-containing plant-growth-promoting bacteria. Mol Plant-Microbe Interact 17(8):865–871

    Article  CAS  PubMed  Google Scholar 

  • Hyodo H (2017) Stress/wound ethylene. In: The plant hormone ethylene. CRC Press, pp 43–63

    Google Scholar 

  • Ilangumaran G, Smith DL (2017) Plant growth promoting rhizobacteria in amelioration of salinity stress: a systems biology perspective. Front Plant Sci 8:1768. https://doi.org/10.3389/fpls.2017.01768

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackson MB (2017) Ethylene in root growth and development. In: The plant hormone ethylene. CRC Press, pp 159–181

    Google Scholar 

  • Jia Y-J, Kakuta Y, Sugawara M, Igarashi T, Oki N, Kisaki M, Shoji T, Kanetuna Y, Horita T, Matsui H (1999) Synthesis and degradation of 1-aminocyclopropane-1-carboxylic acid by Penicillium citrinum. Biosci Biotechnol Biochem 63(3):542–549

    Article  CAS  PubMed  Google Scholar 

  • Joshi R, Mangu VR, Bedre R, Sanchez L, Pilcher W, Zandkarimi H, Baisakh N (2015) Salt adaptation mechanisms of halophytes: improvement of salt tolerance in crop plants. In: Elucidation of abiotic stress signaling in plants. Springer, New York, pp 243–279

    Chapter  Google Scholar 

  • Kafi M, Mahdavi-damghani A (2005) Mechanisms of plant resistance to environmental stresses (translation). Ferdowsi University of Mashhad. ISBN: 9789645782038

    Google Scholar 

  • Keisham M, Mukherjee S, Bhatla SC (2018) Mechanisms of sodium transport in plants—progresses and challenges. Int J Mol Sci 19(3):647

    Article  PubMed Central  CAS  Google Scholar 

  • Kramer D (1984) Cytological aspects of salt tolerance in higher plants. In: Salinity tolerance in plants. Wiley, New York, pp 3–16

    Google Scholar 

  • Ma W, Sebestianova SB, Sebestian J, Burd GI, Guinel FC, Glick BR (2003) Prevalence of 1-aminocyclopropane-1-carboxylate deaminase in Rhizobium spp. Antonie Van Leeuwenhoek 83(3):285–291

    Article  CAS  PubMed  Google Scholar 

  • Maas EV, Hoffman GJ (1977) Crop salt tolerance–current assessment. J Irrig Drain Div 103(2):115–134

    Google Scholar 

  • Madhaiyan M, Poonguzhali S, Ryu J, Sa T (2006) Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 224(2):268–278

    Article  CAS  PubMed  Google Scholar 

  • Makhlouf K, Hamrouni L, Khouja M, Hanana M (2015) Salinity effects on germination, growth and mineral nutrition of Ricinus communis seedlings. Acta Bot Hungar 57(3–4):383–400

    Article  Google Scholar 

  • Mangalassery S, Dayal D, Kumar A, Bhatt K, Nakar R, Kumar A, Singh J, Misra AK (2017) Pattern of salt accumulation and its impact on salinity tolerance in two halophyte grasses in extreme saline desert in India. Indian J Exp Biol 55(8):542–548

    CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166(2):525–530

    Article  CAS  Google Scholar 

  • Munns R (1993) Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Environ 16(1):15–24

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

    Article  CAS  PubMed  Google Scholar 

  • Nascimento WM (2003) Ethylene and lettuce seed germination. Sci Agric 60(3):601–606. https://doi.org/10.1590/S0103-90162003000300029

    Article  CAS  Google Scholar 

  • Nordström AC, Eliasson L (1984) Regulation of root formation by auxin-ethylene interaction in pea stem cuttings. Physiol Plant 61(2):298–302

    Article  Google Scholar 

  • Pandey P, Kang S, Maheshwari D (2005) Isolation of endophytic plant growth promoting Burkholderia sp. MSSP from root nodules of Mimosa pudica. Curr Sci 89:177–180

    CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60(3):324–349. https://doi.org/10.1016/j.ecoenv.2004.06.010

    Article  CAS  PubMed  Google Scholar 

  • Penrose DM, Glick BR (2001) Levels of ACC and related compounds in exudate and extracts of canola seeds treated with ACC deaminase-containing plant growth-promoting bacteria. Can J Microbiol 47(4):368–372

    Article  CAS  PubMed  Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118(1):10–15

    Article  CAS  PubMed  Google Scholar 

  • Phogat V, Pitt T, Cox J, Šimůnek J, Skewes M (2018) Soil water and salinity dynamics under sprinkler irrigated almond exposed to a varied salinity stress at different growth stages. Agric Water Manag 201:70–82. https://doi.org/10.1016/j.agwat.2018.01.018

    Article  Google Scholar 

  • Pitman MG, Läuchli A, Stelzer R (1981) Ion distribution in roots of barley seedlings measured by electron probe X-ray microanalysis. Plant Physiol 68(3):673–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rains DW (1969) Sodium and potassium absorption by bean stem tissue. Plant Physiol 44(4):547–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy INBL, Kim B-K, Yoon I-S, Kim K-H, Kwon T-R (2017) Salt tolerance in rice: focus on mechanisms and approaches. Rice Sci 24(3):123–144

    Article  Google Scholar 

  • Reich M, Aghajanzadeh T, Helm J, Parmar S, Hawkesford MJ, De Kok LJ (2017) Chloride and sulfate salinity differently affect biomass, mineral nutrient composition and expression of sulfate transport and assimilation genes in Brassica rapa. Plant Soil 411(1–2):319–332

    Article  CAS  PubMed  Google Scholar 

  • Rengel Z (1992) The role of calcium in salt toxicity. Plant Cell Environ 15(6):625–632

    Article  CAS  Google Scholar 

  • Rost T, Jones T, Robbins J (1986) The role of ethylene in the control of cell division in cultured pea root tips: a mechanism to explain the excision effect. Protoplasma 130(1):68–72

    Article  CAS  Google Scholar 

  • Safronova VI, Stepanok VV, Engqvist GL, Alekseyev YV, Belimov AA (2006) Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol Fertil Soils 42(3):267–272

    Article  CAS  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34(10):635–648

    Article  CAS  PubMed  Google Scholar 

  • Sarabi B, Bolandnazar S, Ghaderi N, Ghashghaie J (2017) Genotypic differences in physiological and biochemical responses to salinity stress in melon (Cucumis melo L.) plants: prospects for selection of salt tolerant landraces. Plant Physiol Biochem 119:294–311

    Article  CAS  PubMed  Google Scholar 

  • Shah S, Li J, Moffatt BA, Glick BR (1998) Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria. Can J Microbiol 44(9):833–843

    Article  CAS  PubMed  Google Scholar 

  • Sheldon A, Menzies N, So HB, Dalal R (2004) The effect of salinity on plant available water. SuperSoil. 2004 418(1–2):477–491. https://doi.org/10.1007/s11104-017-3309-7

    Article  CAS  Google Scholar 

  • Singh RP, Shelke GM, Kumar A, Jha PN (2015) Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants. Front Microbiol 6:937. PMID: 26441873, PMCID: PMC4563596. https://doi.org/10.3389/fmicb.2015.00937

    Article  PubMed  PubMed Central  Google Scholar 

  • Soni R, Yadav SK, Rajput AS (2018) ACC-deaminase producing rhizobacteria: prospects and application as stress busters for stressed agriculture. In: Microorganisms for green revolution. Springer, Singapore, pp 161–175

    Chapter  Google Scholar 

  • Srinivas A, Rajasheker G, Jawahar G, Devineni PL, Parveda M, Kumar SA, Kishor PBK (2018) Deploying mechanisms adapted by halophytes to improve salinity tolerance in crop plants: focus on anatomical features, stomatal attributes, and water use efficiency. In: Salinity responses and tolerance in plants, vol 1. Springer, Cham, pp 41–64

    Chapter  Google Scholar 

  • Stiens M, Schneiker S, Keller M, Kuhn S, Pühler A, Schlüter A (2006) Sequence analysis of the 144-kilobase accessory plasmid pSmeSM11a, isolated from a dominant Sinorhizobium meliloti strain identified during a long-term field release experiment. Appl Environ Microbiol 72(5):3662–3672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suárez N, Medina E (2005) Salinity effect on plant growth and leaf demography of the Mangrove Avicennia germinans L. Trees 19(6):721–727

    Article  Google Scholar 

  • Tank N, Saraf M (2010) Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Interact 5(1):51–58

    Article  CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91(5):503–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules 21(5):573. https://doi.org/10.3390/molecules21050573

    Article  CAS  PubMed Central  Google Scholar 

  • Wang C, Knill E, Glick BR, Défago G (2000) Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gac A derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can J Microbiol 46(10):898–907

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Magen H, Tarchitzky J, Kafkafi U (1999) Advances in chloride nutrition of plants. Adv Agron:97–150. Elsevier

    Google Scholar 

  • Yildirim E, Taylor A, Spittler T (2006) Ameliorative effects of biological treatments on growth of squash plants under salt stress. Sci Hortic 111(1):1–6

    Article  CAS  Google Scholar 

  • Zahir ZA, Arshad M, Frankenberger WT (2004) Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv Agron 8:198–169

    Google Scholar 

  • Zarayneh S, Sepahi AA, Jonoobi M, Rasouli H (2018) Comparative antibacterial effects of cellulose nanofiber, chitosan nanofiber, chitosan/cellulose combination and chitosan alone against bacterial contamination of Iranian banknotes. Int J Biol Macromol 118:1045–1054. https://doi.org/10.1016/j.ijbiomac.2018.06.160

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahman Fazeli-Nasab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fazeli-Nasab, B., Sayyed, R.Z. (2019). Plant Growth-Promoting Rhizobacteria and Salinity Stress: A Journey into the Soil. In: Sayyed, R., Arora, N., Reddy, M. (eds) Plant Growth Promoting Rhizobacteria for Sustainable Stress Management . Microorganisms for Sustainability, vol 12. Springer, Singapore. https://doi.org/10.1007/978-981-13-6536-2_2

Download citation

Publish with us

Policies and ethics