Advertisement

Psychrotrophic Microbes: Biodiversity, Mechanisms of Adaptation, and Biotechnological Implications in Alleviation of Cold Stress in Plants

  • Ajar Nath YadavEmail author
  • Divjot Kour
  • Sushma Sharma
  • Shashwati Ghosh Sachan
  • Bhanumati Singh
  • Vinay Singh Chauhan
  • R. Z. Sayyed
  • Rajeev Kaushik
  • Anil Kumar Saxena
Chapter
Part of the Microorganisms for Sustainability book series (MICRO, volume 12)

Abstract

Psychrotrophic microbes from the cold habitats have been reported worldwide. The psychrotrophic microbes from diverse cold habitats have biotechnological potential applications in agriculture as they can possess different direct and indirect plant growth-promoting (PGP) attributes such as solubilization of micronutrients (P, K, and Zn), 1-aminocyclopropane-1-carboxylate deaminase production, Fe-chelating compounds, indole-3-acetic acid, and bioactive compounds. Psychrophilic and psychrotrophic microbes are ubiquitous in nature and have been reported worldwide from various cold environments. The microbial communities from cold deserts have been reported using both culture-dependent techniques and metagenomic techniques, which belong to diverse major groups, viz., Verrucomicrobia, Thaumarchaeota, Spirochaetes, Proteobacteria, Planctomycetes, Nitrospirae, Mucoromycota, Gemmatimonadetes, Firmicutes, Euryarchaeota, Cyanobacteria, Chloroflexi, Chlamydiae, Basidiomycota, Bacteroidetes, Ascomycota, and Actinobacteria. Cold-adapted microbes, isolated from the low-temperature condition, are belonging to different genera such as Arthrobacter, Bacillus, Exiguobacterium, Paenibacillus, Providencia, Pseudomonas, and Serratia. On review of different research, it was found that inoculation with psychrotrophic strains significantly enhanced plant growth, crop yield, and soil fertility. The present book chapter deals with the biodiversity of psychrotrophic or cold-adapted microbes from diverse cold habitats, and their potential biotechnological applications in agriculture have been discussed.

Keywords

Adaptation Cold alleviation Diversity Plant growth promotion Psychrotrophic 

Notes

Acknowledgments

The authors are grateful to the Department of Biotechnology, Akal College of Agriculture, Eternal University, Baru Sahib and HP Governments, Environments, Science and Technology, Shimla, Himachal Pradesh-funded project “Development of Microbial Consortium as Bio-inoculants for Drought and Low-Temperature Growing Crops for Organic Farming in Himachal Pradesh,” for providing the facilities and financial support to undertake the investigations. There are no conflicts of interest.

References

  1. Abyzov S, Filippova S, Kuznetsov V (1983) Nocardiopsis antarcticus – a new species of actinomyces isolated from the ice sheet of the Central Antarctica glacier. AkademiiaNauk SSSR, Izvestiia, SeriiaBiologicheskaia, pp 559–568Google Scholar
  2. Albert RA, Waas NE, Pavlons SC, Pearson JL, Ketelboeter L, Rosselló-Móra R, Busse H-J (2013) Sphingobacterium psychroaquaticum sp. nov., a psychrophilic bacterium isolated from Lake Michigan water. Int J Syst Evol Microbiol 63:952–958PubMedCrossRefGoogle Scholar
  3. Allen MA, Lauro FM, Williams TJ, Burg D, Siddiqui KS, De Francisci D, Chong KW, Pilak O, Chew HH, De Maere MZ (2009) The genome sequence of the psychrophilic archaeon, Methanococcoides burtonii: the role of genome evolution in cold adaptation. ISMEJ 3:1012CrossRefGoogle Scholar
  4. Anil Kumar P, Srinivas TNR, Sasikala C, Ramana CV (2007) Rhodobacter changlensis sp. nov., a psychrotolerant, phototrophic alphaproteobacterium from the Himalayas of India. Int J Syst Evol Microbiol 57:2568–2571PubMedCrossRefGoogle Scholar
  5. Arora PK (2013) Staphylococcus lipolyticus sp. nov., a new cold-adapted lipase producing marine species. Ann Microbiol 63:913–922CrossRefGoogle Scholar
  6. Arora PK, Chauhan A, Pant B, Korpole S, Mayilraj S, Jain RK (2011) Chryseomicrobium imtechense gen. nov., sp. nov., a new member of the family Planococcaceae. Int J Syst Evol Microbiol 61:1859–1864PubMedCrossRefGoogle Scholar
  7. Atlung T, Hansen FG (1999) Low-temperature-induced DnaA protein synthesis does not change initiation mass in Escherichia coli K-12. J Bacteriol 181:5557–5562PubMedPubMedCentralGoogle Scholar
  8. Auman AJ, Breezee JL, Gosink JJ, Kämpfer P, Staley JT (2006) Psychromonas ingrahamii sp. nov., a novel gas vacuolate, a psychrophilic bacterium isolated from Arctic polar sea ice. Int J Syst Evol Microbiol 56:1001–1007PubMedCrossRefGoogle Scholar
  9. Bae W, Xia B, Inouye M, Severinov K (2000) Escherichia coli CspA-family RNA chaperones are transcription antiterminators. Proc Natl Acad Sci 97:7784–7789PubMedCrossRefGoogle Scholar
  10. Bainsla NK, Yadav R, Sharma RK, Sharma A, Gaikwad KB, Kumar A, Singh V, Vyas P, Sharma A (2018) Mechanistic understanding of lodging in spring wheat (Triticum aestivum): An Indian perspective. Indian J Agric Sci 88(10):1483–1495Google Scholar
  11. Baker E, Wang B, Bellora N, Peris D, Hulfachor AB, Koshalek JA, Adams M, Libkind D, Hittinger CT (2015) The genome sequence of Saccharomyces eubayanus and the domestication of lager-brewing yeasts. Mol Biol Evol 32:2818–2831PubMedPubMedCentralCrossRefGoogle Scholar
  12. Barka EA, Nowak J, Clement C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72:7246–7255CrossRefGoogle Scholar
  13. Beran RK, Simons RW (2001) Cold-temperature induction of Escherichia coli polynucleotide phosphorylase occurs by reversal of its autoregulation. Mol Microbiol 39:112–125PubMedCrossRefGoogle Scholar
  14. Berger F, Morellet N, Menu F, Potier P (1996) Cold shock and cold acclimation proteins in the psychrotrophic bacterium Arthrobacter globiformis SI55. J Bacteriol 178:2999–3007PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bowman JP (2000) Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50:1861–1868PubMedCrossRefGoogle Scholar
  16. Bowman JP, McCammon SA, Brown JL, Nichols PD, McMeekin TA (1997a) Psychroserpens burtonensis gen. nov., sp. nov., and Gelidibacter algens gen. nov., sp. nov., psychrophilic bacteria isolated from Antarctic lacustrine and sea ice habitats. Int J Syst Evol Microbiol 47:670–677Google Scholar
  17. Bowman JP, McCammon SA, Nichols DS, Skerratt JH, Rea SM, Nichols PD, McMeekin TA (1997b) Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20: 5ω3) and grow anaerobically by dissimilatory Fe (III) reduction. Int J Syst Evol Microbiol 47:1040–1047Google Scholar
  18. Bowman JP, McCammon SA, Skerrat JH (1997c) Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic marine-salinity, meromictic lakes. Microbiology 143:1451–1459PubMedCrossRefGoogle Scholar
  19. Bowman JP, Nichols DS, McMeekin TA (1997d) Psychrobacter glacincola sp. nov., a halotolerant, psychrophilic bacterium isolated from Antarctic sea ice. Syst Appl Microbiol 20:209–215CrossRefGoogle Scholar
  20. Bowman JP, Mccammon SA, Brown JL, Mcmeekin TA (1998a) Glaciecola punicea gen. nov., sp. nov. and Glaciecola pallidula gen. nov., sp. nov.: psychrophilic bacteria from Antarctic sea-ice habitats. Int J Syst Evol Microbiol 48:1213–1222Google Scholar
  21. Bowman JP, McCammon SA, Lewis T, Skerratt JH, Brown JL, Nichols DS, McMeekin TA (1998b) Psychroflexus torquis gen. nov., sp. nov. a psychrophilic species from Antarctic sea ice, and reclassification of Flavobacterium gondwanense (Dobson et al. 1993) as Psychroflexus gondwanense gen. nov., comb. nov. Microbiology 144:1601–1609PubMedCrossRefGoogle Scholar
  22. Brandi A, Spurio R, Gualerzi CO, Pon CL (1999) Massive presence of the Escherichia coli ‘major cold-shock protein’ CspA under non-stress conditions. EMBOJ 18:1653–1659CrossRefGoogle Scholar
  23. Bylund GO, Wipemo LC, Lundberg LC, Wikström PM (1998) RimM and RbfA are essential for efficient processing of 16S rRNA in Escherichia coli. J Bacteriol 180:73–82PubMedPubMedCentralGoogle Scholar
  24. Cai Q, Ye X, Chen B, Zhang B (2017) Complete genome sequence of Exiguobacterium sp. Strain N4-1P, a psychrophilic bioemulsifier producer isolated from a cold marine environment in North Atlantic Canada. Genome Announc 5:e01248–e01217PubMedPubMedCentralCrossRefGoogle Scholar
  25. Cairrão F, Cruz A, Mori H, Arraiano CM (2003) Cold shock induction of RNase R and its role in the maturation of the quality control mediator SsrA/tmRNA. Mol Microbiol 50:1349–1360PubMedCrossRefGoogle Scholar
  26. Caldas T, Laalami S, Richarme G (2000) Chaperone properties of bacterial elongation factor EF-G and initiation factor IF2. J Biol Chem 275:855–860PubMedCrossRefGoogle Scholar
  27. Carneiro AR, Ramos RTJ, Dall’Agnol H, Pinto AC, de Castro Soares S, Santos AR, Guimarães LC, Almeida SS, Baraúna RA, das Graças DA (2012) Genome sequence of Exiguobacterium antarcticum B7, isolated from a biofilm in Ginger Lake, King George Island, Antarctica. J Bacteriol 194:6689–6690PubMedPubMedCentralCrossRefGoogle Scholar
  28. Carrión O, Miñana-Galbis D, Montes MJ, Mercadé E (2011) Pseudomonas deceptionensis sp. nov., a psychrotolerant bacterium from the Antarctic. Int J Syst Evol Microbiol 61:2401–2405PubMedCrossRefGoogle Scholar
  29. Carty SM, Sreekumar KR, Raetz CR (1999) Effect of Cold Shock on Lipid A Biosynthesis in Escherichia coli induction at 12° c of an acyltransferase specific for palmitoleoyl-acyl carrier protein. J Biol Chem 274:9677–9685PubMedCrossRefGoogle Scholar
  30. Cavicchioli R, Charlton T, Ertan H, Omar SM, Siddiqui K, Williams T (2011) Biotechnological uses of enzymes from psychrophiles. Microb Biotechnol 4:449–460PubMedPubMedCentralCrossRefGoogle Scholar
  31. Chapot-Chartier M-P, Schouler C, Lepeuple A-S, Gripon J-C, Chopin M-C (1997) Characterization of cspB, a cold-shock-inducible gene from Lactococcus lactis, and evidence for a family of genes homologous to the Escherichia coli cspA major cold shock gene. J Bacteriol 179:5589–5593PubMedPubMedCentralCrossRefGoogle Scholar
  32. Chattopadhyay M (2000) Cold-adaptation of Antarctic microorganisms–possible involvement of the viable but nonculturable state. Polar Biol 23:223–224CrossRefGoogle Scholar
  33. Chattopadhyay M (2006) Mechanism of bacterial adaptation to low temperature. J Biosci 31:157–165PubMedCrossRefGoogle Scholar
  34. Chattopadhyay M, Jagannadham M (2001) Maintenance of membrane fluidity in Antarctic bacteria. Polar Biol 24:386–388CrossRefGoogle Scholar
  35. Chaturvedi P, Shivaji S (2006) Exiguobacterium indicum sp. nov., a psychrophilic bacterium from the Hamta glacier of the Himalayan mountain ranges of India. Int J Syst Evol Microbiol 56:2765–2770PubMedCrossRefGoogle Scholar
  36. Chaturvedi P, Reddy GSN, Shivaji S (2005) Dyadobacter hamtensis sp. nov., from Hamta glacier, located in the Himalayas, India. Int J Syst Evol Microbiol 55:2113–2117PubMedCrossRefGoogle Scholar
  37. Chaturvedi P, Prabahar V, Manorama R, Pindi PK, Bhadra B, Begum Z, Shivaji S (2008) Exiguobacterium soli sp. nov., a psychrophilic bacterium from the McMurdo Dry Valleys, Antarctica. Int J Syst Evol Microbiol 58:2447–2453PubMedCrossRefGoogle Scholar
  38. Cheng SM, Foght JM (2007) Cultivation-independent and -dependent characterization of Bacteria resident beneath John Evans Glacier. FEMS Microbiol Ecol 59:318–330PubMedCrossRefGoogle Scholar
  39. Connell LB, Redman R, Rodriguez R, Barrett A, Iszard M, Fonseca Á (2010) Dioszegia antarctica sp. nov. and Dioszegia cryoxerica sp. nov., psychrophilic basidiomycetous yeasts from polar desert soils in Antarctica. Int J Syst Evol Microbiol 60:1466–1472.  https://doi.org/10.1099/ijs.0.015412-0CrossRefPubMedGoogle Scholar
  40. De Maayer P, Anderson D, Cary C, Cowan DA (2014) Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep 15:508–517PubMedPubMedCentralCrossRefGoogle Scholar
  41. Dhar H, Swarnkar MK, Gulati A, Singh AK, Kasana RC (2015) Draft genome sequence of a cellulase-producing psychrotrophic Paenibacillus strain, IHBB 3415, isolated from the cold environment of the western Himalayas, India. Genome Announc 3:e01581–e01514PubMedPubMedCentralCrossRefGoogle Scholar
  42. Dhar H, Swarnkar MK, Rana A, Kaushal K, Singh AK, Kasana RC, Gulati A (2016) Complete genome sequence of a low-temperature active and alkaline-stable Endoglucanase-producing Paenibacillus sp. strain IHB B 3084 from the Indian Trans-Himalayas. J Biotechnol 230:1–2PubMedCrossRefGoogle Scholar
  43. Di Pietro F, Brandi A, Dzeladini N, Fabbretti A, Carzaniga T, Piersimoni L, Pon CL, Giuliodori AM (2013) Role of the ribosome-associated protein PY in the cold-shock response of Escherichia coli. Microbiol Open 2:293–307CrossRefGoogle Scholar
  44. Dong K, Liu H, Zhang J, Zhou Y, Xin Y (2012) Flavobacterium xueshanense sp. nov. and Flavobacterium urumqiense sp. nov., two psychrophilic bacteria isolated from glacier ice. Int J Syst Evol Microbiol 62:1151–1157PubMedCrossRefGoogle Scholar
  45. Du Y, Yuan B, Zeng Y, Meng J, Li H, Wang R, Li G, Feng F (2015) Draft genome sequence of the cellulolytic bacterium Clavibacter sp. CF11, a strain producing cold-active cellulase. Genome Announc 3:e01304–e01314PubMedPubMedCentralCrossRefGoogle Scholar
  46. Fagodiya RK, Pathak H, Kumar A, Bhatia A, Jain N (2017) Global temperature change potential of nitrogen use in agriculture: a 50-year assessment. Sci Rep 7(1):44928PubMedPubMedCentralCrossRefGoogle Scholar
  47. Feng Y, Huang H, Liao J, Cohen SN (2001) Escherichia coli poly (A)-binding proteins that interact with components of degradosomes or impede RNA decay mediated by polynucleotide phosphorylase and RNase E. J Biol Chem 276:31651–31656PubMedCrossRefGoogle Scholar
  48. Fernandez O, Theocharis A, Bordiec S, Feil R, Jacquens L, Clément C, Fontaine F, Barka EA (2012) Burkholderia phytofirmans PsJN acclimates grapevine to cold by modulating carbohydrate metabolism. Mol Plant Microbe Interact 25:496–504PubMedCrossRefGoogle Scholar
  49. Foght J, Aislabie J, Turner S, Brown C, Ryburn J, Saul D, Lawson W (2004) Culturable bacteria in subglacial sediments and ice from two southern hemisphere glaciers. Microb Ecol 47:329–340PubMedCrossRefGoogle Scholar
  50. Franzmann P, Stackebrandt E, Sanderson K, Volkman J, Cameron D, Stevenson P, McMeekin T, Burton H (1988) Halobacterium lacusprofundi sp. nov., a halophilic bacterium isolated from Deep Lake, Antarctica. Syst Appl Microbiol 11:20–27CrossRefGoogle Scholar
  51. Franzmann PD, Liu Y, Balkwill DL, Aldrich HC, De Macario EC, Boone DR (1997) Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antarctica. Int J Syst Evol Microbiol 47:1068–1072Google Scholar
  52. Fruhling A, Schumann P, Hippe H, Straubler B, Stackebrandt E (2002) Exiguobacterium undae sp. nov. and Exiguobacterium antarcticum sp. nov. Int J Syst Evol Microbiol 52:1171–1176PubMedGoogle Scholar
  53. Ghorbanpour A, Salimi A, Ghanbary MAT, Pirdashti H, Dehestani A (2018) The effect of Trichoderma harzianum in mitigating low-temperature stress in tomato (Solanum lycopersicum L.) plants. Sci Horticult 230:134–141CrossRefGoogle Scholar
  54. Ghosh A, Bhardwaj M, Satyanarayana T, Khurana M, Mayilraj S, Jain RK (2007) Bacillus lehensis sp. nov., an alkalitolerant bacterium isolated from soil. Int J Syst Evol Microbiol 57:238–242PubMedCrossRefGoogle Scholar
  55. Giangrossi M, Giuliodori AM, Gualerzi CO, Pon CL (2002) Selective expression of the β-subunit of nucleoid-associated protein HU during cold shock in Escherichia coli. Mol Microbiol 44:205–216PubMedCrossRefGoogle Scholar
  56. Gilbert JA, Hill PJ, Dodd CE, Laybourn-Parry J (2004) Demonstration of antifreeze protein activity in Antarctic lake bacteria. Microbiology 150:171–180PubMedCrossRefGoogle Scholar
  57. Gosink J, Herwig R, Staley J (1997) Octadecabacter arcticus gen. nov., sp. nov., and O. antarcticus, sp. nov., non-pigmented, psychrophilic gas vacuolate bacteria from polar sea ice and water. Syst Appl Microbiol 20:356–365CrossRefGoogle Scholar
  58. Gualerzi CO, Giuliodori AM, Pon CL (2003) Transcriptional and post-transcriptional control of cold-shock genes. J Mol Biol 331:527–539PubMedCrossRefGoogle Scholar
  59. Gulati A, Rahi P, Vyas P (2008) Characterization of phosphate-solubilizing fluorescent pseudomonads from the rhizosphere of seabuckthorn growing in the cold deserts of Himalayas. Curr Microbiol 56:73–79PubMedCrossRefGoogle Scholar
  60. Gulati A, Vyas P, Rahi P, Kasana RC (2009) Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas. Curr Microbiol 58:371–377PubMedCrossRefGoogle Scholar
  61. Gulati A, Swarnkar MK, Vyas P, Rahi P, Thakur R, Thakur N, Singh AK (2015) Complete genome sequence of the rhizobacterium Pseudomonas trivialis strain IHBB745 with multiple plant growth-promoting activities and tolerance to desiccation and alkalinity. Genome Announc 3:e00943–e00915PubMedPubMedCentralCrossRefGoogle Scholar
  62. Gupta HK, Gupta RD, Singh A, Chauhan NS, Sharma R (2011a) Genome sequence of Rheinheimera sp. strain A13L, isolated from Pangong Lake, India. J Bacteriol 193:5873–5874PubMedPubMedCentralCrossRefGoogle Scholar
  63. Gupta HK, Singh A, Sharma R (2011b) Genome sequence of Idiomarina sp. strain A28L, isolated from Pangong Lake, India. J Bacteriol 193:5875–5876PubMedPubMedCentralCrossRefGoogle Scholar
  64. Hallam SJ, Konstantinidis KT, Putnam N, Schleper C, Watanabe Y-i, Sugahara J, Preston C, de la Torre J, Richardson PM, DeLong EF (2006) Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proc Natl Acad Sci U S A 103:18296–18301PubMedPubMedCentralCrossRefGoogle Scholar
  65. Hirsch P, Ludwig W, Hethke C, Sittig M, Hoffmann B, Gallikowski C (1998) Hymenobacter roseosalivarius gen. nov., sp. nov. from continental Antarctic soils and sandstone: bacteria of the Cytophaga/Flavobacterium/Bacteroides line of phylogenetic descent. Syst Appl Microbiol 21:374–383CrossRefPubMedGoogle Scholar
  66. Holmes DE, Nicoll JS, Bond DR, Lovley DR (2004) Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell. Appl Environ Microbiol 70:6023–6030PubMedPubMedCentralCrossRefGoogle Scholar
  67. Horn G, Hofweber R, Kremer W, Kalbitzer HR (2007) Structure and function of bacterial cold shock proteins. Cell Mol Life Sci 64:1457–1470PubMedCrossRefGoogle Scholar
  68. Humphry DR, George A, Black GW, Cummings SP (2001) Flavobacterium frigidarium sp. nov., an aerobic, psychrophilic, xylanolytic and laminarinolytic bacterium from Antarctica. Int J Syst Evol Microbiol 51:1235–1243PubMedCrossRefGoogle Scholar
  69. Irgens R, Gosink J, Staley J (1996) Polaromonas vacuolata gen. nov., sp. nov., a psychrophilic, marine, gas vacuolate bacterium from Antarctica. Int J Syst Evol Microbiol 46:822–826Google Scholar
  70. Isaksen MF, Teske A (1996) Desulforhopalus vacuolatus gen. nov., sp. nov., a new moderately psychrophilic sulfate-reducing bacterium with gas vacuoles isolated from a temperate estuary. Arch Microbiol 166:160–168CrossRefGoogle Scholar
  71. Jiang F, Danzeng W, Zhang Y, Zhang Y, Jiang L, Liu J, Lu L, Fan W, Peng F (2018) Hymenobacter rubripertinctus sp. nov., isolated from Antarctic tundra soil. Int J Syst Evol Microbiol 68:663–668PubMedCrossRefGoogle Scholar
  72. Jones PG, Inouye M (1994) The cold-shock response—a hot topic. Mol Microbiol 11:811–818PubMedCrossRefGoogle Scholar
  73. Kakar K, Ren X-l, Nawaz Z, Cui ZQ, Li B, Xie GL, Hassan M, Ali E, Sun GC (2016) A consortium of rhizobacterial strains and biochemical growth elicitors improve cold and drought stress tolerance in rice (Oryza sativa L.). Plant Biol 18:471–483PubMedCrossRefGoogle Scholar
  74. Kandror O, DeLeon A, Goldberg AL (2002) Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc Natl Acad Sci 99:9727–9732PubMedCrossRefGoogle Scholar
  75. Kang S-M, Khan AL, Waqas M, You Y-H, Hamayun M, Joo G-J, Shahzad R, Choi K-S, Lee I-J (2015) Gibberellin-producing Serratia nematodiphila PEJ1011 ameliorates low-temperature stress in Capsicum annuum L. Eur J Soil Biol 68:85–93CrossRefGoogle Scholar
  76. Kaufman-Szymczyk A, Wojtasik A, Parniewski P, Bialkowska A, Tkaczuk K, Turkiewicz M (2009) Identification of the cap gene and molecular modeling of the CspA-like protein from Antarctic soil-dwelling psychrotrophic bacterium Psychrobacter sp. B6. Acta Biochimica Polonica 56:63PubMedCrossRefGoogle Scholar
  77. Khalid A, Akhtar M, Mahmood M, Arshad M (2006) Effect of substrate-dependent microbial ethylene production on plant growth. Microbiology 75:231–236CrossRefGoogle Scholar
  78. Kiran S, Swarnkar MK, Pal M, Thakur R, Tewari R, Singh AK, Gulati A (2015) Complete genome sequencing of protease-producing novel Arthrobacter sp. strain IHBB 11108 using PacBio single-molecule real-time sequencing technology. Genome Announc 3:e00346–e00315PubMedPubMedCentralCrossRefGoogle Scholar
  79. Kishore KH, Begum Z, Pathan AAK, Shivaji S (2010) Paenibacillus glacialis sp. nov., isolated from the Kafni glacier of the Himalayas, India. Int J Syst Evol Microbiol 60:1909–1913PubMedCrossRefGoogle Scholar
  80. Koo H, Ptacek T, Crowley M, Swain AK, Osborne JD, Bej AK, Andersen DT (2014) Draft genome sequence of Hymenobacter sp. strain IS2118, isolated from a freshwater lake in Schirmacher Oasis, Antarctica, reveals diverse genes for adaptation to cold ecosystems. Genome Announc 2:e00739–e00714PubMedPubMedCentralGoogle Scholar
  81. Kour D, Rana KL, Verma P, Yadav AN, Kumar V, Singh DH (2017) Biofertilizers: eco-friendly technologies and bioresources for sustainable agriculture. In: Proceeding of international conference on innovative research in engineering science and technology, p 14Google Scholar
  82. Kumar A, Guleria S, Mehta P, Walia A, Chauhan A, Shirkot CK (2015a) Plant growth-promoting traits of phosphate solubilizing bacteria isolated from Hippophae rhamnoides L.(Sea-buckthorn) growing in cold desert Trans-Himalayan Lahul and Spiti regions of India. Acta Physiol Plant 37:48CrossRefGoogle Scholar
  83. Kumar R, Singh D, Swarnkar MK, Singh AK, Kumar S (2015b) Complete genome sequence of Arthrobacter sp. ERGS1: 01, a putative novel bacterium with prospective cold active industrial enzymes, isolated from East Rathong glacier in India. J Biotechnol 214:139–140PubMedCrossRefGoogle Scholar
  84. Kumar R, Singh D, Swarnkar MK, Singh AK, Kumar S (2016) Complete genome sequence of Arthrobacter alpinus ERGS4: 06, a yellow pigmented bacterium tolerant to cold and radiations isolated from Sikkim Himalaya. J Biotechnol 220:86–87CrossRefPubMedGoogle Scholar
  85. Kumar M, Kour D, Yadav AN, Saxena R, Rai PK, Jyoti A, Tomar RS (2019) Biodiversity of methylotrophic microbial communities and their potential role in mitigation of abiotic stresses in plants. Biologia.  https://doi.org/10.2478/s11756-019-00190-6CrossRefGoogle Scholar
  86. Labrenz M, Tindall B, Lawson PA, Collins MD, Schumann P, Hirsch P (2000) Staleyaguttiformisgen. nov., sp. nov. and Sulfitobacter brevis sp. nov., alpha-3-Proteobacteria from hypersaline, heliothermal and meromictic antarctic EkhoLake. Int J Syst Evol Microbiol 50:303–313PubMedCrossRefGoogle Scholar
  87. Lee YM, Hwang CY, Lee I, Jung Y-J, Cho Y, Baek K, Hong SG, Kim J-H, Chun J, Lee HK (2014) Lacinutrix jangbogonensis sp. nov., a psychrophilic bacterium isolated from Antarctic marine sediment and emended description of the genus Lacinutrix. Antonievan Leeuwenhoek 106:527–533CrossRefGoogle Scholar
  88. Lelivelt MJ, Kawula TH (1995) Hsc66, an Hsp70 homolog in Escherichia coli, is induced by cold shock but not by heat shock. J Bacteriol 177:4900–4907PubMedPubMedCentralCrossRefGoogle Scholar
  89. Lopez NI, Pettinari MJ, Stackebrandt E, Tribelli PM, Põtter M, Steinbüchel A, Méndez BS (2009) Pseudomonas extremaustralis sp. nov., a poly (3-hydroxybutyrate) producer isolated from an Antarctic environment. Curr Microbiol 59:514–519PubMedCrossRefGoogle Scholar
  90. Lylloff JE, Hansen LB, Jepsen M, Hallin PF, Sørensen SJ, Stougaard P, Glaring MA (2015) Draft genome sequences of two protease-producing strains of Arsukibacterium, isolated from two cold and alkaline environments. Genome Announc 3:e00585–e00515PubMedPubMedCentralCrossRefGoogle Scholar
  91. Malyan SK, Kumar A, Kumar J, Smita Kumar S (2016) Water management tool in rice to combat two major environmental issues: global warming and water scarcity. In: Kumar S, Beg MA (eds) Environmental concerns of 21st century: Indian and global context. Book Age publication, New Delhi, pp 46–58Google Scholar
  92. Männistö MK, Tiirola M, McConnell J, Häggblom MM (2010) Mucilaginibacter frigoritolerans sp. nov., Mucilaginibacter lappiensis sp. nov. and Mucilaginibacter mallensis sp. nov., isolated from soil and lichen samples. Int J Syst Evol Microbiol 60:2849–2856PubMedCrossRefGoogle Scholar
  93. Margesin R, Spröer C, Schumann P, Schinner F (2003) Pedobacter cryoconitis sp. nov., a facultative psychrophile from alpine glacier cryoconite. Int J Syst Evol Microbiol 53:1291–1296PubMedCrossRefGoogle Scholar
  94. Margesin R, Zhang D-C, Frasson D, Brouchkov A (2016) Glaciimonas frigoris sp. nov., a psychrophilic bacterium isolated from ancient Siberian permafrost sediment, and emended description of the genus Glaciimonas. Int J Syst Evol Microbiol 66:744–748PubMedCrossRefGoogle Scholar
  95. Mayilraj S, Prasad GS, Suresh K, Saini HS, Shivaji S, Chakrabarti T (2005) Planococcus stackebrandtii sp. nov., isolated from a cold desert of the Himalayas. India Int J Syst Evol Microbiol 55:91–94PubMedCrossRefGoogle Scholar
  96. Mayilraj S, Krishnamurthi S, Saha P, Saini H (2006a) Rhodococcus kroppenstedtii sp. nov., a novel actinobacterium isolated from a cold desert of the Himalayas, India. Int J Syst Evol Microbiol 56:979–982PubMedCrossRefGoogle Scholar
  97. Mayilraj S, Kroppenstedt RM, Suresh K, Saini HS (2006b) Kocuria himachalensis sp. nov., an actinobacterium isolated from the Indian Himalayas. Int J Syst Evol Microbiol 56:1971–1975PubMedCrossRefGoogle Scholar
  98. Mayilraj S, Saha P, Suresh K, Saini HS (2006c) Ornithinimicrobium kibberense sp. nov., isolated from the Indian Himalayas. Int J Syst Evol Microbiol 56:1657–1661CrossRefPubMedGoogle Scholar
  99. Mayilraj S, Suresh K, Kroppenstedt RM, Saini HS (2006d) Dietzia kunjamensis sp. nov., isolated from the Indian Himalayas. Int J Syst Evol Microbiol 56:1667–1671PubMedCrossRefGoogle Scholar
  100. Mayilraj S, Suresh K, Schumann P, Kroppenstedt RM, Saini HS (2006e) Agrococcus lahaulensis sp. nov., isolated from a cold desert of the Indian Himalayas. Int J Syst Evol Microbiol 56:1807–1810PubMedCrossRefGoogle Scholar
  101. Methé BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang X, Moult J (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci U S A 102:10913–10918PubMedPubMedCentralCrossRefGoogle Scholar
  102. Mina U, Kumar R, Gogoi R, Bhatia A, Harit RC, Singh D, Kumar A, Kumar A (2017) Effect of elevated temperature and carbon dioxide on maize genotypes health index. Ecol Indic.  https://doi.org/10.1016/j.ecolind.2017.08.060CrossRefGoogle Scholar
  103. Mishra PK, Mishra S, Selvakumar G, Bisht SC, Bisht JK, Kundu S, Gupta HS (2008) Characterisation of a psychrotolerant plant growth promoting Pseudomonas sp. strain PGERs17 (MTCC 9000) isolated from North Western Indian Himalayas. Ann Microbiol 58:561–568CrossRefGoogle Scholar
  104. Mishra PK, Mishra S, Bisht SC, Selvakumar G, Kundu S, Bisht J, Gupta HS (2009) Isolation, molecular characterization and growth-promotion activities of a cold-tolerant bacterium Pseudomonas sp. NARs9 (MTCC9002) from the Indian Himalayas. Biol Res 42:305–313PubMedCrossRefGoogle Scholar
  105. Mishra PK, Bisht SC, Ruwari P, Selvakumar G, Joshi GK, Bisht JK, Bhatt JC, Gupta HS (2011) Alleviation of cold stress in inoculated wheat (Triticum aestivum L.) seedlings with psychrotolerant Pseudomonads from NW Himalayas. Arch Microbiol 193:497–513PubMedCrossRefGoogle Scholar
  106. Mishra A, Jha G, Thakur IS (2018) Draft Genome Sequence of Zhihengliuella sp. Strain ISTPL4, a Psychrotolerant and Halotolerant Bacterium Isolated from Pangong Lake, India. Genome Announc 6:e01533–e01517PubMedPubMedCentralGoogle Scholar
  107. Miyazaki M, Nogi Y, Fujiwara Y, Horikoshi K (2008) Psychromonas japonica sp. nov., Psychromonas aquimarina sp. nov., Psychromonas macrocephali sp. nov. and Psychromonas ossibalaenae sp. nov., psychrotrophic bacteria isolated from sediment adjacent to sperm whale carcasses off Kagoshima, Japan. Int J Syst Evol Microbiol 58:1709–1714PubMedCrossRefGoogle Scholar
  108. Mojica F, Higgins CF (1997) In vivo supercoiling of plasmid and chromosomal DNA in an Escherichia colihas mutant. J Bacteriol 179:3528–3533PubMedPubMedCentralCrossRefGoogle Scholar
  109. Moll I, Grill S, Gründling A, Bläsi U (2002) Effects of ribosomal proteins S1, S2 and the DeaD/CsdA DEAD-box helicase on the translation of leaderless and canonical mRNAs in Escherichia coli. Mol Microbiol 44:1387–1396PubMedCrossRefGoogle Scholar
  110. Mou Y-Z, Qiu X-X, Zhao M-L, Cui H-L, Oh D, Dyall-Smith ML (2012) Halohasta litorea gen. nov. sp. nov., and Halohasta litchfieldiae sp. nov., isolated from the Daliang aquaculture farm, China and from DeepLake, Antarctica, respectively. Extremophiles 16:895–901PubMedCrossRefGoogle Scholar
  111. Mueller U, Perl D, Schmid FX, Heinemann U (2000) Thermal stability and atomic-resolution crystal structure of the Bacillus caldolyticus cold shock protein1. J Mol Biol 297:975–988PubMedCrossRefGoogle Scholar
  112. Oshkin IY, Belova SE, Danilova OV, Miroshnikov KK, Rijpstra WIC, Sinninghe Damsté JS, Liesack W, Dedysh SN (2016) Methylovulum psychrotolerans sp. nov., a cold-adapted methanotroph from low-temperature terrestrial environments, and emended description of the genus Methylovulum. Int J Syst Evol Microbiol 66:2417–2423PubMedCrossRefGoogle Scholar
  113. Pal M, Swarnkar MK, Thakur R, Kiran S, Chhibber S, Singh AK, Gulati A (2015) Complete genome sequence of Paenibacillus sp. strain IHBB 10380 using PacBio single-molecule real-time sequencing technology. Genome Announc 3:e00356–e00315PubMedPubMedCentralGoogle Scholar
  114. Panicker G, Aislabie J, Saul D, Bej AK (2002) Cold tolerance of Pseudomonas sp. 30-3 isolated from oil-contaminated soil, Antarctica. Polar Biol 25:5–11CrossRefGoogle Scholar
  115. Pathak H, Pramanik P, Khanna M, Kumar A (2014) Climate change and water availability in Indian agriculture: impacts and adaptation Ind. J Agric Sci 84(6):671–679Google Scholar
  116. Pathak H, Jain N, Bhatia A, Kumar A, Chatterjee D (2016) Improved nitrogen management: a key to climate change adaptation and mitigation. Ind J Fert 12:151–162Google Scholar
  117. Phadtare S (2012) Escherichia coli cold-shock gene profiles in response to over-expression/deletion of CsdA, RNase R and PNPase and relevance to low-temperature RNA metabolism. Genes Cell 17:850–874CrossRefGoogle Scholar
  118. Piao A-L, Feng X-M, Nogi Y, Han L, Li Y, Lv J (2016) Sphingomonas qilianensis sp. nov., isolated from surface soil in the permafrost region of Qilian Mountains, China. Curr Microbiol 72:363–369PubMedCrossRefGoogle Scholar
  119. Pindi PK, Kishore KH, Reddy GSN, Shivaji S (2009) Description of Leifsonia kafniensis sp. nov. and Leifsonia antarctica sp. nov. Int J Syst Evol Microbiol 59:1348–1352PubMedCrossRefGoogle Scholar
  120. Polkade AV, Ramana VV, Joshi A, Pardesi L, Shouche YS (2015) Rufibacter immobilis sp. nov., isolated from a high-altitude saline lake. Int J Syst Evol Microbiol 65:1592–1597PubMedCrossRefGoogle Scholar
  121. Pradhan S, Srinivas T, Pindi PK, Kishore KH, Begum Z, Singh PK, Singh AK, Pratibha M, Yasala AK, Reddy G (2010) Bacterial biodiversity from Roopkund glacier, Himalayan mountain ranges, India. Extremophiles 14:377–395PubMedCrossRefGoogle Scholar
  122. Prasad S, Manasa P, Buddhi S, Tirunagari P, Begum Z, Rajan S, Shivaji S (2014) Diversity and bioprospective potential (cold-active enzymes) of cultivable marine bacteria from the subarctic glacial fjord, Kongsfjorden. Curr Microbiol 68:233–238PubMedCrossRefGoogle Scholar
  123. Preston CM, Wu KY, Molinski TF, DeLong EF (1996) A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. Proc Natl Acad Sci 93:6241–6246PubMedCrossRefGoogle Scholar
  124. Qin Y, Fu Y, Kang W, Li H, Gao H, Vitalievitch KS, Liu H (2017) Isolation and identification of a cold-adapted bacterium and its characterization for biocontrol and plant growth-promoting activity. Ecol Eng 105:362–369CrossRefGoogle Scholar
  125. Ramana VV, Raj PS, Tushar L, Sasikala C, Ramana CV (2013) Rhodomicrobium udaipurense sp. nov., a psychrotolerant, phototrophic alphaproteobacterium isolated from a freshwater stream. Int J Syst Evol Microbiol 63:2684–2689PubMedCrossRefGoogle Scholar
  126. Rana KL, Kour D, Yadav AN, Kumar V, Dhaliwal HS (2016) Biotechnological applications of endophytic microbes associated with barley (Hordeum vulgare L.) growing in Indian Himalayan regions. In: Proceeding of 86th annual session of NASI and symposium on “Science, technology, and entrepreneurship for human welfare in The Himalayan Region”, p 80Google Scholar
  127. Rana KL, Kour D, Verma P, Yadav AN, Kumar V, Singh DH (2017) Diversity and biotechnological applications of endophytic microbes associated with maize (Zea mays L.) growing in Indian Himalayan regions. In: Proceeding of national conference on advances in food science and technology, p 41Google Scholar
  128. Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V, Singh BP, Dhaliwal HS, Saxena AK (2018) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research. Springer, Cham, pp 105–144.  https://doi.org/10.1007/978-3-030-03589-1_6CrossRefGoogle Scholar
  129. Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN, Rastegari AA, Singh K, Saxena AK (2019) Endophytic fungi: biodiversity, ecological significance, and potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent Advancement in White Biotechnology through fungi: Volume 1: Diversity and enzymes perspectives. Springer, Cham, pp 1–62.  https://doi.org/10.1007/978-3-030-10480-1_1CrossRefGoogle Scholar
  130. Rastegari AA, Yadav AN, Gupta A (2019) Prospects of renewable bioprocessing in future energy systems. Springer, ChamCrossRefGoogle Scholar
  131. Reddy G, Aggarwal R, Matsumoto G, Shivaji S (2000) Arthrobacter flavus sp. nov., a psychrophilic bacterium isolated from a pond in McMurdo Dry Valley, Antarctica. Int J Syst Evol Microbiol 50:1553–1561PubMedCrossRefGoogle Scholar
  132. Reddy GSN, Prabagaran SR, Shivaji S (2008a) Leifsonia pindariensis sp. nov., isolated from the Pindari glacier of the Indian Himalayas, and emended description of the genus Leifsonia. Int J Syst Evol Microbiol 58:2229–2234PubMedCrossRefGoogle Scholar
  133. Reddy GSN, Uttam A, Shivaji S (2008b) Bacillus cecembensis sp. nov., isolated from the Pindari glacier of the Indian Himalayas. Int J Syst Evol Microbiol 58:2330–2335PubMedCrossRefGoogle Scholar
  134. Reddy GSN, Pradhan S, Manorama R, Shivaji S (2010) Cryobacterium roopkundense sp. nov., a psychrophilic bacterium isolated from glacial soil. Int J Syst Evol Microbiol 60:866–870PubMedCrossRefGoogle Scholar
  135. Reddy GSN, Manasa BP, Singh SK, Shivaji S (2013) Paenisporosarcina indica sp. nov., a psychrophilic bacterium from a glacier, and reclassification of Sporosarcina Antarctica Yu et al., 2008 as Paenisporosarcinaantarctica comb. nov. and amended description of the genus Paenisporosarcina. Int J Syst Evol Microbiol 63:2927–2933PubMedCrossRefGoogle Scholar
  136. Reddy GS, Sreenivas A, Shivaji S (2014) Draft genome sequence of Cryobacterium roopkundensis strain RuGl7, isolated from a soil sample in the vicinity of Roopkund Lake, Himalayas, India. Genome Announc 2:e01206–e01214Google Scholar
  137. Rodrigues DF, Ivanova N, He Z, Huebner M, Zhou J, Tiedje JM (2008) Architecture of thermal adaptation in an Exiguobacterium sibiricum strain isolated from 3 million-year-old permafrost: a genome and transcriptome approach. BMC Genom 9:547–547CrossRefGoogle Scholar
  138. Sahay H, Babu BK, Singh S, Kaushik R, Saxena AK, Arora DK (2013) Cold-active hydrolases producing bacteria from two different sub-glacial Himalayan lakes. J Basic Microbiol 53:703–714PubMedCrossRefGoogle Scholar
  139. Sahay H, Yadav AN, Singh AK, Singh S, Kaushik R, Saxena AK (2017) Hot springs of Indian Himalayas: potential sources of microbial diversity and thermostable hydrolytic enzymes. 3 Biotech 7:1–11CrossRefGoogle Scholar
  140. Salwan R, Swarnkar MK, Singh AK, Kasana RC (2014) First draft genome sequence of a member of the genus Planomicrobium, isolated from the Chandra River. India Genome Announc 2:e01259–e01213PubMedGoogle Scholar
  141. Sastre DE, Santos LP, Kagohara E, Andrade LH (2017) Draft whole-genome sequence of psychrotrophic Arthrobacter sp. strain 7749, isolated from Antarctic marine sediments with applications in enantioselective alcohol oxidation. Genome Announc 5:e01197–e01117PubMedPubMedCentralCrossRefGoogle Scholar
  142. Saul DJ, Aislabie JM, Brown CE, Harris L, Foght JM (2005) Hydrocarbon contamination changes the bacterial diversity of soil from around Scott Base, Antarctica. FEMS Microbiol Ecol 53:141–155PubMedCrossRefGoogle Scholar
  143. Saxena AK, Yadav AN, Kaushik R, Tyagi SP, Shukla L (2015) Biotechnological applications of microbes isolated from cold environments in agriculture and allied sectors. In: International conference on “Low-temperature science and biotechnological advances”. Society of Low-Temperature Biology, p 104.  https://doi.org/10.13140/RG.2.1.2853.5202
  144. Saxena AK, Yadav AN, Rajawat M, Kaushik R, Kumar R, Kumar M, Prasanna R, Shukla L (2016) Microbial diversity of extreme regions: an unseen heritage and wealth. Indian J Plant Genet Resour 29:246–248CrossRefGoogle Scholar
  145. Schumann P, Zhang D-C, França L, Albuquerque L, da Costa MS, Margesin R (2017) Psychromicrobium silvestre gen. nov., sp. nov., an actinobacterium isolated from alpine forest soils. Int J Syst Evol Microbiol 67:640–645PubMedCrossRefGoogle Scholar
  146. Selvakumar G, Kundu S, Joshi P, Nazim S, Gupta A, Mishra P, Gupta H (2008) Characterization of a cold-tolerant plant growth-promoting bacterium Pantoea dispersa 1A isolated from a sub-alpine soil in the North Western Indian Himalayas. World J Microbiol Biotechnol 24:955–960CrossRefGoogle Scholar
  147. Selvakumar G, Joshi P, Nazim S, Mishra P, Bisht J, Gupta H (2009a) Phosphate solubilization and growth promotion by Pseudomonas fragi CS11RH1 (MTCC 8984), a psychrotolerant bacterium isolated from a high altitude Himalayan rhizosphere. Biologia 64:239–245CrossRefGoogle Scholar
  148. Selvakumar G, Joshi P, Nazim S, Mishra PK, Kundu S, Gupta HS (2009b) Exiguobacterium acetylicum strain 1P (MTCC 8707) a novel bacterial antagonist from the North Western Indian Himalayas. World J Microbiol Biotechnol 25:131–137CrossRefGoogle Scholar
  149. Selvakumar G, Joshi P, Suyal P, Mishra PK, Joshi GK, Bisht JK, Bhatt JC, Gupta HS (2011) Pseudomonas lurida M2RH3 (MTCC 9245), a psychrotolerant bacterium from the Uttarakhand Himalayas, solubilize phosphate and promotes wheat seedling growth. World J Microbiol Biotechnol 27:1129–1135CrossRefGoogle Scholar
  150. Selvakumar G, Joshi P, Suyal P, Mishra PK, Joshi GK, Venugopalan R, Bisht JK, Bhatt JC, Gupta HS (2013) Rock phosphate solubilization by psychrotolerant Pseudomonas spp. and their effect on lentil growth and nutrient uptake under polyhouse conditions. Ann Microbiol 63:1353–1362CrossRefGoogle Scholar
  151. Sharma S, Kour D, Rana KL, Dhiman A, Thakur S, Thakur P, Thakur S, Thakur N, Sudheer S, Yadav N (2019) Trichoderma: biodiversity, ecological significances, and industrial applications. In: Recent advancement in white biotechnology through fungi: Volume 1: Diversity and enzymes perspectives. Springer, Cham.  https://doi.org/10.1007/978-3-030-10480-1_3CrossRefGoogle Scholar
  152. Shen L, Liu Y, Gu Z, Xu B, Wang N, Jiao N, Liu H, Zhou Y (2015) Massilia eurypsychrophila sp. nov. a facultatively psychrophilic bacteria isolated from the ice core. Int J Syst Evol Microbiol 65:2124–2129PubMedCrossRefGoogle Scholar
  153. Shivaji S, Ray M, Rao NS, Saisree L, Jagannadham M, Kumar GS, Reddy G, Bhargava PM (1992) Sphingobacterium antarcticus sp. nov., a psychrotrophic bacterium from the soils of Schirmacher Oasis, Antarctica. Int J Syst Evol Microbiol 42:102–106Google Scholar
  154. Shivaji S, Chaturvedi P, Reddy GSN, Suresh K (2005a) Pedobacter himalayensis sp. nov., from the Hamta glacier located in the Himalayan mountain ranges of India. Int J Syst Evol Microbiol 55:1083–1088PubMedCrossRefGoogle Scholar
  155. Shivaji S, Reddy GS, Suresh K, Gupta P, Chintalapati S, Schumann P, Stackebrandt E, Matsumoto GI (2005b) Psychrobacter vallis sp. nov. and Psychrobacter aquaticus sp. nov., from Antarctica. Int J Syst Evol Microbiol 55:757–762PubMedCrossRefGoogle Scholar
  156. Shivaji S, Bhadra B, Rao RS, Pradhan S (2008) Rhodotorula himalayensis sp. nov., a novel psychrophilic yeast isolated from Roopkund Lake of the Himalayan mountain ranges, India. Extremophiles 12:375–381PubMedCrossRefGoogle Scholar
  157. Shivaji S, Pratibha M, Sailaja B, Kishore KH, Singh AK, Begum Z, Anarasi U, Prabagaran S, Reddy G, Srinivas T (2011) Bacterial diversity of soil in the vicinity of Pindari glacier, Himalayan mountain ranges, India, using culturable bacteria and soil 16S rRNA gene clones. Extremophiles 15:1–22PubMedCrossRefGoogle Scholar
  158. Singh NK, Raichand R, Kaur I, Kaur C, Pareek S, Mayilraj S (2013) Exiguobacterium himgiriensis sp. nov. a novel member of the genus Exiguobacterium, isolated from the Indian Himalayas. Antonievan Leeuwenhoek 103:789–796CrossRefGoogle Scholar
  159. Singh RN, Gaba S, Yadav AN, Gaur P, Gulati S, Kaushik R, Saxena AK (2016) First, high-quality draft genome sequence of plant growth promoting and cold active enzymes producing psychrotrophic Arthrobacter agilis strain L77. Stand Genomic Sci 11:54PubMedPubMedCentralCrossRefGoogle Scholar
  160. Singh P, Kapse N, Roy U, Singh SM, Dhakephalkar PK (2017) Draft genome sequence of permafrost bacterium Nesterenkonia sp. strain PF2B19, revealing a cold adaptation strategy and diverse biotechnological potential. Genome Announc 5:e00133–e00117PubMedPubMedCentralGoogle Scholar
  161. Singla AK, Mayilraj S, Kudo T, Krishnamurthi S, Prasad GS, Vohra RM (2005) Actinoalloteichus spitiensis sp. nov., a novel actinobacterium isolated from a cold desert of the Indian Himalayas. Int J Syst Evol Microbiol 55:2561–2564PubMedCrossRefGoogle Scholar
  162. Srinivas T, Singh S, Pradhan S, Pratibha M, Kishore KH, Singh AK, Begum Z, Prabagaran S, Reddy G, Shivaji S (2011) Comparison of bacterial diversity in proglacial soil from Kafni Glacier, Himalayan Mountain ranges, India, with the bacterial diversity of other glaciers in the world. Extremophiles 15:673–690PubMedCrossRefGoogle Scholar
  163. Srinivasan R, Mageswari A, Subramanian P, Maurya VK, Sugnathi C, Ambala C, Sa T, Gothandam K (2017) Exogenous expression of ACC deaminase gene in psychrotolerant bacteria alleviates chilling stress and promotes plant growth in millets under chilling conditions. Indian J Exp Biol 55:463–468Google Scholar
  164. Srivastava AK, Kumar S, Kaushik R, Saxena AK, Padaria JC, Gupta A, Pal KK, Gujar GT, Sharma A, Singh P (2013) Diversity analysis of Bacillus and other predominant genera in extreme environments and its utilization in agriculture.  https://doi.org/10.13140/2.1.1357.3927CrossRefGoogle Scholar
  165. Subramanian P, Kim K, Krishnamoorthy R, Mageswari A, Selvakumar G, Sa T (2016) Cold stress tolerance in psychrotolerant soil bacteria and their conferred chilling resistance in tomato (Solanum lycopersicum Mill.) under low temperatures. PLoS One 11:e0161592PubMedPubMedCentralCrossRefGoogle Scholar
  166. Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh D, Abhilash P, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, research perspectives. Springer, New Delhi, pp 117–143.  https://doi.org/10.1007/978-81-322-2647-5_7CrossRefGoogle Scholar
  167. Suyal DC, Shukla A, Goel R (2014) Growth promotory potential of the cold-adapted diazotroph Pseudomonas migulae S10724 against native green gram (Vigna radiata (L.) Wilczek). 3 Biotech 4:665–668PubMedPubMedCentralCrossRefGoogle Scholar
  168. Swarnkar MK, Salwan R, Kasana RC, Singh AK (2014) Draft genome sequence of psychrotrophic Acinetobacter sp. strain MN12 (MTCC 10786), which produces a low-temperature-active and alkaline-stable peptidase. Genome Announc 2:e01167–e01114PubMedPubMedCentralCrossRefGoogle Scholar
  169. Swarnkar MK, Singh D, Kumar R (2016) First complete genome sequence of a species in the genus Microterricola, an extremophilic cold-active enzyme producing bacterial strain ERGS5: 02 isolated from Sikkim Himalaya. J Biotechnol 222:17–18PubMedCrossRefGoogle Scholar
  170. Tomer R, Bhatia A, Kumar V, Kumar A, Singh R, Singh B, Singh SD (2015) Impact of elevated ozone on growth, yield and nutritional quality of two wheat species in Northern India. Aerosol Air Qual Res 15(1):329–340CrossRefGoogle Scholar
  171. Turan M, Gulluce M, Şahin F (2012) Effects of plant-growth-promoting rhizobacteria on yield, psychrotolerant K-solubilizing bacterium from NW Indian Himalayas. Natl J Life Sci 12:105–110Google Scholar
  172. Tyagi S, Singh DK (2014) Azospirillum himalayense sp. nov., a nifH bacterium isolated from Himalayan valley soil, India. Ann Microbiol 64:259–266CrossRefGoogle Scholar
  173. Van Trappen S, Vandecandelaere I, Mergaert J, Swings J (2004) Flavobacterium degerlachei sp. nov., Flavobacterium frigoris sp. nov. and Flavobacterium micromati sp. nov., novel psychrophilic bacteria isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 54:85–92PubMedCrossRefGoogle Scholar
  174. Van Trappen S, Vandecandelaere I, Mergaert J, Swings J (2005) Flavobacterium fryxellicola sp. nov. and Flavobacterium psychrolimnae sp. nov., novel psychrophilic bacteria isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 55:769–772PubMedCrossRefGoogle Scholar
  175. Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2014) Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in the central zone of India. Int J Curr Microbiol App Sci 3:432–447Google Scholar
  176. Verma P, Yadav A, Khanna K, Kumar S, Saxena A, Suman A (2015a) Alleviation of cold stress in wheat seedlings Bacillus amyloliquefaciensIARI-HHS2-30 an endophytic psychrotolerant K-solubilizing bacterium from NW Indian Himalayas. Natl J Life Sci 12:105–110Google Scholar
  177. Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, Suman A (2015b) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65:1885–1899CrossRefGoogle Scholar
  178. Verma P, Yadav AN, Shukla L, Saxena AK, Suman A (2015c) Alleviation of cold stress in wheat seedlings by Bacillus amyloliquefaciens IARI-HHS2-30, an endophytic psychrotolerant K-solubilizing bacterium from NW Indian Himalayas. Natl J Life Sci 12:105–110Google Scholar
  179. Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58PubMedCrossRefGoogle Scholar
  180. Vollmers J, Voget S, Dietrich S, Gollnow K, Smits M, Meyer K, Brinkhoff T, Simon M, Daniel R (2013) Poles apart: the Arctic and Antarctic octadecabacter strain share high genome plasticity and a new type of Xanthorhodopsin. PLoS One 8:e63422PubMedPubMedCentralCrossRefGoogle Scholar
  181. Vyas P, Joshi R, Sharma K, Rahi P, Gulati A, Gulati A (2010) Cold-adapted and rhizosphere-competent strain of Rahnella sp. with broad-spectrum plant growth-promotion potential. J Microbiol Biotechnol 20:1724–1734PubMedGoogle Scholar
  182. Wang F, Gai Y, Chen M, Xiao X (2009) Arthrobacter psychrochitiniphilus sp. nov., a psychrotrophic bacterium isolated from Antarctica. Int J Syst Evol Microbiol 59:2759–2762.  https://doi.org/10.1099/ijs.0.008912-0CrossRefPubMedGoogle Scholar
  183. Wang C, Wang C, Gao Y-L, Wang Y-P, Guo J-H (2016) A consortium of three plant growth-promoting rhizobacterium strains acclimates Lycopersicon esculentum and confers a better tolerance to chilling stress. J Plant Growth Regul 35:54–64CrossRefGoogle Scholar
  184. Welker C, Böhm G, Schurig H, Jaenicke R (1999) Cloning, overexpression, purification, and physicochemical characterization of a cold shock protein homolog from the hyperthermophilic bacterium Thermotoga maritima. Protein Sci 8:394–403PubMedPubMedCentralCrossRefGoogle Scholar
  185. Willimsky G, Bang H, Fischer G, Marahiel M (1992) Characterization of cspB, a Bacillus subtilis inducible cold shock gene affecting cell viability at low temperatures. J Bacteriol 174:6326–6335PubMedPubMedCentralCrossRefGoogle Scholar
  186. Xu M, Sheng J, Chen L, Men Y, Gan L, Guo S, Shen L (2014) Bacterial community compositions of tomato (Lycopersicum esculentum Mill.) seeds and plant growth promoting the activity of ACC deaminase producing Bacillus subtilis (HYT-12-1) on tomato seedlings. World J Microbiol Biotechnol 30:835–845CrossRefGoogle Scholar
  187. Yadav AN (2009) Studies of the methylotrophic community from the phyllosphere and rhizosphere of tropical crop plants. M.Sc. thesis, Bundelkhand University, p 66.  https://doi.org/10.13140/2.1.5099.0888
  188. Yadav AN (2015) Bacterial diversity of cold deserts and mining of genes for low-temperature tolerance. Ph.D. thesis, Indian Agricultural Research Institute, New Delhi and Birla Institute of Technology, Ranchi, p 234.  https://doi.org/10.13140/RG.2.1.2948.1283/2
  189. Yadav AN (2017) Agriculturally important microbiomes: biodiversity and multifarious PGP attributes for amelioration of diverse abiotic stresses in crops for sustainable agriculture. Biomed J Sci Tech Res 1:1–4Google Scholar
  190. Yadav AN, Saxena AK (2018) Biodiversity and biotechnological applications of halophilic microbes for sustainable agriculture. J Appl Biol Biotechnol 6:1–8Google Scholar
  191. Yadav AN, Sachan SG, Verma P, Saxena AK (2015a) Prospecting cold deserts of North-Western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119:683–693PubMedCrossRefGoogle Scholar
  192. Yadav AN, Sachan SG, Verma P, Tyagi SP, Kaushik R, Saxena AK (2015b) Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol 31:95–108PubMedCrossRefGoogle Scholar
  193. Yadav AN, Verma P, Kumar M, Pal KK, Dey R, Gupta A, Padaria JC, Gujar GT, Kumar S, Suman A, Prasanna R, Saxena AK (2015c) Diversity and phylogenetic profiling of niche-specific Bacilli from extreme environments of India. Ann Microbiol 65:611–629CrossRefGoogle Scholar
  194. Yadav AN, Verma P, Sachan S, Kaushik R, Saxena A (2015d) Microbes mediated alleviation of cold stress for growth and yield of wheat (Triticum aestivum L.). In: Proceeding of international conference on “Low-temperature science and biotechnological advances”, p 179.  https://doi.org/10.13140/RG.2.1.2374.2883
  195. Yadav AN, Sachan SG, Verma P, Saxena AK (2016a) Bioprospecting of plant growth promoting psychrotrophic Bacilli from cold desert of North Western Indian Himalayas. Indian J Exp Biol 54:142–150PubMedGoogle Scholar
  196. Yadav AN, Verma P, Sachan S, Kaushik R, Saxena A (2016b) Microbiome of Indian Himalayan regions: molecular diversity, phylogenetic profiling, and biotechnological applications. In: Proceeding of 86th annual session of NASI and symposium on “Science, technology, and entrepreneurship for human welfare in The Himalayan Region”, p 58Google Scholar
  197. Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2017a) Beneficial microbiomes: Biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:1–13CrossRefGoogle Scholar
  198. Yadav AN, Verma P, Kumar V, Sachan SG, Saxena AK (2017b) Extreme cold environments: A suitable niche for selection of novel psychrotrophic microbes for biotechnological applications. Adv Biotechnol Microbiol 2:1–4CrossRefGoogle Scholar
  199. Yadav AN, Verma P, Sachan SG, Saxena AK (2017c) Biodiversity and biotechnological applications of psychrotrophic microbes isolated from Indian Himalayan regions. EC Microbiol ECO 01:48–54Google Scholar
  200. Yadav AN, Verma P, Singh B, Chauhan VS, Suman A, Saxena AK (2017d) Plant growth promoting bacteria: biodiversity and multifunctional attributes for sustainable agriculture. Adv Biotechnol Microbiol 5:1–16Google Scholar
  201. Yadav AN, Kumar V, Prasad R, Saxena AK, Dhaliwal HS (2018a) Microbiome in crops: diversity, distribution and potential role in crops improvements. In: Prasad R, Gill SS, Tuteja N (eds) Crop improvement through microbial biotechnology. Elsevier, Enfield, pp 305–332CrossRefGoogle Scholar
  202. Yadav AN, Verma P, Kumar S, Kumar V, Kumar M, Singh BP, Saxena AK, Dhaliwal HS (2018b) Actinobacteria from rhizosphere: molecular diversity, distributions, and potential biotechnological applications. In: Singh B, Gupta V, Passari A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, New York, pp 13–41.  https://doi.org/10.1016/B978-0-444-63994-3.00002-3CrossRefGoogle Scholar
  203. Yadav AN, Mishra S, Singh S, Gupta A (2019a) Recent Advancement in White Biotechnology through fungi: Volume 1: Diversity and enzymes perspectives. Springer, ChamCrossRefGoogle Scholar
  204. Yadav AN, Yadav N, Sachan SG, Saxena AK (2019b) Biodiversity of psychrotrophic microbes and their biotechnological applications. J Appl Biol Biotechnol (in press)Google Scholar
  205. Yakimov MM, Giuliano L, Gentile G, Crisafi E, Chernikova TN, Abraham W-R, Lünsdorf H, Timmis KN, Golyshin PN (2003) Oleispira Antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. Int J Syst Evol Microbiol 53:779–785PubMedCrossRefGoogle Scholar
  206. Yamanaka K, Inouye M (2001) Selective mRNA degradation by polynucleotide phosphorylase in cold shock adaptation in Escherichia coli. J Bacteriol 183:2808–2816PubMedPubMedCentralCrossRefGoogle Scholar
  207. Yamanaka K, Fang L, Inouye M (1998) The CspA family in Escherichia coli: multiple gene duplication for stress adaptation. Mol Microbiol 27:247–255PubMedCrossRefGoogle Scholar
  208. Zachariah S, Kumari P, Das SK (2017) Psychrobacter pocilloporae sp. nov., isolated from a coral, Pocillopora eydouxi. Int J Syst Evol Microbiol 66:5091–5098Google Scholar
  209. Zhang D-C, Wang H-X, Liu H-C, Dong X-Z, Zhou P-J (2006) Flavobacterium glaciei sp. nov., a novel psychrophilic bacterium isolated from the China No. 1 glacier. Int J Syst Evol Microbiol 56:2921–2925PubMedCrossRefGoogle Scholar
  210. Zhang D-C, Wang H-X, Cui H-L, Yang Y, Liu H-C, Dong X-Z, Zhou P-J (2007) Cryobacterium psychrotolerans sp. nov., a novel psychrotolerant bacterium isolated from the China No. 1 glacier. Int J Syst Evol Microbiol 57:866–869PubMedCrossRefGoogle Scholar
  211. Zhang D-C, Li H-R, Xin Y-H, Chi Z-M, Zhou P-J, Yu Y (2008) Marinobacter psychrophilus sp. nov., a psychrophilic bacterium isolated from the Arctic. Int J Syst Evol Microbiol 58:1463–1466PubMedCrossRefGoogle Scholar
  212. Zhang D-C, Liu H-C, Xin Y-H, Zhou Y-G, Schinner F, Margesin R (2010) Luteimonas terricola sp. nov., a psychrophilic bacterium isolated from soil. Int J Syst Evol Microbiol 60:1581–1584.  https://doi.org/10.1099/ijs.0.015537-0CrossRefPubMedGoogle Scholar
  213. Zhang D-C, Busse H-J, Liu H-C, Zhou Y-G, Schinner F, Margesin R (2011) Sphingomonas glacialis sp. nov., a psychrophilic bacterium isolated from alpine glacier cryoconite. Int J Syst Evol Microbiol 61:587–591PubMedCrossRefGoogle Scholar
  214. Zhang C, Guo W, Wang Y, Chen X (2018) Draft genome sequences of two psychrotolerant strains, Colwellia polaris MCCC 1C00015T and Colwellia chukchiensis CGMCC 1.9127 T. Genome Announc 6:e01575–e01517PubMedPubMedCentralGoogle Scholar
  215. Zhou Z, Jiang F, Wang S, Peng F, Dai J, Li W, Fang C (2012) Pedobacter arcticus sp. nov., a facultative psychrophile isolated from Arctic soil, and emended descriptions of the genus Pedobacter, Pedobacter heparinus, Pedobacter daechungensis, Pedobacter terricola, Pedobacter glucosidilyticus and Pedobacter lentus. Int J Syst Evol Microbiol 62:1963–1969CrossRefPubMedGoogle Scholar
  216. Zhou M-Y, Zhang Y-J, Zhang X-Y, Yang X-D, He H-L, Ning D, Du Z (2018) Flavobacterium phocarum sp. nov., isolated from soils of a seal habitat in Antarctica. Int J Syst Evol Microbiol 68:536–541.  https://doi.org/10.1099/ijsem.0.002535CrossRefPubMedGoogle Scholar
  217. Zhu F, Wang S, Zhou P (2003) Flavobacterium xinjiangense sp. nov. and Flavobacterium omnivorum sp. nov., novel psychrophiles from the China No. 1 glacier. Int J Syst Evol Microbiol 53:853–857.  https://doi.org/10.1099/ijs.0.02310-0CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ajar Nath Yadav
    • 1
    Email author
  • Divjot Kour
    • 1
  • Sushma Sharma
    • 2
  • Shashwati Ghosh Sachan
    • 3
  • Bhanumati Singh
    • 4
  • Vinay Singh Chauhan
    • 4
  • R. Z. Sayyed
    • 5
  • Rajeev Kaushik
    • 6
  • Anil Kumar Saxena
    • 7
  1. 1.Microbial Biotechnology Laboratory, Department of Biotechnology, Akal College of AgricultureEternal UniversityBaru SahibIndia
  2. 2.Department of Agriculture, Akal College of AgricultureEternal UniversityBaru SahibIndia
  3. 3.Department of Bio-EngineeringBirla Institute of TechnologyRanchiIndia
  4. 4.Department of Biotechnology, Institute of Life SciencesBundelkhand UniversityJhansiIndia
  5. 5.Department of MicrobiologyPSGVP Mandal’s ASC CollegeShahadaIndia
  6. 6.Division of MicrobiologyIndian Agricultural Research InstituteNew DelhiIndia
  7. 7.ICAR-National Bureau of Agriculturally Important MicroorganismsMauIndia

Personalised recommendations