Skip to main content

Color Correction Method for Digital Camera Based on Variable-Exponent Polynomial Regression

  • Conference paper
  • First Online:
Communications, Signal Processing, and Systems (CSPS 2018)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 516))

Abstract

Subject to the response uniformity of photoelectric sensors, the captured raw images always have serious chroma distortions. How to determine the mapping matrix between RGB and XYZ color spaces is important for the color distortion correction. However, the commonly used algorithms cannot give consideration to the precision and the adaptability. A more reasonable mapping algorithm based on variable-exponent polynomial regression is proposed to evaluate the mapping matrix coefficients. Variable-exponent regularization with the Lρ-norm (1 < ρ < 2) combines the features of lasso regression and ridge regression methods, owning both the sparsity and smoothing properties. The optimal solution for the variable-exponent regularization is given using lagged fix-point iteration method. Data from the standard color correction experiments are used to test the variable-exponent, lasso, ridge, and least-squares regression algorithms with different polynomial regression models. The results demonstrate that the proposed algorithm has the best performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang XS, Gao SB, Li RX, et al. A retinal mechanism inspired color constancy model. IEEE Trans Image Process. 2016;25(3):1219–32.

    Article  MathSciNet  Google Scholar 

  2. Wang Y, Xu H. Colorimetric characterization for scanner based on polynomial regression models. Acta Opt Sin. (in Chinese). 2007; 6:035.

    Google Scholar 

  3. Kim SJ, Koh K, Lustig M, Boyd S. An interior-point method for large-scale-regularized least squares. IEEE J Sel Top Sig Process. 2007;1(4):606–17.

    Article  Google Scholar 

  4. Zhang J, Yang Y, Zhang J. A MEC-BP-Adaboost neural network-based color correction algorithm for color image acquisition equipment. Optik. 2016;127(2):776–80.

    Article  Google Scholar 

  5. Wang X, Zhang D. An optimized tongue image color correction scheme. IEEE Trans Inf Technol Biomed. 2010;14(6):1355–64.

    Article  Google Scholar 

  6. Zhuo L, Zhang J, Dong P, et al. An SA–GA–BP neural network-based color correction algorithm for TCM tongue images. Neurocomputing. 2014;134:111–6.

    Article  Google Scholar 

  7. Finlayson GD, Drew MS. Constrained least-squares regression in color spaces. J Electron Imaging. 1997;6(4):484–93.

    Article  Google Scholar 

  8. Finlayson GD, Mackiewicz M, Hurlbert A. Color correction using root-polynomial regression. IEEE Trans Image Process. 2015;24(5):1460–70.

    Article  MathSciNet  Google Scholar 

  9. Xu Z, Zhang H, Wang Y, Chang X, Liang Y. L1/2 regularization. Sci China Inform Sci. 2010;53(6):1159–69.

    Article  Google Scholar 

  10. Li F, Justin J, Yeung S. Regularization (L2/L1/Maxnorm/Dropout), http://cs231n.github.io/neural-networks-2/#reg 2017.

  11. Tibshirani R. Regression shrinkage and selection via the lasso: a retrospective. J R Stat Soc. 2011;73(3):273–82.

    Article  MathSciNet  Google Scholar 

  12. Galligani E. Lagged diffusivity fixed point iteration for solving steady-state reaction diffusion problems. Int J Comput Math. 2012;89(8):998–1016.

    Article  MathSciNet  Google Scholar 

  13. Dou Z, Gao K, Zhang B, Yu X, Han L, Zhu Z. Realistic image rendition using a variable exponent functional model for retinex. Sensors. 2016;16(6):832.

    Article  Google Scholar 

  14. International Organization for Standardization. Graphic technology and photography-color characterization of digital still cameras (DSCs). ISO17321-1.2012.

    Google Scholar 

  15. Schmittmann O, Schulze LP. A true-color sensor and suitable evaluation algorithm for plant recognition. Sensors. 2017;17(8):1823.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, Y., Gao, K., Guo, Y., Dou, Z., Cheng, H., Chen, Z. (2020). Color Correction Method for Digital Camera Based on Variable-Exponent Polynomial Regression. In: Liang, Q., Liu, X., Na, Z., Wang, W., Mu, J., Zhang, B. (eds) Communications, Signal Processing, and Systems. CSPS 2018. Lecture Notes in Electrical Engineering, vol 516. Springer, Singapore. https://doi.org/10.1007/978-981-13-6504-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6504-1_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6503-4

  • Online ISBN: 978-981-13-6504-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics