Mycorrhiza Based Approaches for Soil Remediation and Abiotic Stress Management

  • Ratul Moni Ram
  • Prakash Jyoti Kalita
  • Rahul Singh Rajput
  • H. B. Singh


Anthropogenic activities have resulted into degradation of land and water bodies. Excessive mining activities lead to the contamination of nearby areas with heavy metals viz. Pb, As, Cd, Zn etc. All these elements are highly toxic to the plants when they are exposed at a higher concentration. Apart from these heavy metals even the excessive use of fertilizers, herbicides and unmetabolized antibiotics from livestock farming can also leaves considerable amount of toxic residues in the soil which hinder the overall growth of plants. In addition to this, abiotic stresses viz. drought stress, salt stress, osmotic stress and ozone stress etc. also limits the crop production. The level of their impact on the different crops across the globe varies depending upon the geographical location and unscrupulous human activities but altogether it results into a huge annual loss to the global crop productivity. Several approaches have been designed to figure out the stress right from artificial to biological. The biological approach includes the use of living organism for stress alleviation among which Arbuscular Mycorrhizal fungi (AMF) emerged as a potent tool for stress alleviation and phytoremediation. The term “phytoremediation” has got more and more attention over the past decade. Due to the multifaceted applications of AMF, it has been widely used as a xenobiotic tool.


AMF Phytoremediation Abiotic stress Xenobiotics 



Rahul Singh Rajput is grateful to UGC for providing RET Fellowship as a source of financial assistance. HB Singh is grateful to DST for providing funding under grant (BT/PR5990/AGR/5/587/2012).


  1. Abdel-Latef, A., & Chaoxing, H. (2014). Does the inoculation with Glomus mosseae improve salt tolerance in pepper plants? Journal of Plant Growth Regulation, 33(3), 644–653.CrossRefGoogle Scholar
  2. Adriaensen, K., Vralstad, T., Noben, J. P., Vangronsveld, J., & Colpaert, J. V. (2005). Copper-adapted Suillus luteus, a symbiotic solution for pines colonizing Cu mine spoils. Applied and Environmental Microbiology, 71(11), 7279–7284.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Akbarimoghaddam, H., Galavi, M., Ghanbari, A., & Panjehkeh, N. (2011). Salinity effects on seed germination and seedling growth of bread wheat cultivars. Trakia Journal of Sciences, 9(1), 43–50.Google Scholar
  4. Al-Garni, S. M. S. (2006). Increasing NaCl – Salt tolerance of a halophytic plant Phragmites australis by mycorrhizal symbiosis. American-Eurasian Journal of Agricultural & Environmental Sciences, 1, 119–126.Google Scholar
  5. Ali, N., Masood, S., Mukhtar, T., Kamran, M. A., Rafique, M., Munis, M. F. H., & Chaudhary, H. J. (2015). Differential effects of cadmium and chromium on growth, photosynthetic activity, and metal uptake of Linum usitatissimum in association with Glomus intraradices. Environmental Monitoring and Assessment, 187, 1–11.CrossRefGoogle Scholar
  6. Al-Karaki, G. N. (2000). Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza, 10, 51–54.CrossRefGoogle Scholar
  7. Al-Karaki, G. N. (2006). Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Scientia Horticulturae, 109, 1–7.CrossRefGoogle Scholar
  8. Al-Karaki, G. N. (2013). The role of mycorrhiza in the reclamation of degraded lands in arid environments. In S. A. Shahid, F. K. Taha, & M. A. Abdelfattah (Eds.), Developments in soil classification, land use planning and policy implications: Innovative thinking of soil inventory for land use planning and management of land resources (pp. 823–836). Dordrecht: Springer.CrossRefGoogle Scholar
  9. Al-Karaki, G. N., & Hammad, R. (2001). Mycorrhizal in fl uence on fruit yield and mineral contents of tomato grown under salt stress. Journal of Plant Nutrition, 24, 1311–1323.CrossRefGoogle Scholar
  10. Al-Karaki, G. N., McMichael, B., & Zak, J. (2004). Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza, 14, 263–269.PubMedCrossRefGoogle Scholar
  11. Al-Karaki, G. N., Othman, Y., & Al-Ajmi, A. (2007). Effects of mycorrhizal fungi inoculation on landscape turf establishment under Arabian Gulf region conditions. Arab Gulf Journal of Scientific Research, 25(3), 147–152.Google Scholar
  12. Allen EB (1984) The role of mycorrhiza in mined land diversity. In: Proceedings of the third biennial symposium surface mine reclamation on the great plains, Montana, 19–21 March 1984, pp 273–295.Google Scholar
  13. Allen, M. F. (2007). Mycorrhizal fungi: Highways for water and nutrients in arid soils. Vadose Zone Journal, 6, 291–297.CrossRefGoogle Scholar
  14. Amir, H., Lagrange, A., Hassaine, N., & Cavaloc, Y. (2013). Arbuscular mycorrhizal fungi from New Caledonian ultramafic soils improve tolerance to nickel of endemic plant species. Mycorrhiza, 23, 585–595.PubMedCrossRefGoogle Scholar
  15. Andrade, S. A. L., Gratao, P. L., Schiavinato, M. A., Silveira, A. P. D., Azevedo, R. A., & Mazzafera, P. (2009). Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations. Chemosphere, 75, 1363–1370.PubMedCrossRefGoogle Scholar
  16. Anjum, S. A., Wang, L. C., Farooq, M., Hussain, M., Xue, L. L., & Zou, C. M. (2011). Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. Journal of Agronomy and Crop Science, 197, 177–185.CrossRefGoogle Scholar
  17. Aroca, R., Porcel, R., & Ruiz-Lozano, M. J. (2012). Regulation of root water uptake under abiotic stress conditions. Journal of Experimental Botany, 63, 43–57.PubMedCrossRefGoogle Scholar
  18. Ashmore, M. R. (2005). Assessing the future global impacts of ozone on vegetation. Plant, Cell & Environment, 28, 949–964.CrossRefGoogle Scholar
  19. Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59, 206–216.CrossRefGoogle Scholar
  20. Auge, R. M. (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11, 3–42.CrossRefGoogle Scholar
  21. Auge, R. M., Schekel, K. A., & Wample, R. L. (1987). Leaf water and carbohydrate status of VA mycorrhizal rose exposed to drought stress. Plant and Soil, 99, 291–302.CrossRefGoogle Scholar
  22. Azcón, R., Perálvarez Mdel, C., Roldán, A., & Barea, J. M. (2010). Arbuscular mycorrhizal fungi, Bacillus cereus, and Candida parapsilosis from a multi contaminated soil alleviate metal toxicity in plants. Microbial Ecology, 59(4), 668–677.PubMedCrossRefGoogle Scholar
  23. Baldrian, P., Wiesche, C., Gabriel, J., Nerud, F., & Zadrazi, F. (2000). Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil. Journal of Applied & Environmental Microbiology, 66, 2471–2478.CrossRefGoogle Scholar
  24. Ban, Y., Xu, Z., Zhang, H., Chen, H., & Tang, M. (2015). Soil chemistry properties, translocation of heavy metals, and mycorrhizal fungi associated with six plant species growing on lead-zinc mine tailings. Annales de Microbiologie, 65, 503–515.CrossRefGoogle Scholar
  25. Barea, J. M., Pozo, M. J., Azcon, R., & Azcon-Aguilar, C. (2005). Microbial cooperation in the rhizosphere. Journal of Experimental Botany, 56, 1761–1778.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Bartikova, H., Podlipna, R., & Skalova, L. (2016). Veterinary drugs in the environment and their toxicity to plants. Chemosphere, 144, 2290–2301.PubMedCrossRefGoogle Scholar
  27. Bárzana, G., Aroca, R., & Ruiz-Lozano, J. M. (2015). Localized and nonlocalized effects of arbuscular mycorrhizal symbiosis on accumulation of osmolytes and aquaporins and on antioxidant systems in maize plants subjected to total or partial root drying. Plant, Cell & Environment, 38, 1613–1627.CrossRefGoogle Scholar
  28. Bearden, B. N., & Petersen, L. (2000). Influence of arbuscular mycorrhizal fungi on soil structure and aggregate stability of a vertisol. Plant and Soil, 218, 173–183.CrossRefGoogle Scholar
  29. Bernal, M., Ramiro, M. V., Cases, R., Picorel, R., & Yruela, I. (2006). Excess copper effect on growth, chloroplast ultrastructure, oxygen-evolution activity and chlorophyll fluorescence in Glycine max cell suspensions. Physiologia Plantarum, 127, 312–325.CrossRefGoogle Scholar
  30. Beste, C. E. (Ed.). (1983). Herbicide handbook of the weed science Society of America (5th ed., p. 515). Champaign: Weed Science Society of America.Google Scholar
  31. Bhattacharya, A., & Bhattacharya, S. (2007). Induction of stress by arsenic in Clarius batrachus: Involvement of peroxisomes. Ecotoxicology and Environmental Safety, 66(2), 178–187.PubMedCrossRefGoogle Scholar
  32. Binet, P., Portal, J. M., & Leyval, C. (2000). Dissipation of 3-6-ring polycyclic aromatic hydrocarbons in the rhizosphere of rye grass. Soil Biology and Biochemistry, 32, 2011–2017.CrossRefGoogle Scholar
  33. Birhane, E., Sterck, F. J., Fetene, M., Bongers, F., & Kuyper, T. W. (2012). Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia, 169, 895–904.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Bohnert, H. J., Nelson, D. E., & Jensen, R. G. (1995). Adaptations to environmental stress. Plant Cell, 7, 1099–1111.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Braun-Lullemann, A., Huttermann, A., & Majcherczyk, A. (1999). Screening of ectomycorrhizal fungi for degradation of polycyclic aromatic hydrocarbons. Applied Microbiology and Biotechnology, 53, 127–132.CrossRefGoogle Scholar
  36. Brewer, P. F., & Heagle, A. S. (1983). Interactions between Glomus geosporum and exposure of soybeans to ozone or simulated acid rain in the field. Phytopathology, 73, 1035–1040.CrossRefGoogle Scholar
  37. Brundrett, M. C. (2009). Mycorrhizal associations and other means of nutrition of vascular plants: Understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil, 320(1), 37–77.CrossRefGoogle Scholar
  38. Bundschuh, J., Bhattacharya, P., Nath, B., Naidu, R., Jack, N. G., Guilherme, L. R. G., Ma, L. Q., Kim, K. W., & Jean, J. S. (2013). Arsenic ecotoxicology: The interface between geosphere, hydrosphere and biosphere. Journal of Hazardous Materials, 262, 883–886.PubMedCrossRefGoogle Scholar
  39. Burkhead, J. L., Gogolin Reynolds, K. A., Abdel-Ghany, S. E., Cohu, C. M., & Pilon, M. (2009). Copper homeostasis. The New Phytologist, 182, 799–816.PubMedCrossRefGoogle Scholar
  40. Cabral, L., Soares, C. R. F. S., Giachini, A. J., & Siqueira, J. O. (2015). Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: Mechanisms and major benefits of their applications. World Journal of Microbiology and Biotechnology, 31(11), 1655–1664.PubMedCrossRefGoogle Scholar
  41. Calonne-Salmon, M., Plouznikoff, K., & Declerck, S. (2018). The arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 41833 increases the phosphorus uptake and biomass of Medicago truncatula, a benzo[a]pyrene-tolerant plant species. Mycorrhiza, 18, 861–869.Google Scholar
  42. Calvo-Polanco, M., Sánchez-Romera, B., Aroca, R., Asins, M. J., Declerck, S., Dodd, I. C., Martínez-Andújar, C., Albacete, A., & Ruiz-Lozano, J. M. (2016). Exploring the use of recombinant inbred lines in combination with beneficial microbial inoculants (AM fungus and PGPR) to improve drought stress tolerance in tomato. Environmental and Experimental Botany, 131, 47–57.CrossRefGoogle Scholar
  43. Cantrell, I. C., & Linderman, R. G. (2001). Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant and Soil, 233, 269–281.CrossRefGoogle Scholar
  44. Cao, J., Ji, D. G., & Wang, C. (2015). Interaction between earthworms and arbuscular mycorrhizal fungi on the degradation of oxytetracycline in soils. Soil Biology and Biochemistry, 90, 283–292.CrossRefGoogle Scholar
  45. Cao, J., Wang, C., & Ji, D. (2016). Improvement of the soil nitrogen content and maize growth by earthworms and arbuscular mycorrhizal fungi in soils polluted by oxytetracycline. Science of the Total Environment, 571, 926–934.PubMedCrossRefGoogle Scholar
  46. Cattivelli, L., Rizza, F., Badeck, F. W., Mazzucotelli, E., & Mastrangelo, A. M. (2008). Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Research, 105, 1–14.CrossRefGoogle Scholar
  47. Chaudhry, G. R., & Chapalamadugu, S. (1991). Biodegradation of halogenated organic compounds. Microbiological Reviews, 55, 59–79.PubMedPubMedCentralGoogle Scholar
  48. Chaves, M. M., Pereira, J. S., Maroco, J., Rodrigues, M. L., Ricardo, C. P. P., Osorio, M. L., Carvalho, I., Faria, T., & Pinheiro, C. (2002). How plants cope with water stress in the field. Annals of Botany, 89, 907–916.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Chen, B., Xiao, X., Zhu, Y., Smith, F. A., Xie, Z. M., & Smith, S. E. (2007a). The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. Science of the Total Environment, 379, 226–234.PubMedCrossRefGoogle Scholar
  50. Chen, B. D., Zhu, Y. G., Duan, J., Xiao, X. Y., & Smith, S. E. (2007b). Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings. Environmental Pollution, 147, 374–380.PubMedCrossRefGoogle Scholar
  51. Cicatelli, A., Lingua, G., Todeschini, V., Biondi, S., Torrigiani, P., & Castiglione, S. (2010). Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression. Annals of Botany, 106, 791–802.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Cornic, G. (2000). Drought stress inhibits photosynthesis by decreasing stomatal aperture – Not by affecting ATP synthesis. Trends in Plant Science, 5, 187–188.CrossRefGoogle Scholar
  53. Cozzolino, V., De Martino, A., Nebbioso, A., Di Meo, V., Salluzzo, A., & Piccolo, A. (2016). Plant tolerance to mercury in a contaminated soil is enhanced by the combined effects of humic matter addition and inoculation with arbuscular mycorrhizal fungi. Environmental Science and Pollution Research International, 23(11), 11312–11322.PubMedCrossRefGoogle Scholar
  54. Danneberg, G., Latus, C., Zimmer, W., Hundeshagen, B., Schneider-Poetsch, H. J., & Bothe, H. (1992). Influence of vesicular-arbuscular mycorrhiza on phytohormone balances in maize (Zea mays L.). Journal of Plant Physiology, 141, 33–39.CrossRefGoogle Scholar
  55. Dell’Amico, J., Torrecillas, A., Rodriguez, P., Morte, A., & Sanchez-Blanco, M. (2002). Responses of tomato plants associated with the arbuscular mycorrhizal fungus Glomus clarum during drought and recovery. The Journal of Agricultural Science, 138, 387–393.CrossRefGoogle Scholar
  56. Deram, A., Languereau, F., & Haluwyn, C. (2011). Mycorrhizal and endophytic fungal colonization in Arrhenatherum elatius L. roots according to the soil contamination in heavy metals. Soil and Sediment Contamination, 20, 114–127.CrossRefGoogle Scholar
  57. Doherty, J. H., Ji, B., & Casper, B. B. (2008). Testing nickel tolerance of Sorghastrum nutans and its associated soil microbial community from serpentine and prairie soils. Environmental Pollution, 151(3), 593–598.PubMedCrossRefGoogle Scholar
  58. Dong, Y., Zhu, Y. G., Smith, F. A., Wang, Y., & Chen, B. (2008). Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil. Environmental Pollution, 155, 174–181.PubMedCrossRefGoogle Scholar
  59. Donnelly, P. K., Entry, J. A., & Crawford, D. L. (1993). Degradation of atrazine and 2,4-dichlorophenoxyacetic acid by mycorrhizal fungi at three nitrogen concentrations in vitro. Applied and Environmental Microbiology, 59, 2642–2647.PubMedPubMedCentralGoogle Scholar
  60. Donnelly, P. K., & Fletcher, J. S. (1994). Potential use of mycorrhizal fungi as bioremediation agents. In T. A. Anderson & J. R. Coats (Eds.), Bioremediation through rhizosphere technology (pp. 93–99). Washington: American Chemical Society.CrossRefGoogle Scholar
  61. Douchiche, O., Chaïbi, W., & Morvan, C. (2012). Cadmium tolerance and accumulation characteristics of mature flax, cv. Hermes: Contribution of the basal stem compared to the root. Journal of Hazardous Materials, 235, 101–107.PubMedCrossRefGoogle Scholar
  62. Dubey, R. S. (2011). Metal toxicity, oxidative stress and antioxidative defense system in plants. In S. D. Gupta (Ed.), Reactive oxygen species andantioxidants in higher plants (pp. 177–203). Boca Raton: CRC Press.Google Scholar
  63. Duckmanton, L., & Widden, P. (1994). Effect of ozone on the development of vesicular arbuscular mycorrhiza in sugar maple saplings. Mycologia, 86, 181–186.CrossRefGoogle Scholar
  64. Feng, Z. Z., Kobayashi, K., & Ainsworth, E. A. (2008). Impact of elevated ozone concentration on growth, physiology and yield of wheat (Triticum aestivum L.): A meta analysis. Global Change Biology, 14, 2696–2708.Google Scholar
  65. Fischlin, A., Midgley, G. F., Price, J. T., Leemans, R., Gopal, B., Turley, C., Rounsevell, M. D. A., Dube, O. P., Tarazona, J., & Velichko, A. A. (2007). Ecosystems, their properties, goods and services. In M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. Van der Linden, & C. E. Hanson (Eds.), Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel of climate change (IPCC) (pp. 211–272). Cambridge: Cambridge University Press.Google Scholar
  66. Flexas, J., Bota, J., Loreto, F., Cornic, G., & Sharkey, T. D. (2004). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology, 6, 1–11.CrossRefGoogle Scholar
  67. Gao, Y., Cheng, Z., Ling, W., & Huang, J. (2010a). Arbuscular mycorrhizal fungal hyphae contribute to the uptake of polycyclic aromatic hydrocarbons by plant roots. Bioresource Technology, 101, 6895–6901.PubMedCrossRefGoogle Scholar
  68. Gao, Y. Z., Li, Q. L., Ling, W. T., & Zhu, X. Z. (2010b). Arbuscular mycorrhizal phytoremediation of soils contaminated with phenanthrene and pyrene. Journal of Hazardous Materials, 185(2–3), 703–709.PubMedGoogle Scholar
  69. Gianinazzi, S., Gollotte, A., Binet, M. N., van Tuinen, D., Redecker, D., & Wipf, D. (2010). Agroecology: The key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza, 20(8), 519–530.PubMedCrossRefGoogle Scholar
  70. Glick, B. R., & Bashan, Y. (1997). Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnology Advances, 15, 353–378.PubMedCrossRefGoogle Scholar
  71. Gohre, V., & Paszkowski, U. (2006). Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta, 223, 1115–1123.PubMedCrossRefGoogle Scholar
  72. Gomes, M. P., Carvalho, M., Carvalho, G. S., Marques, T. C. L. L. S. M., Garcia, Q. S., Guilherme, L. R. G., & Soares, A. M. (2013). Phosphorus improves arsenic phytoremediation by Anadenanthera peregrina by alleviating induced oxidative stress. International Journal of Phytoremediation, 15(7), 633–646.PubMedCrossRefGoogle Scholar
  73. Gonzalez-Chavez, M. C., Carrillo-Gonzalez, R., Wright, S. F., & Nichols, K. A. (2004). The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environmental Pollution, 130, 317–323.PubMedCrossRefGoogle Scholar
  74. González-Chávez, M. D., Carrillo-González, R., Hernández Godínez, M. I., & Evangelista Lozano, S. (2017). Jatropha curcas and assisted phytoremediation of a mine tailing with biochar and a mycorrhizal fungus. International Journal of Phytoremediation, 19(2), 174–182.PubMedCrossRefGoogle Scholar
  75. Harms, H., Schlosser, D., & Wick, L. Y. (2011). Untapped potential: Exploiting fungi in bioremediation of hazardous chemicals. Nature Reviews. Microbiology, 9, 177–192.PubMedGoogle Scholar
  76. Hassan, S. E. D., Boon, E., St-Arnaud, M., & Hijri, M. (2011). Molecular biodiversity of arbuscular mycorrhizal fungi in trace metal-polluted soils. Molecular Ecology, 20, 3469–3483.CrossRefGoogle Scholar
  77. Hidri, R., Barea, J. M., Metoui-Ben Mahmoud, O., Abdelly, C., & Azcon, R. (2016). Impact of microbial inoculation on biomass accumulation by Sulla carnosa provenances, and in regulating nutrition, physiological andantioxidant activities of this species under non-saline and saline conditions. Journal of Plant Physiology, 201, 28–41.PubMedCrossRefGoogle Scholar
  78. Hildebrandt, U., Regvar, M., & Bothe, H. (2007). Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry, 68, 139–146.Google Scholar
  79. Hossain, M. A., Hasanuzzaman, M., & Fujita, M. (2010). Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiology and Molecular Biology of Plants, 16, 259–272.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Huang, Y., Chen, Y. J., & Tao, C. (2002). Uptake and distribution of Cu, Zn, Pb and Cd in maize related to metals speciation change in rhizosphere. Chinese Journal of Applied Ecology, 13, 860–862.Google Scholar
  81. IPCC. (2013). Climate change 2013: The physical science basis. New York: Cambridge University Press.Google Scholar
  82. Ismail, I. M., Basahi, J. M., & Hassan, I. A. (2014). Gas exchange and chlorophyll fluorescence of pea (Pisum sativum L.) plants in response to ambient ozone at a rural site in Egypt. Science of the Total Environment, 497, 585–593.PubMedCrossRefGoogle Scholar
  83. Jakobsen, I., & Rosendahl, L. (1990). Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytologist, 115(1), 77–83.CrossRefGoogle Scholar
  84. Johnson, S. M., Doherty, S. J., & Croy, R. R. D. (2003). Biphasic superoxide generation in potato tubers. A self amplifying response to stress. Plant Physiology, 13, 1440–1449.CrossRefGoogle Scholar
  85. Joner, E. J., & Leyval, C. (2001). Influence of arbuscular mycorrhiza on clover and ryegrass grown together in a soil spiked with polycyclic aromatic hydrocarbons. Mycorrhiza, 10, 155–159.CrossRefGoogle Scholar
  86. Joner, E. J., & Leyval, C. (2003). Rhizosphere gradients of polycyclic aromatic hydrocarbon (PAH) dissipation in two industrial soils, and the impact of arbuscular mycorrhiza. Environmental Science & Technology, 37, 2371–2375.CrossRefGoogle Scholar
  87. Kang, F. X., Chen, D. S., Gao, Y. Z., & Zhang, Y. (2010). Distribution of polycyclic aromatic hydrocarbons in subcellular root tissues of ryegrass ‘Lolium multiflorum Lam. BMC Plant Biology, 10, 210–216.PubMedCrossRefGoogle Scholar
  88. Kapoor, R., Sharma, D., & Bhatnagar, A. (2008). Arbuscular mycorrhizae in micropropagation systems and their potential applications. Scientia Horticulturae, 116, 227–239.CrossRefGoogle Scholar
  89. Kasiamdari, R. S., Soetarto, E. S., & Sancayaningsih, R. P. (2016). Presence of arbuscular mycorrhizal fungi on fern from tailing deposition area of gold mine in Timika, Indonesia. International Journal of Environmental Bioremediation & Biodegradation, 4, 1–7.Google Scholar
  90. Kawamitsu, Y., Driscoll, T., & Boyer, J. S. (2000). Photosynthesis during desiccation in an intertidal alga and a land plant. Plant & Cell Physiology, 41(3), 344–353.CrossRefGoogle Scholar
  91. Kaya, C., Ashraf, M., Sonmez, O., Aydemir, S., Tuna, A. L., & Cullu, M. A. (2009). The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. Scientia Horticulturae, 121, 1–6.CrossRefGoogle Scholar
  92. Knapp, A. K., Briggs, J. M., & Koelliker, J. K. (2001). Frequency and extent of water limitation to primary production in a mesic temperate grassland. Ecosystems, 4, 19–28.CrossRefGoogle Scholar
  93. Kramer, P. J., & Boyer, J. S. (1997). Water relations of plants and soils (p. 495). London: Academic.Google Scholar
  94. Krishnamoorthy, R., Kim, C. G., Subramanian, P., Kim, K. Y., Selvakumar, G., & Sa, T. M. (2015). Arbuscular mycorrhizal fungi community structure, abundance and species richness changes in soil by different levels of heavy metal and metalloid concentration. PLoS One, 10, 0128784.Google Scholar
  95. Krznaric, E., Wevers, J. H., Cloquet, C., Vangronsveld, J., Vanhaecke, F., & Colpaert, J. V. (2010). Zn pollution counteracts Cd toxicity in metal-tolerant ectomycorrhizal fungi and their host plant, Pinus sylvestris. Environmental Microbiology, 12(8), 2133–2141.PubMedGoogle Scholar
  96. Kuper, J., Llamas, A., Hecht, H. J., Mendel, R. R., & Schwarz, G. (2004). Structure of the molybdopterin-bound Cnx1G domain links molybdenum and copper metabolism. Nature, 430, 803–806.PubMedCrossRefGoogle Scholar
  97. Lambers, H., Chapin, F. S., & Pons, T. L. (2008). Plant physiological ecology (2nd ed.). New York: Springer.CrossRefGoogle Scholar
  98. Larcher, W. (1995). Physiological plant ecology. Berlin: Springer.CrossRefGoogle Scholar
  99. Leyval, C., & Binet, P. (1998). Effect of polyaromatic hydrocarbons in soil on arbuscular mycorrhizal plants. Journal of Environmental Quality, 27, 402–407.CrossRefGoogle Scholar
  100. Leyval, C., Joner, E., Del Val, C., & Haselwandter, K. (2001). Potential of arbuscular mycorrhiza for bioremediation. Mycorrhiza, 7, 308–317.Google Scholar
  101. Leyval, C., Joner, E. J., del Val, C., & Haselwandter, K. (2002). Potential of arbuscular mycorrhizal fungi for bioremediation. In S. Gianinazzi, H. Schuepp, J. M. Barea, & K. Haselwandter (Eds.), Mycorrhizal technology in agriculture: From genes to bioproducts (pp. 175–186). Basel: Birkhauser.CrossRefGoogle Scholar
  102. Li, H., Chen, X. W., & Wong, M. H. (2016). Arbuscular mycorrhizal fungi reduced the ratios of inorganic/organic arsenic in rice grains. Chemosphere, 145, 224–230.PubMedCrossRefGoogle Scholar
  103. Li, H., Ye, Z., Chan, W., Chen, X., Wu, F., Wu, S., & Wong, M. (2011). Can arbuscular mycorrhizal fungi improve grain yield, as uptake and tolerance of rice grown under aerobic conditions? Environmental Pollution, 159, 2537–2545.PubMedCrossRefGoogle Scholar
  104. Li, X. L., & Christie, P. (2000). Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil. Chemosphere, 42, 201–207.CrossRefGoogle Scholar
  105. Lin, A., Zhang, X., & Yang, X. (2014). Glomus mosseae enhances root growth and Cu and Pb acquisition of upland rice (Oryza sativa L.) in contaminated soils. Ecotoxicology, 23, 2053–2061.PubMedCrossRefGoogle Scholar
  106. Lykkeberg, A. K., Sengelov, G., Cornett, C., Tjornelund, J., Hansen, S. H., & Halling-Sorensen, B. (2004). Isolation, structural elucidation and in vitro activity of 2-acetyl-2-decarboxamido-oxytetracycline against environmental relevant bacteria, including tetracycline-resistant bacteria. Journal of Pharmaceutical and Biomedical Analysis, 34, 559–567.PubMedCrossRefGoogle Scholar
  107. Ma, T., Pan, X., Liu, W., Christie, P., Luo, Y., & Wu, L. (2016). Effects of different concentrations and application frequencies of oxytetracycline on soil enzyme activities and microbial community diversity. European Journal of Soil Biology, 76, 53–60.CrossRefGoogle Scholar
  108. Machuca, A., Pereira, G., Aguiar, A., & Milagres, A. M. F. (2007). Metal-chelating compounds produced by ectomycorrhizal fungi collected from pine plantations. Letters in Applied Microbiology, 44, 7–12.PubMedCrossRefGoogle Scholar
  109. Majorel, C., Hannibal, L., Ducousso, M., Lebrun, M., & Jourand, P. (2014). Evidence of nickel (Ni) efflux in Ni-tolerant ectomycorhizal Pisolithus albus isolated from ultramafic soil. Environmental Microbiology Reports, 6(5), 510–518.PubMedCrossRefGoogle Scholar
  110. Maksymiec, W., Wojcik, M., & Krupa, Z. (2007). Variation in oxidative stress and photochemical activity in Arabidopsis thaliana leaves subjected to cadmium and excess copper in the presence or absence of jasmonate and ascorbate. Chemosphere, 66, 421–427.PubMedCrossRefGoogle Scholar
  111. Malcova, R., & Gryndler, M. (2003). Amelioration of Pb and Mn toxicity to arbuscular mycorrhizal fungus Glomus intraradices by maize root exudates. Biologia Plantarum, 47, 297–299.CrossRefGoogle Scholar
  112. Martino, E., Perotto, S., Parsons, R., & Gadd, G. M. (2003). Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biology and Biochemistry, 35, 133–141.CrossRefGoogle Scholar
  113. McCool, P. M., & Menge, J. A. (1984). Interaction of ozone and mycorrhizal fungi on tomato as influenced by gungal species and host variety. Soil Biology and Biochemistry, 16, 425–427.CrossRefGoogle Scholar
  114. McGrath, S. P., Chaudri, A. M., & Giller, K. E. (2015). Long-term effects of metals in sewage sludge on soils, microorganisms and plants. Journal of Industrial Microbiology & Biotechnology, 14, 94–104.CrossRefGoogle Scholar
  115. Meharg, A. A., & Cairney, J. W. G. (2000). Ectomycorrhizas extending the capacities of rhizosphere remediation? Soil Biology and Biochemistry, 32, 1475–1484.CrossRefGoogle Scholar
  116. Meharg, A. A., & Hartley-Whitaker, J. (2002). Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. The New Phytologist, 154(1), 29–43.CrossRefGoogle Scholar
  117. Miller, R. M., Jastrow, J. D., & Reinhardt, D. R. (1995). External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia, 103(1), 17–23.PubMedCrossRefGoogle Scholar
  118. Mocquot, B., Vangronsveld, J., Clijsters, H., & Mench, M. (1996). Copper toxicity in young maize (Zea mays L.) plants: Effects on growth, mineral and chlorophyll contents, and enzyme activities. Plant and Soil, 182, 287–300.CrossRefGoogle Scholar
  119. Morgan, P. B., Ainsworth, E. A., & Long, S. P. (2003). How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield. Plant, Cell & Environment, 26, 1317–1328.CrossRefGoogle Scholar
  120. Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Remediation technologies for metal-contaminated soils and groundwater: An evaluation. Engineering Geology, 60, 193–207.CrossRefGoogle Scholar
  121. Navarro, J. M., Perez-Tornero, O., & Morte, A. (2013). Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance. Journal of Plant Physiology, 171, 76–85.PubMedCrossRefGoogle Scholar
  122. Netondo, G. W., Onyango, J. C., & Beck, E. (2004). Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Science, 44, 806–811.CrossRefGoogle Scholar
  123. Newman, E. I., & Reddell, P. (1987). The distribution of mycorrhizas among families of vascular plants. The New Phytologist, 106, 747.CrossRefGoogle Scholar
  124. Novoa, D., Palma, S., & Gaete, H. (2009). Effect of arbuscular mycorrhizal fungi Glomus spp. inoculation on alfalfa growth in soils with copper. Chilean Journal of Agricultural Research, 70, 259–265.Google Scholar
  125. Parniske, M. (2008). Arbuscular mycorrhiza: The mother of plant root endosymbioses. Nature Reviews. Microbiology, 6, 763–775.PubMedPubMedCentralCrossRefGoogle Scholar
  126. Peterson, R. L., Massicotte, H. B., & Melville, L. H. (2004). Mycorrhizas: Anatomy and cell biology. Ottawa: NRC Research Press.Google Scholar
  127. Rangel, W. M., Schneider, J., Costa, E. T. S., Soares, C. R. F. S., Guilherme, L. R. G., & Moreira, F. M. S. (2014). Phytoprotective effect of arbuscular mycorrhizal fungi species against arsenic toxicity in tropical leguminous species. International Journal of Phytoremediation, 16, 840–858.CrossRefGoogle Scholar
  128. Rapti-Caputo, D. (2010). Influence of climatic changes and human activities on the salinization process of coastal aquifer systems. Italian Journal of Agronomy, 5(3), 67–79.CrossRefGoogle Scholar
  129. Regvar, M., Likar, M., Piltaver, A., Kugonic, N., & Smith, J. E. (2010). Fungal community structure under goat willows (Salix caprea L.) growing at metal polluted site: The potential of screening in a model phytostabilisation study. Plant and Soil, 330, 345–356.CrossRefGoogle Scholar
  130. Rehmann, K., Noll, H. P., Steinberg, C. E. W., & Kettrup, A. A. (1998). Pyrene degradation by Mycobacterium sp. strain KR2. Chemosphere, 36, 2977–2992.PubMedCrossRefGoogle Scholar
  131. Repetto, O., Massa, N., Gianinazzi-Pearson, V., Dumas-Gaudot, E., & Berta, G. (2007). Cadmium effects on populations of root nuclei in two pea genotypes inoculated or not with the arbuscular mycorrhizal fungus Glomus mosseae. Mycorrhiza, 17(2), 111–120.PubMedCrossRefGoogle Scholar
  132. Rilling, M. C., Hernandez, G. Y., & Newton, P. C. D. (2000). Arbuscular mycorrhizae respond to elevated atmospheric CO2 after long-term exposure: Evidence from a CO2 spring in New Zealand supports the resource balance model. Ecology Letters, 3, 475–478.CrossRefGoogle Scholar
  133. Rodrigues, C. R., & Rodrigues, B. F. (2015). Use of arbuscular mycorrhiza and organic amendments to enhance growth of Macaranga peltata (Roxb.) Müll. Arg. in iron ore mine wastelands. International Journal of Phytoremediation, 17(1–6), 485–492.PubMedCrossRefGoogle Scholar
  134. Romanowska, E., Wroblewska, B., Drozak, A., & Siedlecka, M. (2006). High light intensity protects photosynthetic apparatus of pea plants against exposure to lead. Plant Physiology, 44, 387–394.Google Scholar
  135. Ruiz-Lozano, J. M., Azcon, R., & Gomez, M. (1996). Alleviation of salt stress by arbuscular mycorrhizal Glomus species in Lactuca sativa plants. Physiologia Plantarum, 98, 767–772.CrossRefGoogle Scholar
  136. Ruotsalainen, A. L., Markkola, A., & Kozlov, M. V. (2007). Root fungal colonisation in Deschampsia flexuosa: Effects of pollution and neighbouring trees. Environmental Pollution, 147, 723–728.PubMedCrossRefGoogle Scholar
  137. Ryan, P. R., Delhaize, E., & Jones, D. L. (2001). Function and mechanism of organic anion exudation from plant roots. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 527–560.PubMedCrossRefGoogle Scholar
  138. Safir, G. R., & Nelsen, C. E. (1985). VA mycorrhizas: Plant and fungal water relations. In R. Molina (Ed.), Proceedings of the sixth North American conference on mycorrhizae (pp. 161–164). Corvallis: Forest Research Laboratory.Google Scholar
  139. Sanchez-Castro, I., Gianinazzi-Pearson, V., Cleyet-Marel, J. C., Baudoin, E., & van Tuinen, D. (2017). Glomeromycota communities survive extreme levels of metal toxicity in an orphan mining site. Science of the Total Environment, 598, 121–128.PubMedCrossRefGoogle Scholar
  140. Schneider, J., Sturmer, S. L., Guilherme, L. R. G., Moreira, F. M. S., & Soares, C. R. F. S. (2013). Arbuscular mycorrhizal fungi in arsenic-contaminated areas in Brazil. Journal of Hazardous Materials, 262, 1105–1115.PubMedCrossRefGoogle Scholar
  141. Seki, M., Kamei, A., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2003). Molecular responses to drought, salinity and frost: Common and different paths for plant protection. Current Opinion in Biotechnology, 14, 194–199.PubMedCrossRefGoogle Scholar
  142. Shahabivand, S., Maivan, H. Z., Goltapeh, E. M., Sharifi, M., & Aliloo, A. A. (2012). The effects of root endophyte and arbuscular mycorrhizal fungi on growth and cadmium accumulation in wheat under cadmium toxicity. Plant Physiology and Biochemistry, 60, 53–58.PubMedCrossRefGoogle Scholar
  143. Sharifi, M., Ghorbanli, M., & Ebrahimzadeh, H. (2007). Improved growth of salinity stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. Journal of Plant Physiology, 164, 1144–1151.PubMedCrossRefGoogle Scholar
  144. Sharma, P., & Dubey, R. S. (2005). Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17, 35–52.CrossRefGoogle Scholar
  145. Sharma, P., & Dubey, R. S. (2007). Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic levels of aluminium. Plant Cell Reports, 26, 2027–2038.PubMedCrossRefGoogle Scholar
  146. Sheikh-Assadi, M., Khandan-Mirkohi, A., Alemardan, A., & Moreno-Jiménez, E. (2015). Mycorrhizal limonium sinuatum (L.) mill. Enhances accumulation of lead and cadmium. International Journal of Phytoremediation, 17(1–6), 556–562.PubMedCrossRefGoogle Scholar
  147. Singh, K. N., & Chatrath, R. (2001). Salinity tolerance. In M. P. Reynolds, M. Jio, & A. McNab (Eds.), Application of Physiology in Wheat Breeding (pp. 101–110). Mexico, DF: CIMMYT.Google Scholar
  148. Sircelj, H. M., Tausz, M., Grill, D., & Batic, F. (2005). Biochemical responses in leaves of two apple tree cultivars subjected to progressing drought. Journal of Plant Physiology, 162, 1308–1318.PubMedCrossRefGoogle Scholar
  149. Skujins, J., & Allen, M. F. (1986). Use of mycorrhizae for land rehabilitation. Mircen Journal, 2, 161–176.CrossRefGoogle Scholar
  150. Soares, C. R. F. S., & Siqueira, J. O. (2008). Mycorrhiza and phosphate protection of tropical grass species against heavy metal toxicity in multi-contaminated soil. Biology and Fertility of Soils, 44, 833–841.CrossRefGoogle Scholar
  151. Somtrakoon, K., Suanjit, S., Pokethitiyook, P., Kruatrachue, M., Lee, H., & Upatham, S. (2008). Phenanthrene stimulates the degradation of pyrene and fluoranthene by Burkholderia sp. VUN10013. World Journal of Microbiology and Biotechnology, 24, 523–531.CrossRefGoogle Scholar
  152. Sut, M., Boldt-Burisch, K., & Raab, T. (2016). Possible evidence for contribution of arbuscular mycorrhizal fungi (AMF) in phytoremediation of iron–cyanide (Fe–CN) complexes. Ecotoxicology, 25(6), 1260–1269.PubMedCrossRefGoogle Scholar
  153. Tang, X., Lou, C., Wang, S., Lu, Y., Liu, M., Hashmi, M. Z., & Fan, F. (2015). Effects of long-term manure applications on the occurrence of antibiotics and antibiotic resistance genes (ARGs) in paddy soils: Evidence from four field experiments in south of China. Soil Biology and Biochemistry, 90, 179–187.CrossRefGoogle Scholar
  154. Tiwari, S., & Sarangi, B. K. (2017). Comparative analysis of antioxidant response by Pteris vittata and Vetiveria zizanioides towards arsenic stress. Ecological Engineering, 100, 211–218.CrossRefGoogle Scholar
  155. Toljander, J. F., Lindahl, B. D., Paul, L. R., Elfstrand, M., & Finlay, R. D. (2007). Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiology Ecology, 61, 295–304.PubMedCrossRefPubMedCentralGoogle Scholar
  156. Toth, G., Hermann, T., Da Silva, M. R., & Montanarella, L. (2016). Heavy metals in agricultural soils of the European Union with implications for food safety. Environment International, 88, 299–309.PubMedCrossRefGoogle Scholar
  157. Toujaguez, R., Ono, F. B., Martins, V., Cabrera, P. P., Blanco, A. V., Bundschuh, J., & Guilherme, L. R. G. (2013). Arsenic bioaccessibility in gold mine tailings of Delita, Cuba. Journal of Hazardous Materials, 262, 1004–1013.PubMedCrossRefGoogle Scholar
  158. Trenberth, K. E., Dai, A., Van Der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R., & Sheffield, J. (2014). Global warming and changes in drought. Nature Climate Change, 4, 17–22.CrossRefGoogle Scholar
  159. Treseder, K. K., & Allen, M. F. (2000). Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. The New Phytologist, 147, 189–200.CrossRefGoogle Scholar
  160. Van Dingenen, R., Raes, F., Krol, M. C., Emberson, L., & Cofala, J. (2009). The global impact of O3 on agricultural crop yields under current and future air quality legislation. Atmospheric Environment, 43, 604–618.CrossRefGoogle Scholar
  161. Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., Adriaensen, K., Ruttens, A., Thewys, T., Vassilev, A., Meers, E., Nehnevajova, E., van der Lelie, D., & Mench, M. (2009). Phytoremediation of contaminated soils and groundwater: Lessons from the field. Environmental Science and Pollution Research International, 16, 765–794.PubMedCrossRefGoogle Scholar
  162. Wang, F. Y., Lin, X. G., & Yin, R. (2007a). Effect of arbuscular mycorrhizal fungal inoculation on heavy metal accumulation of maize grown in a naturally contaminated soil. International Journal of Phytoremediation, 9, 345–353.PubMedCrossRefGoogle Scholar
  163. Wang, L., Huang, X., Ma, F., Ho, S. H., Wu, J., & Zhu, S. (2017a). Role of Rhizophagus irregularis in alleviating cadmium toxicity via improving the growth, micro-and macroelements uptake in Phragmites australis. Environmental Science and Pollution Research, 24(4), 3593–3607.PubMedCrossRefGoogle Scholar
  164. Wang, S., Augé, R. M., & Toler, H. D. (2017b). Arbuscular mycorrhiza formation and its function under elevated atmospheric O3: A meta-analysis. Environmental Pollution, 226, 104–117.PubMedCrossRefGoogle Scholar
  165. Wang, S. G., Diao, X. J., Li, Y. W., & Ma, L. M. (2015). Effect of Glomus aggregatum on photosynthetic function of snap bean in response to elevated ozone. The Journal of Agricultural Science, 153, 837–852.CrossRefGoogle Scholar
  166. Wang, S. G., Feng, Z. Z., Wang, X. K., & Gong, W. L. (2011). Arbuscular mycorrhizal fungi alter the response of growth and nutrient uptake of snap bean (Phaseolus vulgaris L.) to O3. Journal of Environmental Sciences, 23, 968–974.CrossRefGoogle Scholar
  167. Wang, X. K., Manning, W. J., Feng, Z. W., & Zhu, Y. G. (2007b). Ground-level ozone in China: Distribution and effects on crop yields. Environmental Pollution, 147, 394–400.PubMedCrossRefGoogle Scholar
  168. Wen, Z., Shi, L., Tang, Y., Shen, Z., Xia, Y., & Chen, Y. (2017). Effects of Pisolithus tinctorius and Cenococcum geophilum inoculation on pine in copper-contaminated soil to enhance phytoremediation. International Journal of Phytoremediation, 19(4), 387–394.PubMedCrossRefGoogle Scholar
  169. Wery, J., Silim, S. N., Knights, E. J., Malhotra, R. S., & Cousin, R. (1994). Screening techniques and sources and tolerance to extremes of moisture and air temperature in cool season food legumes. Euphytica, 73, 73–83.CrossRefGoogle Scholar
  170. White, C., Sayer, J. A., & Gadd, G. M. (1997). Microbial solubilization and immobilization of toxic metals: Key biogeochemical processes for treatment of contamination. FEMS Microbiology Reviews, 20, 503–516.PubMedCrossRefGoogle Scholar
  171. Wu, Q. S., Zou, Y. N., & He, X. H. (2010). Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiologiae Plantarum, 32, 297–304.CrossRefGoogle Scholar
  172. Xu, P., Christie, P., Liu, Y., Zhang, J., & Li, X. (2008). The arbuscular mycorrhizal fungus Glomus mosseae can enhance arsenic tolerance in Medicago truncatula by increasing plant phosphorus status and restricting arsenate uptake. Environmental Pollution, 156, 215–220.PubMedCrossRefGoogle Scholar
  173. Xun, F., Xie, B., Liu, S., & Guo, C. (2015). Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Environmental Science and Pollution Research International, 22(1), 598–608.PubMedCrossRefGoogle Scholar
  174. Yang, Y., Liang, Y., Han, X., Chiu, T. Y., Ghosh, A., Chen, H., & Tang, M. (2016). The roles of arbuscular mycorrhizal fungi (AMF) in phytoremediation and tree-herb interactions in Pb contaminated soil. Scientific Reports, 6, 20469.PubMedPubMedCentralCrossRefGoogle Scholar
  175. Yin, N., Zhang, Z., Wang, L., & Qian, K. (2016). Variations in organic carbon, aggregation, and enzyme activities of gangue-fly ash-reconstructed soils with sludge and arbuscular mycorrhizal fungi during 6-year reclamation. Environmental Science and Pollution Research International, 23(17), 17840–17849.PubMedCrossRefGoogle Scholar
  176. Zhu, J. K., Hasegawa, P. M., & Bressan, R. A. (1997). Molecular aspects of osmotic stress in plants. CRC Critical Reviews in Plant Sciences, 16, 253–277.CrossRefGoogle Scholar
  177. Zhu, Y. G., Christie, P., & Laidlaw, A. S. (2001). Uptake of Zn by arbuscular mycorrhizal white clover from Zn-contaminated soil. Chemosphere, 42, 193–199.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ratul Moni Ram
    • 1
  • Prakash Jyoti Kalita
    • 2
  • Rahul Singh Rajput
    • 1
  • H. B. Singh
    • 1
  1. 1.Department of Mycology and Plant Pathology, Institute of Agricultural SciencesBanaras Hindu UniversityVaranasiIndia
  2. 2.Myongji UniversityYonginSouth Korea

Personalised recommendations