Abstract
Organic and inorganic of xenobiotic compounds in soil is a serious problem mostly in industrialized countries, it caused diffuse and acute contamination on a global scale in soil and water. Various persistent organic pollutants (POPs) degraded and transforms by the fungi. A mutualistic associations formed by the fungi and mycorrhizal fungi with various plant species in the rhizospheric regions. The association of fungi with plants biotransforms and biodegrade the hazardous contaminants in the soil. The species of white rot fungi such as Pleurotus ostreatus, Pleurotus sajorcaju, Pleurotus tuberregium, Pleurotus pulmonarius and Bjerkandera adusta have more potential comparison to other species. The wide range of organic molecules released extracellular lignin modifying enzymes are very effective in degrading of organic molecules. The lignin-peroxidases (LiP), manganese peroxidases (MnP), and other H2O2 producing and laccase enzymes present in the microbial system employed for degrading of lignin. This chapter covered various fungal species for biodegradation and transformation of environmental contaminants by enzymes and biomass.
Keywords
- Mycoremediation
- Fungi
- Bioremediation
- Heavy metals
- PAHs
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Abrahams, P. W. (2002). Soils: Their implications to human health. Science of the Total Environment, 291(1–3), 1–32.
Abril, N., Gion, J. M., Kerner, R., Müller-Starck, G., Cerrillo, R. M. N., Plomion, C., & Jorrin-Novo, J. V. (2011). Proteomics research on forest trees, the most recalcitrant and orphan plant species. Phytochemistry, 72(10), 1219–1242.
Abuhussein, A. (2018). Wastewater refining and reuse and city-level water decision making.. Electronic Thesis and Dissertation Repository. 5310. https://ir.lib.uwo.ca/etd/5310.
Adenipekun, C. O., & Lawal, R. (2012). Uses of mushrooms in bioremediation: A review. Biotechnology and Molecular Biology Reviews, 7(3), 62–68.
Adenipekun, C. O., Ipeaiyeda, A. R., Olayonwa, A. J., & Egbewale, S. O. (2015). Biodegradation of polycyclic aromatic hydrocarbons (PAHs) in spent and fresh cutting fluids contaminated soils by Pleurotus pulmonarius (Fries). Quelet and Pleurotus ostreatus (Jacq.) Fr. P. Kumm. African Journal of Biotechnology, 14(8), 661–667.
Ahemad, M., & Kibret, M. (2013). Recent trends in microbial biosorption of heavy metals: A review. Biochemistry and Molecular Biology, 1(1), 19–26.
Ahsan, N., Renaut, J., & Komatsu, S. (2009). Recent developments in the application of proteomics to the analysis of plant responses to heavy metals. Proteomics, 9(10), 2602–2621.
Alam, A., & Pantola, R. C. (2016). Intracellular copper accumulation and biochemical changes in response to Cu induced oxidative stress in brassica species. San Francisco: GRIN Publishing.
Alam, M. N., Bristi, N. J., & Rafiquzzaman, M. (2013). Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical Journal, 21(2), 143–152.
Alloway, B. J. (2013). Sources of heavy metals and metalloids in soils. In Heavy metals in soils (pp. 11–50). Dordrecht: Springer.
Alluri, H. K., Ronda, S. R., Settalluri, V. S., Bondili, J. S., Suryanarayana, V., & Venkateshwar, P. (2007). Biosorption: An eco-friendly alternative for heavy metal removal. African Journal of Biotechnology, 6(25), 2924–2931.
Alvarez, A., Saez, J. M., Costa, J. S. D., Colin, V. L., Fuentes, M. S., Cuozzo, S. A., Benimeli, C. S., Polti, M. A., & Amoroso, M. J. (2017). Actinobacteria: Current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere, 166, 41–62.
Anastasi, A., Tigini, V., & Varese, G. C. (2013). The bioremediation potential of different ecophysiological groups of fungi. In Fungi as bioremediators (pp. 29–49). Berlin/Heidelberg: Springer.
Anasonye, F., Winquist, E., Räsänen, M., Kontro, J., Björklöf, K., Vasilyeva, G., Jørgensen, K. S., Steffen, K. T., & Tuomela, M. (2015). Bioremediation of TNT contaminated soil with fungi under laboratory and pilot scale condition. International Biodeterioration and Biodegradation., 105, 7–12.
Andreoni, V., & Gianfreda, L. (2007). Bioremediation and monitoring of aromatic-polluted habitats. Applied Microbiology and Biotechnology, 76(2), 287–308.
Arantes, V., Jellison, J., & Goodell, B. (2012). Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. Applied Microbiology and Biotechnology, 94(2), 323–338.
Arnold, A. E. (2007). Understanding the diversity of foliar endophytic fungi: Progress, challenges, and frontiers. Fungal Biology Reviews, 21(2–3), 51–66.
Ayangbenro, A. S., & Babalola, O. O. (2017). A new strategy for heavy metal polluted environments: A review of microbial biosorbents. International Journal of Environmental Research and Public Health, 14(1), 94.
Azaizeh, H., Castro, P. M., & Kidd, P. (2011). Biodegradation of organic xenobiotic pollutants in the rhizosphere. In Organic xenobiotics and plants (pp. 191–215). Dordrecht: Springer.
Azmi, W., Sani, R. K., & Banerjee, U. C. (1998). Biodegradation of triphenylmethane dyes. Enzyme and Microbial Technology, 22(3), 185–191.
Baghour, M. (2017). Effect of seaweeds in phytoremediation. Biotechnological applications of seaweeds (pp. 47–83). New York: Nova Science Publishers.
Bahn, Y. S., Xue, C., Idnurm, A., Rutherford, J. C., Heitman, J., & Cardenas, M. E. (2007). Sensing the environment: Lessons from fungi. Nature Reviews Microbiology, 5(1), 57.
Baldrian, P. (2003). Interactions of heavy metals with white-rot fungi. Enzyme and Microbial Technology, 32(1), 78–91.
Bamforth, S. M., & Singleton, I. (2005). Bioremediation of polycyclic aromatic hydrocarbons: Current knowledge and future directions. Journal of Chemical Technology and Biotechnology, 80(7), 723–736.
Beckham, G. T., Johnson, C. W., Karp, E. M., Salvachúa, D., & Vardon, D. R. (2016). Opportunities and challenges in biological lignin valorization. Current Opinion in Biotechnology, 42, 40–53.
Bezalel, L., Hadar, Y., & Cerniglia, C. E. (1997). Enzymatic mechanisms involved in phenanthrene degradation by the white rot fungus Pleurotus ostreatus. Applied and Environmental Microbiology, 63(7), 2495–2501.
Bisht, S., Pandey, P., Bhargava, B., Sharma, S., Kumar, V., & Sharma, K. D. (2015). Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Brazilian Journal of Microbiology, 46(1), 7–21.
Bolan, N. S., Choppala, G., Kunhikrishnan, A., Park, J., & Naidu, R. (2013). Microbial transformation of trace elements in soils in relation to bioavailability and remediation. In Reviews of environmental contamination and toxicology (pp. 1–56). New York, NY: Springer.
Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., & Scheckel, K. (2014). Remediation of heavy metal(loid)s contaminated soils–to mobilize or to immobilize. Journal of Hazardous Materials, 266, 141–166.
Brookes, P. C. (1995). The use of microbial parameters in monitoring soil pollution by heavy metals. Biology and Fertility of Soils, 19(4), 269–279.
Brosnan, J. T., & Brosnan, M. E. (2006). The sulfur-containing amino acids: An overview. The Journal of Nutrition, 136(6), 1636S–1640S.
Brundrett, M. C. (2009). Mycorrhizal associations and other means of nutrition of vascular plants: Understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil, 320(1–2), 37–77.
Bugg, T. D., Ahmad, M., Hardiman, E. M., & Rahmanpour, R. (2011). Pathways for degradation of lignin in bacteria and fungi. Natural Product Reports, 28(12), 1883–1896.
Cabral, L., Soares, C. R. F. S., Giachini, A. J., & Siqueira, J. O. (2015). Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: Mechanisms and major benefits of their applications. World Journal of Microbiology and Biotechnology, 31(11), 1655–1664.
Camacho-Morales, R. L., Guillén-Navarro, K., & Sánchez, J. E. (2017). Degradation of the herbicide paraquat by macromycetes isolated from southeastern Mexico. 3 Biotech, 7(5), 324.
Cameron, M. D., Timofeevski, S., & Aust, S. D. (2000). Enzymology of Phanerochaetechrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics. Applied Microbiology and Biotechnology, 54(6), 751–758.
Castellet, R. F. (2018). Fungal biodegradation of pharmaceutical active compounds in wastewater. https://ddd.uab.cat/record/189612
Chan, W. K., Wildeboer, D., Garelick, H., & Purchase, D. (2016). Mycoremediation of heavy metal/metalloid-contaminated soil: Current understanding and future prospects. In Fungal applications in sustainable environmental biotechnology (pp. 249–272). Cham: Springer.
Chandra, P., & Singh, D. P. (2014). Removal of Cr (VI) by a halotolerant bacterium Halomonas sp. CSB 5 isolated from sāmbhar salt Lake Rajasthan (India). Cellular and Molecular Biology, 60(5), 64–72.
Chary, N. S., Kamala, C. T., & Raj, D. S. S. (2008). Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicology and Environmental Safety, 69(3), 513–524.
Chatterjee, A., & Abraham, J. (2017). Efficient management of e-wastes. International journal of Environmental Science and Technology, 14(1), 211–222.
Chiu, S. W., ChingML, F. K. L., & Moore, D. (1998). Spent oyster mushroom substrate performs better than many mushroom mycelia in removing the biocide pentachlorophenol. Mycological Research, 102(12), 1553–1562.
Chritian, V. (2001). Enzymes of lignin-degrading fungi: Degradation of xenobiotic compounds (Doctoral dissertation). Saurashtra University.
Clemens, S. (2001). Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 212(4), 475–486.
Clemens, S. (2006). Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88(11), 1707–1719.
Cobbett, C., & Goldsbrough, P. (2002). Phytochelatins and metallothioneins: Roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology, 53(1), 159–182.
Coleman, D. C. (2008). From peds to paradoxes: Linkages between soil biota and their influences on ecological processes. Soil Biology and Biochemistry, 40(2), 271–289.
Colpaert, J. V., Wevers, J. H., Krznaric, E., & Adriaensen, K. (2011). How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Annals of Forest Science, 68(1), 17–24.
Couto, S. R., & Herrera, J. L. T. (2006). Industrial and biotechnological applications of laccases: A review. Biotechnology Advances, 24(5), 500–513.
Covino, S. (2010). In vivo and in vitro degradation of aromatic contaminants by white rot fungi. A case study: Panus tigrinus CBS, 577, 79.
Cowan, A. K., Lodewijks, H. M., Sekhohola, L. M., & Edeki, O. G. (2016). In situ bioremediation of South African coal discard dumps. In Proceedings, mine closure-2016 (pp. 501–509). Perth: Australian Centre for Geomechanics.
Crane, R. A., & Scott, T. B. (2012). Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology. Journal of Hazardous Materials, 211, 112–125.
Crestini, C., Crucianelli, M., Orlandi, M., & Saladino, R. (2010). Oxidative strategies in lignin chemistry: A new environmental friendly approach for the functionalization of lignin and lignocellulosic fibers. Catalysis Today, 156(1–2), 8–22.
Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology, 97(9), 1061–1085.
Cunningham, S. D., Anderson, T. A., Schwab, A. P., & Hsu, F. C. (1996). Phytoremediation of soils contaminated with organic pollutants. Advances in Agronomy, 56(1), 55–114.
Das, N. (2005). Heavy metals biosorption by mushrooms. Nilanjana Das Natural Product Radiance, 4(6), 454–459.
Das, M., Royer, T. V., & Leff, L. G. (2007). Diversity of fungi, bacteria, and actinomycetes on leaves decomposing in a stream. Applied and Environmental Microbiology, 73(3), 756–767.
Dashtban, M., Schraft, H., Syed, T. A., & Qin, W. (2010). Fungal biodegradation and enzymatic modification of lignin. International Journal of Biochemistry and Molecular Biology, 1(1), 36.
de Novais, C. B., Borges, W. L., da Conceicão, J. E., Júnior, O. J. S., & Siqueira, J. O. (2014). Inter-and intraspecific functional variability of tropical arbuscular mycorrhizal fungi isolates colonizing corn plants. Applied Soil Ecology, 76, 78–86.
Dembitsky, V. M., & Rezanka, T. (2003). Natural occurrence of arseno compounds in plants, lichens, fungi, algal species, and microorganisms. Plant Science, 165(6), 1177–1192.
Deng, Z., Cao, L., Huang, H., Jiang, X., Wang, W., Shi, Y., & Zhang, R. (2011). Characterization of Cd-and Pb-resistant fungal endophyte Mucor sp. CBRF59 isolated from rapes (Brassica chinensis) in a metal-contaminated soil. Journal of Hazardous Materials, 185(2–3), 717–724.
Deng, Z., Zhang, R., Shi, Y., Tan, H., & Cao, L. (2014). Characterization of Cd-, Pb-, Zn-resistant endophytic Lasiodiplodia sp. MXSF31 from metal accumulating Portulaca oleracea and its potential in promoting the growth of rape in metal-contaminated soils. Environmental Science and Pollution Research, 21(3), 2346–2357.
Dermatas, D., & Meng, X. (2003). Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils. Engineering Geology, 70(3–4), 377–394.
Doughari, J. (2015). An overview of plant immunity. Journal of Plant Pathology and Microbiology, 6(11), 10–4172.
Duan, L., Naidu, R., Thavamani, P., Meaklim, J., & Megharaj, M. (2015). Managing long-term polycyclic aromatic hydrocarbon contaminated soils: A risk-based approach. Environmental Science and Pollution Research, 22(12), 8927–8941.
Duke, S. O., Lydon, J., Koskinen, W. C., Moorman, T. B., Chaney, R. L., & Hammerschmidt, R. (2012). Journal of Agricultural and Food Chemistry, 60. ISSN: 1520-5118 ISO Abbreviation: J. Agric. Food Chem.
Dunwell, J. M., Khuri, S., & Gane, P. J. (2000). Microbial relatives of the seed storage proteins of higher plants: Conservation of structure and diversification of function during evolution of the cupin superfamily. Microbiology and Molecular Biology Reviews, 64(1), 153–179.
Dupraz, C., Reid, R. P., Braissant, O., Decho, A. W., Norman, R. S., & Visscher, P. T. (2009). Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96(3), 141–162.
Eibes, G., Cajthaml, T., Moreira, M. T., Feijoo, G., & Lema, J. M. (2006). Enzymatic degradation of anthracene, dibenzothiophene and pyrene by manganese peroxidase in media containing acetone. Chemosphere, 64(3), 408–414.
Ellouze, M., & Sayadi, S. (2016). White-rot fungi and their enzymes as a biotechnological tool for xenobiotic bioremediation. In Management of hazardous wastes. Rijeka: InTech.
Emamverdian, A., Ding, Y., Mokhberdoran, F., & Xie, Y. (2015). Heavy metal stress and some mechanisms of plant defense response. The Scientific World Journal, 2015, 4.
Encarnacion, A. B., Fagutao, F., Jintasataporn, O., Worawattanamateekul, W., Hirono, I., & Ohshima, T. (2012). Applications of ergothioneine-rich extract from an edible mushroom Flammulina velutipes for melanosis prevention in shrimp, Penaeus monodon and Litopenaeus vannamei. Food Research International, 45(1), 232–237.
Ennis, C. J., Evans, A. G., Islam, M., Ralebitso-Senior, T. K., & Senior, E. (2012). Biochar: Carbon sequestration, land remediation, and impacts on soil microbiology. Critical Reviews in Environmental Science and Technology, 42(22), 2311–2364.
Ercal, N., Gurer-Orhan, H., & Aykin-Burns, N. (2001). Toxic metals and oxidative stress part I: Mechanisms involved in metal-induced oxidative damage. Current Topics in Medicinal Chemistry, 1(6), 529–539.
Evanko, C. R., & Dzombak, D. A. (1997). Remediation of metals-contaminated soils and groundwater. Pittsburg: Ground-Water Remediation Technologies Analysis Center.
Ferreira-Guedes, S., Mendes, B., & Leitão, A. L. (2012). Degradation of 2, 4-dichlorophenoxyacetic acid by a halotolerant strain of Penicillium chrysogenum: Antibiotic production. Environmental Technology, 33(6), 677–686.
Fidalgo, F., Azenha, M., Silva, A. F., de Sousa, A., Santiago, A., Ferraz, P., & Teixeira, J. (2013). Copper-induced stress in Solanum nigrum L. and antioxidant defense system responses. Food and Energy Security, 2(1), 70–80.
Finlay, R. D. (2008). Ecological aspects of mycorrhizal symbiosis: With special emphasis on the functional diversity of interactions involving the extraradical mycelium. Journal of Experimental Botany, 59(5), 1115–1126.
Flurkey, A., Cooksey, J., Reddy, A., Spoonmore, K., Rescigno, A., Inlow, J., & Flurkey, W. H. (2008). Enzyme, protein, carbohydrate, and phenolic contaminants in commercial tyrosinase preparations: Potential problems affecting tyrosinase activity and inhibition studies. Journal of Agricultural and Food Chemistry, 56(12), 4760–4768.
Forgacs, E., Cserhati, T., & Oros, G. (2004). Removal of synthetic dyes from wastewaters: A review. Environment International, 30(7), 953–971.
Fritsche, W., Scheibner, K., Herre, A., & Hofrichter, M. (2000). Fungal degradation of explosives: TNT and related nitroaromatic compounds. In Biodegradation of nitroaromatic compounds and explosives (pp. 213–237). Boca Raton: CRC Press.
Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407–418.
Fulekar, M. H. (2017). Microbial degradation of petrochemical waste-polycyclic aromatic hydrocarbons. Bioresources and Bioprocessing, 4(1), 28.
Gadd, G. M. (2004). Microbial influence on metal mobility and application for bioremediation. Geoderma, 122(2–4), 109–119.
Gadd, G. M. (2007). Geomycology: Biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological Research, 111(1), 3–49.
Ganeshamurthy, A. N., Varalakshmi, L. R., & Sumangala, H. P. (2016). Environmental risks associated with heavy metal contamination in soil, water and plants in urban and periurban agriculture. Journal of Horticultural Science, 3(1), 1–29.
Gavrilescu, M. (2004). Removal of heavy metals from the environment by biosorption. Engineering in Life Sciences, 4(3), 219–232.
Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930.
Gonen Tasdemir, F., Yamac, M., Cabuk, A., & Yildiz, Z. (2008). Selection of newly isolated mushroom strains for tolerance and biosorption of zinc in vitro. Journal of Microbiology and Biotechnology, 18(3), 483–489.
Gossel, T. A. (2018). Principles of clinical toxicology. Boca Raton: CRC Press.
Gratão, P. L., Polle, A., Lea, P. J., & Azevedo, R. A. (2005). Making the life of heavy metal-stressed plants a little easier. Functional Plant Biology, 32(6), 481–494.
Guo, G., Zhou, Q., & Ma, L. Q. (2006). Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: A review. Environmental Monitoring and Assessment, 116(1–3), 513–528.
Ha, S. B., Smith, A. P., Howden, R., Dietrich, W. M., Bugg, S., O'Connell, M. J., & Cobbett, C. S. (1999). Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomycespombe. The Plant Cell, 11(6), 1153–1163.
Hall, J. L. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53(366), 1–11.
Hamba, Y., & Tamiru, M. (2016). Mycoremediation of heavy metals and hydrocarbons contaminated environment. Asian Journal of Natural and Applied Sciences, 5, 2.
Harms, H., Schlosser, D., & Wick, L. Y. (2011). Untapped potential: Exploiting fungi in bioremediation of hazardous chemicals. Nature Reviews Microbiology, 9(3), 177.
Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R., & Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14(5), 9643–9684.
Hofrichter, M. (2002). Lignin conversion by manganese peroxidase (MnP). Enzyme and Microbial Technology, 30(4), 454–466.
Hong, C. Y., Ryu, S. H., Jeong, H., Lee, S. S., Kim, M., & Choi, I. G. (2017). Phanerochaete chrysosporium multienzyme catabolic system for in vivo modification of synthetic lignin to succinic acid. ACS Chemical Biology, 12(7), 1749–1759.
Hossain, M. A., Piyatida, P., da Silva, J. A. T., & Fujita, M. (2012). Molecular mechanism of heavy metal toxicity and tolerance in plants: Central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. Journal of Botany, 37, 872875.
Imfeld, G., & Vuilleumier, S. (2012). Measuring the effects of pesticides on bacterial communities in soil: A critical review. European Journal of Soil Biology, 49, 22–30.
Ingram, D. S., Vince-Prue, D., & Gregory, P. J. (2015). Science and the garden: The scientific basis of horticultural practice. New York: Wiley.
Isikhuemhen, O. S., Anoliefo, G. O., & Oghale, O. I. (2003). Bioremediation of crude oil polluted soil by the white rot fungus, Pleurotus tuberregium (Fr.) Sing. Environmental Science and Pollution Research, 10(2), 108–112.
Javaid, A., Bajwa, R., Shafique, U., & Anwar, J. (2011). Removal of heavy metals by adsorption on Pleurotus ostreatus. Biomass and Bioenergy, 35(5), 1675–1682.
Jeffries, P., Gianinazzi, S., Perotto, S., Turnau, K., & Barea, J. M. (2003). The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biology and Fertility of Soils, 37(1), 1–16.
Johansson, J. F., Paul, L. R., & Finlay, R. D. (2004). Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiology Ecology, 48(1), 1–13.
John, J. (2013). Assessment of arbuscular mycorrhizal fungi in a green roof system. http://hdl.handle.net/10222/36259
Johnsen, A. R., Wick, L. Y., & Harms, H. (2005). Principles of microbial PAH-degradation in soil. Environmental Pollution, 133(1), 71–84.
Johnson, S. B., Yoon, T. H., Slowey, A. J., & Brown, G. E. (2004). Adsorption of organic matter at mineral/water interfaces: 3. Implications of surface dissolution for adsorption of oxalate. Langmuir, 20(26), 11480–11492.
Jomova, K., & Valko, M. (2011). Advances in metal-induced oxidative stress and human disease. Toxicology, 283(2–3), 65–87.
Joy, J. I. T. H. I. N., Jose, C. I. N. T. I. L., Mathew, P., Thomas, S. A. B. U., & Khalaf, M. N. (2015). Biological delignification of biomass. Green Polymers and Environment Pollution Control, 2015, 271.
Jozefczak, M., Remans, T., Vangronsveld, J., & Cuypers, A. (2012). Glutathione is a key player in metal-induced oxidative stress defenses. International Journal of Molecular Sciences, 13(3), 3145–3175.
Juhasz, A. L., & Naidu, R. (2000). Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: A review of the microbial degradation of benzo [α] pyrene. International Biodeterioration and Biodegradation, 45(1–2), 57–88.
Juwarkar, A. A., Singh, S. K., & Mudhoo, A. (2010). A comprehensive overview of elements in bioremediation. Reviews in Environmental Science and Bio/technology, 9(3), 215–288.
Kadri, T., Rouissi, T., Brar, S. K., Cledon, M., Sarma, S., & Verma, M. (2017). Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review. Journal of Environmental Sciences, 51, 52–74.
Keiluweit, M., Nico, P. S., Johnson, M. G., & Kleber, M. (2010). Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science and Technology, 44(4), 1247–1253.
Kerem, Z., Friesem, D., & Hadar, Y. (1992). Lignocellulose degradation during solid-state fermentation: Pleurotus ostreatus versus Phanerochaete chrysosporium. Applied and Environmental Microbiology, 58(4), 1121–1127.
Khullar, S., & Reddy, M. S. (2018). Ectomycorrhizal fungi and its role in metal homeostasis through metallothionein and glutathione mechanisms. Current Biotechnology, 7(3), 231–241.
Kim, K. H., Jahan, S. A., Kabir, E., & Brown, R. J. (2013). A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environment International, 60, 71–80.
Kirk, T. K., & Farrell, R. L. (1987). Enzymatic “combustion”: The microbial degradation of lignin. Annual Reviews in Microbiology, 41(1), 465–501.
Konhauser, K. O. (1998). Diversity of bacterial iron mineralization. Earth-Science Reviews, 43(3–4), 91–121.
Kubartová, A., Ranger, J., Berthelin, J., & Beguiristain, T. (2009). Diversity and decomposing ability of saprophytic fungi from temperate forest litter. Microbial Ecology, 58(1), 98–107.
Kumar, K. S., Dahms, H. U., Won, E. J., Lee, J. S., & Shin, K. H. (2015). Microalgae - a promising tool for heavy metal remediation. Ecotoxicology and Environmental Safety, 113, 329–352.
Kushwaha, M., Verma, S., & Chatterjee, S. (2016). Profenofos, an acetylcholinesterase-inhibiting organophosphorus pesticide: A short review of its usage, toxicity, and biodegradation. Journal of Environmental Quality, 45(5), 1478–1489.
Kvesitadze, G., Khatisashvili, G., Sadunishvili, T., & Ramsden, J. J. (2006). Biochemical mechanisms of detoxification in higher plants: Basis of phytoremediation. Berlin/Heidelberg: Springer.
Lambers, H., Raven, J. A., Shaver, G. R., & Smith, S. E. (2008). Plant nutrient-acquisition strategies change with soil age. Trends in Ecology and Evolution, 23(2), 95–103.
Lamichhane, S., Krishna, K. B., & Sarukkalige, R. (2016). Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: A review. Chemosphere, 148, 336–353.
Lavelle, P., & Spain, A. V. (2001). Soil ecology. Dordrecht: Springer Science and Business Media.
Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota–a review. Soil Biology and Biochemistry, 43(9), 1812–1836.
Leitão, A. L. (2009). Potential of Penicillium species in the bioremediation field. International Journal of Environmental Research and Public Health, 6(4), 1393–1417.
Lemery, J., & Auerbach, P. (2017). Enviromedics: The impact of climate change on human health. Lanham: Rowman & Littlefield.
Lenoir, I., Fontaine, J., & Sahraoui, A. L. H. (2016). Arbuscular mycorrhizal fungal responses to abiotic stresses: A review. Phytochemistry, 123, 4–15.
Leonowicz, A., Cho, N., Luterek, J., Wilkolazka, A., Wojtas-Wasilewska, M., Matuszewska, A., & Rogalski, J. (2001). Fungal laccase: Properties and activity on lignin. Journal of Basic Microbiology, 41(3–4), 185–227.
Li, X., & Jia, R. (2008). Decolorization and biosorption for Congo red by system rice hull-Schizophyllum sp. F17 under solid-state condition in a continuous flow packed-bed bioreactor. Bioresource Technology, 99(15), 6885–6892.
Lynd, L. R., Weimer, P. J., Van Zyl, W. H., & Pretorius, I. S. (2002). Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66(3), 506–577.
Lynes, M. A., Pietrosimone, K., Marusov, G., Donaldson, D. V., Melchiorre, C., Yin, X., Lawrence, D. A., & McCabe, M. J. (2010). Metal influences on immune function. In Cellular and molecular biology of metals (p. 379). New York: CRC Press.
Magan, N. (2007). Fungi in extreme environments. The Mycota, 4, 85–103.
Mahmood, K., Jadoon, S., Mahmood, Q., Irshad, M., & Hussain, J. (2014). Synergistic effects of toxic elements on heat shock proteins. BioMed Research International, 2014, 1–17.
Marques, A. P., Rangel, A. O., & Castro, P. M. (2009). Remediation of heavy metal contaminated soils: Phytoremediation as a potentially promising clean-up technology. Critical Reviews in Environmental Science and Technology, 39(8), 622–654.
Marschner, P. (2012). Rhizosphere biology. In Marschner’s mineral nutrition of higher plants (3rd ed., pp. 369–388). London: Academic.
Martínez, Á. T., Speranza, M., Ruiz-Dueñas, F. J., Ferreira, P., Camarero, S., Guillén, F., & Río Andrade, J. C. D. (2005). Biodegradation of lignocellulosics: Microbial, chemical, and enzymatic aspects of the fungal attack of lignin. International Microbiology, 8(3), 195–204.
Martínez, Á. T., Rencoret, J., Marques, G., Gutiérrez, A., Ibarra, D., Jiménez-Barbero, J., & José, C. (2008). Monolignol acylation and lignin structure in some non woody plants: A 2D NMR study. Phytochemistry, 69(16), 2831–2843.
Matés, J. M., Pérez-Gómez, C., & De Castro, I. N. (1999). Antioxidant enzymes and human diseases. Clinical Biochemistry, 32(8), 595–603.
Megharaj, M., Ramakrishnan, B., Venkateswarlu, K., Sethunathan, N., & Naidu, R. (2011). Bioremediation approaches for organic pollutants: A critical perspective. Environment International, 37(8), 1362–1375.
Meharg, A. A., & Cairney, J. W. (2000). Ectomycorrhizas-extending the capabilities of rhizosphere remediation. Soil Biology and Biochemistry, 32(11–12), 1475–1484.
Messens, J., & Silver, S. (2006). Arsenate reduction: Thiol cascade chemistry with convergent evolution. Journal of Molecular Biology, 362(1), 1–17.
Mkandawire, M., & Dudel, E. G. (2007). Are Lemna spp. effective phytoremediation agents. Bioremediation, Biodiversity and Bioavailability, 1(1), 56–71.
Mohan, D., & Pittman, C. U. (2007). Arsenic removal from water/wastewater using adsorbents – A critical review. Journal of Hazardous Materials, 142(1–2), 1–53.
Mohan, S. V., Kisa, T., Ohkuma, T., Kanaly, R. A., & Shimizu, Y. (2006). Bioremediation technologies for treatment of PAH-contaminated soil and strategies to enhance process efficiency. Reviews in Environmental Science and Bio/Technology, 5(4), 347–374.
Moktali, V., Park, J., Fedorova-Abrams, N. D., Park, B., Choi, J., Lee, Y. H., & Kang, S. (2012). Systematic and searchable classification of cytochrome P450 proteins encoded by fungal and oomycete genomes. BMC Genomics, 13(1), 525.
Morelli, I. S., Saparrat, M. C. N., Del Panno, M. T., Coppotelli, B. M., & Arrambari, A. (2013). Bioremediation of PAH-contaminated soil by fungi. In Fungi as bioremediators (pp. 159–179). Berlin/Heidelberg: Springer.
Morozova, O. V., Shumakovich, G. P., Shleev, S. V., & Yaropolov, Y. I. (2007). Laccase-mediator systems and their applications: A review. Applied Biochemistry and Microbiology, 43(5), 523–535.
Mudhoo, A., Garg, V. K., & Wang, S. (2012). Removal of heavy metals by biosorption. Environmental Chemistry Letters, 10(2), 109–117.
Mueller, K. E. (2005). Investigations into the use of trees for phytoremediation of pah contaminated soils (Doctoral dissertation). University of Cincinnati.
Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Remediation technologies for metal-contaminated soils and groundwater: An evaluation. Engineering Geology, 60(1–4), 193–207.
Murphy, A., Zhou, J., Goldsbrough, P. B., & Taiz, L. (1997). Purification and immunological identification of Metallothioneins 1 and 2 from Arabidopsis thaliana. Plant Physiology, 113(4), 1293–1301.
Nagy, B., Măicăneanu, A., Indolean, C., Mânzatu, C., Silaghi-Dumitrescu, L., & Majdik, C. (2014). Comparative study of Cd (II) biosorption on cultivated Agaricus bisporus and wild Lactarius piperatus based biocomposites. Linear and nonlinear equilibrium modelling and kinetics. Journal of the Taiwan Institute of Chemical Engineers, 45(3), 921–929.
Nasr, M., & Arp, P. A. (2011). Hg concentrations and accumulations in fungal fruiting bodies, as influenced by forest soil substrates and moss carpets. Applied Geochemistry, 26(11), 1905–1917.
Nnorom, I. C., Jarzyńska, G., Drewnowska, M., Dryżałowska, A., Kojta, A., Pankavec, S., & Falandysz, J. (2013). Major and trace elements in sclerotium of Pleurotus tuber-regium (Ósū) mushroom – Dietary intake and risk in southeastern Nigeria. Journal of Food Composition and Analysis, 29(1), 73–81.
Noctor, G., Mhamdi, A., Chaouch, S., Han, Y. I., Neukermans, J., Marquez-Garcia, B. E. L. E. N., & Foyer, C. H. (2012). Glutathione in plants: An integrated overview. Plant, Cell and Environment, 35(2), 454–484.
Nordberg, J., & Arner, E. S. (2001). Reactive oxygen species, antioxidants, and the mammalian thioredoxin system1. Free Radical Biology and Medicine, 31(11), 1287–1312.
Nunes, C. S., & Malmlöf, K. (2018). Enzymatic decontamination of antimicrobials, phenols, heavy metals, pesticides, polycyclic aromatic hydrocarbons, dyes, and animal waste. In Enzymes in human and animal nutrition (pp. 331–359). New York: Academic.
Nykiel-Szymańska, J., Stolarek, P., & Bernat, P. (2018). Elimination and detoxification of 2, 4-D by Umbelopsis isabellina with the involvement of cytochrome P450. Environmental Science and Pollution Research, 25(3), 2738–2743.
Oyetayo, V. O., Adebayo, A. O., & Ibileye, A. (2012). Assessment of the biosorption potential of heavy metals by Pleurotus tuberregium. International Journal of Advanced Biological Research, 2, 293–297.
Özdemir, S., Kilinc, E., Poli, A., Nicolaus, B., & Güven, K. (2009). Biosorption of Cd, Cu, Ni, Mn and Zn from aqueous solutions by thermophilic bacteria, Geobacillus toebii sub. sp. decanicus and Geobacillus thermoleovorans sub. sp. stromboliensis: Equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal, 152(1), 195–206.
Pala, S. A., Wani, A. H., Boda, R. H., & Wani, B. A. (2014). Mushroom refinement endeavor auspicate non-green revolution in the offing. Nusantara Bioscience, 6(2), 173–185.
Parmar, P., Dave, B., Sudhir, A., Panchal, K., & Subramanian, R. B. (2013). Physiological, biochemical and molecular response of plants against heavy metals stress. International Journal of Current Research, 5(1), 80–89.
Pearce, C. I., Lloyd, J. R., & Guthrie, J. T. (2003). The removal of colour from textile wastewater using whole bacterial cells: A review. Dyes and Pigments, 58(3), 179–196.
Pérez, J., Munoz-Dorado, J., de la Rubia, T. D. L. R., & Martinez, J. (2002). Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. International Microbiology, 5(2), 53–63.
Pierart, A., Shahid, M., Séjalon-Delmas, N., & Dumat, C. (2015). Antimony bioavailability: Knowledge and research perspectives for sustainable agricultures. Journal of Hazardous Materials, 289, 219–234.
Pointing, S. (2001). Feasibility of bioremediation by white-rot fungi. Applied Microbiology and Biotechnology, 57(1–2), 20–33.
Polak, J., & Jarosz-Wilkolazka, A. (2012). Fungal laccases as green catalysts for dye synthesis. Process Biochemistry, 47(9), 1295–1307.
Priyadharsini, P., Rojamala, K., Ravi, R. K., Muthuraja, R., Nagaraj, K., & Muthukumar, T. (2016). Mycorrhizosphere: The extended rhizosphere and its significance. In Plant-microbe interaction: An approach to sustainable agriculture (pp. 97–124). Singapore: Springer.
Puglisi, E., Hamon, R., Vasileiadis, S., Coppolecchia, D., & Trevisan, M. (2012). Adaptation of soil microorganisms to trace element contamination: A review of mechanisms, methodologies, and consequences for risk assessment and remediation. Critical Reviews in Environmental Science and Technology, 42(22), 2435–2470.
Purahong, W., Wubet, T., Lentendu, G., Schloter, M., Pecyna, M. J., Kapturska, D., & Buscot, F. (2016). Life in leaf litter: Novel insights into community dynamics of bacteria and fungi during litter decomposition. Molecular Ecology, 25(16), 4059–4074.
Purnomo, A. S., Ashari, K., & Hermansyah, F. T. (2017). Evaluation of the synergistic effect of mixed cultures of white-rot fungus Pleurotus ostreatus and biosurfactant-producing bacteria on DDT biodegradation. Journal of Microbiology and Biotechnology, 27(7), 1306–1315.
Purohit, J., Anirudha, C., Mohan, K. B., & Singh, N. K. (2018). Mycoremediation of agricultural soil: Bioprospection for sustainable development. In Mycoremediation and environmental sustainability (pp. 91–120). Cham: Springer.
Qu, J., Zang, T., Gu, H., Li, K., Hu, Y., Ren, G., & Jin, Y. (2015). Biosorption of copper ions from aqueous solution by Flammulina velutipes spent substrate. Bio Resources, 10(4), 8058–8075.
Rabaey, K., & Verstraete, W. (2005). Microbial fuel cells: Novel biotechnology for energy generation. Trends in Biotechnology, 23(6), 291–298.
Raghukumar, S. (2017). Physiology, biochemistry, and biotechnology. In Fungi in coastal and oceanic marine ecosystems (pp. 265–306). Cham: Springer.
Rajinipriya, M., Nagalakshmaiah, M., Robert, M., & Elkoun, S. (2018). Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: A review. ACS Sustainable Chemistry and Engineering, 6(3), 2807–2828.
Rashid, A., Bhatti, H. N., Iqbal, M., & Noreen, S. (2016). Fungal biomass composite with bentonite efficiency for nickel and zinc adsorption: A mechanistic study. Ecological Engineering, 91, 459–471.
Rauser, W. E. (1995). Phytochelatins and related peptides. Structure, biosynthesis, and function. Plant Physiology, 109(4), 1141.
Read, D. J., & Perez-Moreno, J. (2003). Mycorrhizas and nutrient cycling in ecosystems–A journey towards relevance. New Phytologist, 157(3), 475–492.
Richter, H., & Howard, J. B. (2000). Formation of polycyclic aromatic hydrocarbons and their growth to soot a review of chemical reaction pathways. Progress in Energy and Combustion Science, 26(4–6), 565–608.
Rillig, M. C., & Mummey, D. L. (2006). Mycorrhizas and soil structure. New Phytologist, 171(1), 41–53.
Roshchina, V. V., & Roshchina, V. D. (2012). The excretory function of higher plants. Berlin/Heidelberg: Springer.
Rouches, E., Herpoël-Gimbert, I., Steyer, J. P., & Carrere, H. (2016). Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: A review. Renewable and Sustainable Energy Reviews, 59, 179–198.
Rout, M. E. (2014). The plant microbiome. In Advances in botanical research (Vol. 69, pp. 279–309). Waltham: Academic.
Saeedi, M., Li, L. Y., & Salmanzadeh, M. (2012). Heavy metals and polycyclic aromatic hydrocarbons: Pollution and ecological risk assessment in street dust of Tehran. Journal of Hazardous Materials, 227, 9–17.
Saichek, R. E., & Reddy, K. R. (2005). Electrokinetically enhanced remediation of hydrophobic organic compounds in soils: A review. Critical Reviews in Environmental Science and Technology, 35(2), 115–192.
Saranraj, P., & Stella, D. (2014). Impact of sugar mill effluent to environment and bioremediation: A review. World Applied Sciences Journal, 30(3), 299–316.
Sardrood, B. P., Goltapeh, E. M., & Varma, A. (2013). An introduction to bioremediation. In Fungi as bioremediators (pp. 3–27). Berlin/Heidelberg: Springer.
Sarma, V. V. (2018). Obligate marine fungi and bioremediation. In Mycoremediation and environmental sustainability (pp. 307–323). Cham: Springer.
Schiffer, M. B. (1986). Radiocarbon dating and the “old wood” problem: The case of the Hohokam chronology. Journal of Archaeological Science, 13(1), 13–30.
Schmidt, T., & Schaechter, M. (2012). Topics in ecological and environmental microbiology. Burlington: Elsevier.
Schutzendubel, A., & Polle, A. (2002). Plant responses to abiotic stresses: Heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany, 53(372), 1351–1365.
Sharma, S. S., & Dietz, K. J. (2006). The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany, 57(4), 711–726.
Sharma, S., Tiwari, S., Hasan, A., Saxena, V., & Pandey, L. M. (2018). Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils. 3 Biotech, 8(4), 216.
Siddiquee, S., Rovina, K., Azad, S. A., Naher, L., Suryani, S., & Chaikaew, P. (2015). Heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: A review. Journal of Microbial and Biochemical Technology, 7(6), 384–393.
Singh, O. V., Labana, S., Pandey, G., Budhiraja, R., & Jain, R. K. (2003). Phytoremediation: An overview of metallic ion decontamination from soil. Applied Microbiology and Biotechnology, 61(5–6), 405–412.
Singh, P. C., Srivastava, S., Shukla, D., Bist, V., Tripathi, P., Anand, V., & Srivastava, S. (2018). Mycoremediation mechanisms for heavy metal resistance/tolerance in plants. In Mycoremediation and environmental sustainability (pp. 351–381). Cham: Springer.
Sivaramakrishnan, S., Gangadharan, D., Nampoothiri, K. M., Soccol, C. R., & Pandey, A. (2006). α-Amylases from microbial sources–an overview on recent developments. Food Technology and Biotechnology, 44(2), 173–184.
Smith, S. E., & Read, D. J. (2010). Mycorrhizal symbiosis. New York: Academic.
Soden, D. M., & Dobson, A. D. (2001). Differential regulation of laccase gene expression in Pleurotus sajor-caju. Microbiology, 147(7), 1755–1763.
Spokas, K. A., Cantrell, K. B., Novak, J. M., Archer, D. W., Ippolito, J. A., Collins, H. P., & Lentz, R. D. (2012). Biochar: A synthesis of its agronomic impact beyond carbon sequestration. Journal of Environmental Quality, 41(4), 973–989.
Stamets, P. (2011). Growing gourmet and medicinal mushrooms. Berkeley: Ten Speed Press.
Stanic, A. (2017). Preparation of Thiol Conjugates of the Mycotoxin Deoxynivalenol and their Occurrence in Nature. http://urn.nb.no/URN:NBN:no-58380
Strong, P. J., & Burgess, J. E. (2008). Treatment methods for wine-related and distillery wastewaters: A review. Bioremediation Journal, 12(2), 70–87.
Sud, D., Mahajan, G., & Kaur, M. P. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions – A review. Bioresource Technology, 99(14), 6017–6027.
Sudha, M., Saranya, A., Selvakumar, G., & Sivakumar, N. (2014). Microbial degradation of azo dyes: A review. International Journal of Current Microbiology and Applied Sciences, 3(2), 670–690.
Sugasini, A., Rajagopal, K., & Banu, N. (2014). A study on biosorption potential of Aspergillus sp. of tannery effluent. Advances in Bioscience and Biotechnology, 5(10), 853.
Sutherland, C., & Venkobachar, C. (2010). A diffusion-chemisorption kinetic model for simulating biosorption using forest macro-fungus, fomes fasciatus. International Research Journal of Plant Science, 1(4), 107–117.
Sytar, O., Kumar, A., Latowski, D., Kuczynska, P., Strzałka, K., & Prasad, M. N. V. (2013). Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiologiae Plantarum, 35(4), 985–999.
Tabibzadeh, S. (2016). Nature creates, adapts, protects and sustains life using hydrogen sulfide. Frontiers in Bioscience, 21, 528–560.
Tadkaew, N., Hai, F. I., McDonald, J. A., Khan, S. J., & Nghiem, L. D. (2011). Removal of trace organics by MBR treatment: The role of molecular properties. Water Research, 45(8), 2439–2451.
Tahir, M. W., Zaidi, N. A., Rao, A. A., Blank, R., Vellekoop, M. J., & Lang, W. (2018). A fungus spores dataset and a convolutional neural networks based approach for fungus detection. IEEE Transactions on Nano Bioscience, 17(3), 5–22.
Tak, H. I., Ahmad, F., & Babalola, O. O. (2013). Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. In Reviews of environmental contamination and toxicology (Vol. 223, pp. 33–52). New York: Springer.
Tan, Y. H. (2011) Behavioral properties of locally isolated Acinetobacter species in degrading hydrocarbon chain in crude oil and used cooking oil (Doctoral dissertation). UTAR.
Tangahu, B. V., Abdullah, S., Rozaimah, S., Basri, H., Idris, M., Anuar, N., & Mukhlisin, M. (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering, 2011, 1–31.
Tay, C. C., Liew, H. H., Yin, C. Y., Abdul-Talib, S., Surif, S., Suhaimi, A. A., & Yong, S. K. (2011). Biosorption of cadmium ions using Pleurotus ostreatus: Growth kinetics, isotherm study and biosorption mechanism. Korean Journal of Chemical Engineering, 28(3), 825–830.
Teng, Y., Luo, Y., Sun, M., Liu, Z., Li, Z., & Christie, P. (2010). Effect of bioaugmentation by Paracoccus sp. strain HPD-2 on the soil microbial community and removal of polycyclic aromatic hydrocarbons from an aged contaminated soil. Bioresource Technology, 101(10), 3437–3443.
Tian, H., Ma, Y. J., Li, W. Y., & Wang, J. W. (2018). Efficient degradation of triclosan by an endophytic fungus Penicillium oxalicum B4. Environmental Science and Pollution Research, 25(9), 8963–8975.
Toljander, J. F., Lindahl, B. D., Paul, L. R., Elfstrand, M., & Finlay, R. D. (2007). Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiology Ecology, 61(2), 295–304.
Tsarevsky, N. V., & Matyjaszewski, K. (2007). Green atom transfer radical polymerization: From process design to preparation of well-defined environmentally friendly polymeric materials. Chemical Reviews, 107(6), 2270–2299.
Valášková, V. (2010). Physiology and ecology of saprotrophic basidiomycetes degrading dead plant biomass. http://hdl.handle.net/20.500.11956/24782
Vander Oost, R., Beyer, J., & Vermeulen, N. P. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: A review. Environmental Toxicology and Pharmacology, 13(2), 57–149.
Vara, S. (2017). Mycoremediation of lignocelluloses. In Handbook of research on inventive bioremediation techniques (pp. 264–286). New York: IGI Global.
Vassilev, A., Schwitzguébel, J. P., Thewys, T., Van Der Lelie, D., & Vangronsveld, J. (2004). The use of plants for remediation of metal-contaminated soils. The Scientific World Journal, 4, 9–34.
Verbruggen, N., Hermans, C., & Schat, H. (2009). Mechanisms to cope with arsenic or cadmium excess in plants. Current Opinion in Plant Biology, 12(3), 364–372.
Waghunde, R. R., Shelake, R. M., & Sabalpara, A. N. (2016). Trichoderma: A significant fungus for agriculture and environment. African Journal of Agricultural Research, 11(22), 1952–1965.
Walker, G. M., & White, N. A. (2017). Introduction to fungal physiology. In Fungi: Biology and applications (pp. 1–35). Hoboken: Wiley.
Wang, J., & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27(2), 195–226.
Wu, Y., Luo, Y., Zou, D., Ni, J., Liu, W., Teng, Y., & Li, Z. (2008). Bioremediation of polycyclic aromatic hydrocarbons contaminated soil with Monilinia sp.: Degradation and microbial community analysis. Biodegradation, 19(2), 247–257.
Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. Isrn Ecology, 11, 1–19.
Xiong, X. Q., Liao, H. D., Ma, J. S., Liu, X. M., Zhang, L. Y., Shi, X. W., & Zhu, Y. H. (2014). Isolation of a rice endophytic bacterium, Pantoea sp. Sd-1, with ligninolytic activity and characterization of its rice straw degradation ability. Letters in Applied Microbiology, 58(2), 123–129.
Xu, P., Zeng, G., Huang, D., Liu, L., Zhao, M., Lai, C., & Zhang, C. (2016). Metal bioaccumulation, oxidative stress and antioxidant defenses in Phanerochaete chrysosporium response to Cd exposure. Ecological Engineering, 87, 150–156.
Xue, J., Yu, Y., Bai, Y., Wang, L., & Wu, Y. (2015). Marine oil-degrading microorganisms and biodegradation process of petroleum hydrocarbon in marine environments: A review. Current Microbiology, 71(2), 220–228.
Yang, S., Hai, F. I., Nghiem, L. D., Price, W. E., Roddick, F., Moreira, M. T., & Magram, S. F. (2013). Understanding the factors controlling the removal of trace organic contaminants by white-rot fungi and their lignin modifying enzymes: A critical review. Bioresource Technology, 141, 97–108.
Zavarzina, A. G., Lisov, A. A., Zavarzin, A. A., & Leontievsky, A. A. (2010). Fungal oxidoreductases and humification in forest soils. In Soil enzymology (pp. 207–228). Berlin/Heidelberg: Springer.
Zenk, M. H. (1996). Heavy metal detoxification in higher plants-A review. Gene, 179(1), 21–30.
Zhang, Y., & Tao, S. (2009). Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmospheric Environment, 43(4), 812–819.
Zhang, X., Wang, H., He, L., Lu, K., Sarmah, A., Li, J., Bolan, N. S., Pei, J., & Huang, H. (2013). Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environmental Science and Pollution Research, 20(12), 8472–8483.
Zhang, C., Chen, W., & Alvarez, P. J. (2014). Manganese peroxidase degrades pristine but not surface-oxidized (carboxylated) single-walled carbon nanotubes. Environmental Science and Technology, 48(14), 7918–7923.
Zhao, F. J., Zhu, Y. G., & Meharg, A. A. (2013). Methylated arsenic species in rice: Geographical variation, origin, and uptake mechanisms. Environmental Science and Technology, 47(9), 3957–3966.
Zucca, P., Rescigno, A., Rinaldi, A. C., & Sanjust, E. (2014). Biomimetic metalloporphines and metalloporphyrins as potential tools for delignification: Molecular mechanisms and application perspectives. Journal of Molecular Catalysis A: Chemical, 388, 2–34.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Chandra, P., Enespa (2019). Mycoremediation of Environmental Pollutants from Contaminated Soil. In: Varma, A., Choudhary, D. (eds) Mycorrhizosphere and Pedogenesis. Springer, Singapore. https://doi.org/10.1007/978-981-13-6480-8_15
Download citation
DOI: https://doi.org/10.1007/978-981-13-6480-8_15
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-6479-2
Online ISBN: 978-981-13-6480-8
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)