Skip to main content

Mycoremediation of Environmental Pollutants from Contaminated Soil

Abstract

Organic and inorganic of xenobiotic compounds in soil is a serious problem mostly in industrialized countries, it caused diffuse and acute contamination on a global scale in soil and water. Various persistent organic pollutants (POPs) degraded and transforms by the fungi. A mutualistic associations formed by the fungi and mycorrhizal fungi with various plant species in the rhizospheric regions. The association of fungi with plants biotransforms and biodegrade the hazardous contaminants in the soil. The species of white rot fungi such as Pleurotus ostreatus, Pleurotus sajorcaju, Pleurotus tuberregium, Pleurotus pulmonarius and Bjerkandera adusta have more potential comparison to other species. The wide range of organic molecules released extracellular lignin modifying enzymes are very effective in degrading of organic molecules. The lignin-peroxidases (LiP), manganese peroxidases (MnP), and other H2O2 producing and laccase enzymes present in the microbial system employed for degrading of lignin. This chapter covered various fungal species for biodegradation and transformation of environmental contaminants by enzymes and biomass.

Keywords

  • Mycoremediation
  • Fungi
  • Bioremediation
  • Heavy metals
  • PAHs

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abrahams, P. W. (2002). Soils: Their implications to human health. Science of the Total Environment, 291(1–3), 1–32.

    CrossRef  CAS  PubMed  Google Scholar 

  • Abril, N., Gion, J. M., Kerner, R., Müller-Starck, G., Cerrillo, R. M. N., Plomion, C., & Jorrin-Novo, J. V. (2011). Proteomics research on forest trees, the most recalcitrant and orphan plant species. Phytochemistry, 72(10), 1219–1242.

    CrossRef  CAS  PubMed  Google Scholar 

  • Abuhussein, A. (2018). Wastewater refining and reuse and city-level water decision making.. Electronic Thesis and Dissertation Repository. 5310. https://ir.lib.uwo.ca/etd/5310.

    Google Scholar 

  • Adenipekun, C. O., & Lawal, R. (2012). Uses of mushrooms in bioremediation: A review. Biotechnology and Molecular Biology Reviews, 7(3), 62–68.

    CAS  Google Scholar 

  • Adenipekun, C. O., Ipeaiyeda, A. R., Olayonwa, A. J., & Egbewale, S. O. (2015). Biodegradation of polycyclic aromatic hydrocarbons (PAHs) in spent and fresh cutting fluids contaminated soils by Pleurotus pulmonarius (Fries). Quelet and Pleurotus ostreatus (Jacq.) Fr. P. Kumm. African Journal of Biotechnology, 14(8), 661–667.

    CrossRef  CAS  Google Scholar 

  • Ahemad, M., & Kibret, M. (2013). Recent trends in microbial biosorption of heavy metals: A review. Biochemistry and Molecular Biology, 1(1), 19–26.

    CrossRef  Google Scholar 

  • Ahsan, N., Renaut, J., & Komatsu, S. (2009). Recent developments in the application of proteomics to the analysis of plant responses to heavy metals. Proteomics, 9(10), 2602–2621.

    CrossRef  CAS  PubMed  Google Scholar 

  • Alam, A., & Pantola, R. C. (2016). Intracellular copper accumulation and biochemical changes in response to Cu induced oxidative stress in brassica species. San Francisco: GRIN Publishing.

    Google Scholar 

  • Alam, M. N., Bristi, N. J., & Rafiquzzaman, M. (2013). Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical Journal, 21(2), 143–152.

    CrossRef  PubMed  Google Scholar 

  • Alloway, B. J. (2013). Sources of heavy metals and metalloids in soils. In Heavy metals in soils (pp. 11–50). Dordrecht: Springer.

    CrossRef  Google Scholar 

  • Alluri, H. K., Ronda, S. R., Settalluri, V. S., Bondili, J. S., Suryanarayana, V., & Venkateshwar, P. (2007). Biosorption: An eco-friendly alternative for heavy metal removal. African Journal of Biotechnology, 6(25), 2924–2931.

    CrossRef  CAS  Google Scholar 

  • Alvarez, A., Saez, J. M., Costa, J. S. D., Colin, V. L., Fuentes, M. S., Cuozzo, S. A., Benimeli, C. S., Polti, M. A., & Amoroso, M. J. (2017). Actinobacteria: Current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere, 166, 41–62.

    CrossRef  CAS  PubMed  Google Scholar 

  • Anastasi, A., Tigini, V., & Varese, G. C. (2013). The bioremediation potential of different ecophysiological groups of fungi. In Fungi as bioremediators (pp. 29–49). Berlin/Heidelberg: Springer.

    CrossRef  Google Scholar 

  • Anasonye, F., Winquist, E., Räsänen, M., Kontro, J., Björklöf, K., Vasilyeva, G., Jørgensen, K. S., Steffen, K. T., & Tuomela, M. (2015). Bioremediation of TNT contaminated soil with fungi under laboratory and pilot scale condition. International Biodeterioration and Biodegradation., 105, 7–12.

    CrossRef  CAS  Google Scholar 

  • Andreoni, V., & Gianfreda, L. (2007). Bioremediation and monitoring of aromatic-polluted habitats. Applied Microbiology and Biotechnology, 76(2), 287–308.

    CrossRef  CAS  PubMed  Google Scholar 

  • Arantes, V., Jellison, J., & Goodell, B. (2012). Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. Applied Microbiology and Biotechnology, 94(2), 323–338.

    CrossRef  CAS  PubMed  Google Scholar 

  • Arnold, A. E. (2007). Understanding the diversity of foliar endophytic fungi: Progress, challenges, and frontiers. Fungal Biology Reviews, 21(2–3), 51–66.

    CrossRef  Google Scholar 

  • Ayangbenro, A. S., & Babalola, O. O. (2017). A new strategy for heavy metal polluted environments: A review of microbial biosorbents. International Journal of Environmental Research and Public Health, 14(1), 94.

    CrossRef  PubMed Central  CAS  Google Scholar 

  • Azaizeh, H., Castro, P. M., & Kidd, P. (2011). Biodegradation of organic xenobiotic pollutants in the rhizosphere. In Organic xenobiotics and plants (pp. 191–215). Dordrecht: Springer.

    CrossRef  Google Scholar 

  • Azmi, W., Sani, R. K., & Banerjee, U. C. (1998). Biodegradation of triphenylmethane dyes. Enzyme and Microbial Technology, 22(3), 185–191.

    CrossRef  CAS  PubMed  Google Scholar 

  • Baghour, M. (2017). Effect of seaweeds in phytoremediation. Biotechnological applications of seaweeds (pp. 47–83). New York: Nova Science Publishers.

    Google Scholar 

  • Bahn, Y. S., Xue, C., Idnurm, A., Rutherford, J. C., Heitman, J., & Cardenas, M. E. (2007). Sensing the environment: Lessons from fungi. Nature Reviews Microbiology, 5(1), 57.

    CrossRef  CAS  PubMed  Google Scholar 

  • Baldrian, P. (2003). Interactions of heavy metals with white-rot fungi. Enzyme and Microbial Technology, 32(1), 78–91.

    CrossRef  CAS  Google Scholar 

  • Bamforth, S. M., & Singleton, I. (2005). Bioremediation of polycyclic aromatic hydrocarbons: Current knowledge and future directions. Journal of Chemical Technology and Biotechnology, 80(7), 723–736.

    CrossRef  CAS  Google Scholar 

  • Beckham, G. T., Johnson, C. W., Karp, E. M., Salvachúa, D., & Vardon, D. R. (2016). Opportunities and challenges in biological lignin valorization. Current Opinion in Biotechnology, 42, 40–53.

    CrossRef  CAS  PubMed  Google Scholar 

  • Bezalel, L., Hadar, Y., & Cerniglia, C. E. (1997). Enzymatic mechanisms involved in phenanthrene degradation by the white rot fungus Pleurotus ostreatus. Applied and Environmental Microbiology, 63(7), 2495–2501.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bisht, S., Pandey, P., Bhargava, B., Sharma, S., Kumar, V., & Sharma, K. D. (2015). Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Brazilian Journal of Microbiology, 46(1), 7–21.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolan, N. S., Choppala, G., Kunhikrishnan, A., Park, J., & Naidu, R. (2013). Microbial transformation of trace elements in soils in relation to bioavailability and remediation. In Reviews of environmental contamination and toxicology (pp. 1–56). New York, NY: Springer.

    Google Scholar 

  • Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., & Scheckel, K. (2014). Remediation of heavy metal(loid)s contaminated soils–to mobilize or to immobilize. Journal of Hazardous Materials, 266, 141–166.

    CrossRef  CAS  PubMed  Google Scholar 

  • Brookes, P. C. (1995). The use of microbial parameters in monitoring soil pollution by heavy metals. Biology and Fertility of Soils, 19(4), 269–279.

    CrossRef  CAS  Google Scholar 

  • Brosnan, J. T., & Brosnan, M. E. (2006). The sulfur-containing amino acids: An overview. The Journal of Nutrition, 136(6), 1636S–1640S.

    CrossRef  CAS  PubMed  Google Scholar 

  • Brundrett, M. C. (2009). Mycorrhizal associations and other means of nutrition of vascular plants: Understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil, 320(1–2), 37–77.

    CrossRef  CAS  Google Scholar 

  • Bugg, T. D., Ahmad, M., Hardiman, E. M., & Rahmanpour, R. (2011). Pathways for degradation of lignin in bacteria and fungi. Natural Product Reports, 28(12), 1883–1896.

    CrossRef  CAS  PubMed  Google Scholar 

  • Cabral, L., Soares, C. R. F. S., Giachini, A. J., & Siqueira, J. O. (2015). Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: Mechanisms and major benefits of their applications. World Journal of Microbiology and Biotechnology, 31(11), 1655–1664.

    CrossRef  CAS  PubMed  Google Scholar 

  • Camacho-Morales, R. L., Guillén-Navarro, K., & Sánchez, J. E. (2017). Degradation of the herbicide paraquat by macromycetes isolated from southeastern Mexico. 3 Biotech, 7(5), 324.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Cameron, M. D., Timofeevski, S., & Aust, S. D. (2000). Enzymology of Phanerochaetechrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics. Applied Microbiology and Biotechnology, 54(6), 751–758.

    CrossRef  CAS  PubMed  Google Scholar 

  • Castellet, R. F. (2018). Fungal biodegradation of pharmaceutical active compounds in wastewater. https://ddd.uab.cat/record/189612

    Google Scholar 

  • Chan, W. K., Wildeboer, D., Garelick, H., & Purchase, D. (2016). Mycoremediation of heavy metal/metalloid-contaminated soil: Current understanding and future prospects. In Fungal applications in sustainable environmental biotechnology (pp. 249–272). Cham: Springer.

    CrossRef  Google Scholar 

  • Chandra, P., & Singh, D. P. (2014). Removal of Cr (VI) by a halotolerant bacterium Halomonas sp. CSB 5 isolated from sāmbhar salt Lake Rajasthan (India). Cellular and Molecular Biology, 60(5), 64–72.

    CAS  PubMed  Google Scholar 

  • Chary, N. S., Kamala, C. T., & Raj, D. S. S. (2008). Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicology and Environmental Safety, 69(3), 513–524.

    CrossRef  CAS  PubMed  Google Scholar 

  • Chatterjee, A., & Abraham, J. (2017). Efficient management of e-wastes. International journal of Environmental Science and Technology, 14(1), 211–222.

    CrossRef  CAS  Google Scholar 

  • Chiu, S. W., ChingML, F. K. L., & Moore, D. (1998). Spent oyster mushroom substrate performs better than many mushroom mycelia in removing the biocide pentachlorophenol. Mycological Research, 102(12), 1553–1562.

    CrossRef  CAS  Google Scholar 

  • Chritian, V. (2001). Enzymes of lignin-degrading fungi: Degradation of xenobiotic compounds (Doctoral dissertation). Saurashtra University.

    Google Scholar 

  • Clemens, S. (2001). Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 212(4), 475–486.

    CrossRef  CAS  PubMed  Google Scholar 

  • Clemens, S. (2006). Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88(11), 1707–1719.

    CrossRef  CAS  PubMed  Google Scholar 

  • Cobbett, C., & Goldsbrough, P. (2002). Phytochelatins and metallothioneins: Roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology, 53(1), 159–182.

    CrossRef  CAS  PubMed  Google Scholar 

  • Coleman, D. C. (2008). From peds to paradoxes: Linkages between soil biota and their influences on ecological processes. Soil Biology and Biochemistry, 40(2), 271–289.

    CrossRef  CAS  Google Scholar 

  • Colpaert, J. V., Wevers, J. H., Krznaric, E., & Adriaensen, K. (2011). How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Annals of Forest Science, 68(1), 17–24.

    CrossRef  Google Scholar 

  • Couto, S. R., & Herrera, J. L. T. (2006). Industrial and biotechnological applications of laccases: A review. Biotechnology Advances, 24(5), 500–513.

    CrossRef  CAS  Google Scholar 

  • Covino, S. (2010). In vivo and in vitro degradation of aromatic contaminants by white rot fungi. A case study: Panus tigrinus CBS, 577, 79.

    Google Scholar 

  • Cowan, A. K., Lodewijks, H. M., Sekhohola, L. M., & Edeki, O. G. (2016). In situ bioremediation of South African coal discard dumps. In Proceedings, mine closure-2016 (pp. 501–509). Perth: Australian Centre for Geomechanics.

    Google Scholar 

  • Crane, R. A., & Scott, T. B. (2012). Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology. Journal of Hazardous Materials, 211, 112–125.

    CrossRef  PubMed  CAS  Google Scholar 

  • Crestini, C., Crucianelli, M., Orlandi, M., & Saladino, R. (2010). Oxidative strategies in lignin chemistry: A new environmental friendly approach for the functionalization of lignin and lignocellulosic fibers. Catalysis Today, 156(1–2), 8–22.

    CrossRef  CAS  Google Scholar 

  • Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology, 97(9), 1061–1085.

    CrossRef  CAS  PubMed  Google Scholar 

  • Cunningham, S. D., Anderson, T. A., Schwab, A. P., & Hsu, F. C. (1996). Phytoremediation of soils contaminated with organic pollutants. Advances in Agronomy, 56(1), 55–114.

    CrossRef  CAS  Google Scholar 

  • Das, N. (2005). Heavy metals biosorption by mushrooms. Nilanjana Das Natural Product Radiance, 4(6), 454–459.

    Google Scholar 

  • Das, M., Royer, T. V., & Leff, L. G. (2007). Diversity of fungi, bacteria, and actinomycetes on leaves decomposing in a stream. Applied and Environmental Microbiology, 73(3), 756–767.

    CrossRef  CAS  PubMed  Google Scholar 

  • Dashtban, M., Schraft, H., Syed, T. A., & Qin, W. (2010). Fungal biodegradation and enzymatic modification of lignin. International Journal of Biochemistry and Molecular Biology, 1(1), 36.

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Novais, C. B., Borges, W. L., da Conceicão, J. E., Júnior, O. J. S., & Siqueira, J. O. (2014). Inter-and intraspecific functional variability of tropical arbuscular mycorrhizal fungi isolates colonizing corn plants. Applied Soil Ecology, 76, 78–86.

    CrossRef  Google Scholar 

  • Dembitsky, V. M., & Rezanka, T. (2003). Natural occurrence of arseno compounds in plants, lichens, fungi, algal species, and microorganisms. Plant Science, 165(6), 1177–1192.

    CrossRef  CAS  Google Scholar 

  • Deng, Z., Cao, L., Huang, H., Jiang, X., Wang, W., Shi, Y., & Zhang, R. (2011). Characterization of Cd-and Pb-resistant fungal endophyte Mucor sp. CBRF59 isolated from rapes (Brassica chinensis) in a metal-contaminated soil. Journal of Hazardous Materials, 185(2–3), 717–724.

    CrossRef  CAS  PubMed  Google Scholar 

  • Deng, Z., Zhang, R., Shi, Y., Tan, H., & Cao, L. (2014). Characterization of Cd-, Pb-, Zn-resistant endophytic Lasiodiplodia sp. MXSF31 from metal accumulating Portulaca oleracea and its potential in promoting the growth of rape in metal-contaminated soils. Environmental Science and Pollution Research, 21(3), 2346–2357.

    CrossRef  CAS  PubMed  Google Scholar 

  • Dermatas, D., & Meng, X. (2003). Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils. Engineering Geology, 70(3–4), 377–394.

    CrossRef  Google Scholar 

  • Doughari, J. (2015). An overview of plant immunity. Journal of Plant Pathology and Microbiology, 6(11), 10–4172.

    Google Scholar 

  • Duan, L., Naidu, R., Thavamani, P., Meaklim, J., & Megharaj, M. (2015). Managing long-term polycyclic aromatic hydrocarbon contaminated soils: A risk-based approach. Environmental Science and Pollution Research, 22(12), 8927–8941.

    CrossRef  CAS  PubMed  Google Scholar 

  • Duke, S. O., Lydon, J., Koskinen, W. C., Moorman, T. B., Chaney, R. L., & Hammerschmidt, R. (2012). Journal of Agricultural and Food Chemistry, 60. ISSN: 1520-5118 ISO Abbreviation: J. Agric. Food Chem.

    Google Scholar 

  • Dunwell, J. M., Khuri, S., & Gane, P. J. (2000). Microbial relatives of the seed storage proteins of higher plants: Conservation of structure and diversification of function during evolution of the cupin superfamily. Microbiology and Molecular Biology Reviews, 64(1), 153–179.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupraz, C., Reid, R. P., Braissant, O., Decho, A. W., Norman, R. S., & Visscher, P. T. (2009). Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96(3), 141–162.

    CrossRef  CAS  Google Scholar 

  • Eibes, G., Cajthaml, T., Moreira, M. T., Feijoo, G., & Lema, J. M. (2006). Enzymatic degradation of anthracene, dibenzothiophene and pyrene by manganese peroxidase in media containing acetone. Chemosphere, 64(3), 408–414.

    CrossRef  CAS  PubMed  Google Scholar 

  • Ellouze, M., & Sayadi, S. (2016). White-rot fungi and their enzymes as a biotechnological tool for xenobiotic bioremediation. In Management of hazardous wastes. Rijeka: InTech.

    Google Scholar 

  • Emamverdian, A., Ding, Y., Mokhberdoran, F., & Xie, Y. (2015). Heavy metal stress and some mechanisms of plant defense response. The Scientific World Journal, 2015, 4.

    CrossRef  CAS  Google Scholar 

  • Encarnacion, A. B., Fagutao, F., Jintasataporn, O., Worawattanamateekul, W., Hirono, I., & Ohshima, T. (2012). Applications of ergothioneine-rich extract from an edible mushroom Flammulina velutipes for melanosis prevention in shrimp, Penaeus monodon and Litopenaeus vannamei. Food Research International, 45(1), 232–237.

    CrossRef  CAS  Google Scholar 

  • Ennis, C. J., Evans, A. G., Islam, M., Ralebitso-Senior, T. K., & Senior, E. (2012). Biochar: Carbon sequestration, land remediation, and impacts on soil microbiology. Critical Reviews in Environmental Science and Technology, 42(22), 2311–2364.

    CrossRef  CAS  Google Scholar 

  • Ercal, N., Gurer-Orhan, H., & Aykin-Burns, N. (2001). Toxic metals and oxidative stress part I: Mechanisms involved in metal-induced oxidative damage. Current Topics in Medicinal Chemistry, 1(6), 529–539.

    CrossRef  CAS  PubMed  Google Scholar 

  • Evanko, C. R., & Dzombak, D. A. (1997). Remediation of metals-contaminated soils and groundwater. Pittsburg: Ground-Water Remediation Technologies Analysis Center.

    Google Scholar 

  • Ferreira-Guedes, S., Mendes, B., & Leitão, A. L. (2012). Degradation of 2, 4-dichlorophenoxyacetic acid by a halotolerant strain of Penicillium chrysogenum: Antibiotic production. Environmental Technology, 33(6), 677–686.

    CrossRef  CAS  PubMed  Google Scholar 

  • Fidalgo, F., Azenha, M., Silva, A. F., de Sousa, A., Santiago, A., Ferraz, P., & Teixeira, J. (2013). Copper-induced stress in Solanum nigrum L. and antioxidant defense system responses. Food and Energy Security, 2(1), 70–80.

    CrossRef  Google Scholar 

  • Finlay, R. D. (2008). Ecological aspects of mycorrhizal symbiosis: With special emphasis on the functional diversity of interactions involving the extraradical mycelium. Journal of Experimental Botany, 59(5), 1115–1126.

    CrossRef  CAS  PubMed  Google Scholar 

  • Flurkey, A., Cooksey, J., Reddy, A., Spoonmore, K., Rescigno, A., Inlow, J., & Flurkey, W. H. (2008). Enzyme, protein, carbohydrate, and phenolic contaminants in commercial tyrosinase preparations: Potential problems affecting tyrosinase activity and inhibition studies. Journal of Agricultural and Food Chemistry, 56(12), 4760–4768.

    CrossRef  CAS  PubMed  Google Scholar 

  • Forgacs, E., Cserhati, T., & Oros, G. (2004). Removal of synthetic dyes from wastewaters: A review. Environment International, 30(7), 953–971.

    CrossRef  CAS  PubMed  Google Scholar 

  • Fritsche, W., Scheibner, K., Herre, A., & Hofrichter, M. (2000). Fungal degradation of explosives: TNT and related nitroaromatic compounds. In Biodegradation of nitroaromatic compounds and explosives (pp. 213–237). Boca Raton: CRC Press.

    Google Scholar 

  • Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407–418.

    CrossRef  CAS  PubMed  Google Scholar 

  • Fulekar, M. H. (2017). Microbial degradation of petrochemical waste-polycyclic aromatic hydrocarbons. Bioresources and Bioprocessing, 4(1), 28.

    Google Scholar 

  • Gadd, G. M. (2004). Microbial influence on metal mobility and application for bioremediation. Geoderma, 122(2–4), 109–119.

    CrossRef  CAS  Google Scholar 

  • Gadd, G. M. (2007). Geomycology: Biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological Research, 111(1), 3–49.

    CrossRef  CAS  PubMed  Google Scholar 

  • Ganeshamurthy, A. N., Varalakshmi, L. R., & Sumangala, H. P. (2016). Environmental risks associated with heavy metal contamination in soil, water and plants in urban and periurban agriculture. Journal of Horticultural Science, 3(1), 1–29.

    Google Scholar 

  • Gavrilescu, M. (2004). Removal of heavy metals from the environment by biosorption. Engineering in Life Sciences, 4(3), 219–232.

    CrossRef  CAS  Google Scholar 

  • Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930.

    CrossRef  CAS  PubMed  Google Scholar 

  • Gonen Tasdemir, F., Yamac, M., Cabuk, A., & Yildiz, Z. (2008). Selection of newly isolated mushroom strains for tolerance and biosorption of zinc in vitro. Journal of Microbiology and Biotechnology, 18(3), 483–489.

    CAS  PubMed  Google Scholar 

  • Gossel, T. A. (2018). Principles of clinical toxicology. Boca Raton: CRC Press.

    Google Scholar 

  • Gratão, P. L., Polle, A., Lea, P. J., & Azevedo, R. A. (2005). Making the life of heavy metal-stressed plants a little easier. Functional Plant Biology, 32(6), 481–494.

    CrossRef  CAS  PubMed  Google Scholar 

  • Guo, G., Zhou, Q., & Ma, L. Q. (2006). Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: A review. Environmental Monitoring and Assessment, 116(1–3), 513–528.

    CrossRef  CAS  PubMed  Google Scholar 

  • Ha, S. B., Smith, A. P., Howden, R., Dietrich, W. M., Bugg, S., O'Connell, M. J., & Cobbett, C. S. (1999). Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomycespombe. The Plant Cell, 11(6), 1153–1163.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall, J. L. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53(366), 1–11.

    CrossRef  CAS  PubMed  Google Scholar 

  • Hamba, Y., & Tamiru, M. (2016). Mycoremediation of heavy metals and hydrocarbons contaminated environment. Asian Journal of Natural and Applied Sciences, 5, 2.

    Google Scholar 

  • Harms, H., Schlosser, D., & Wick, L. Y. (2011). Untapped potential: Exploiting fungi in bioremediation of hazardous chemicals. Nature Reviews Microbiology, 9(3), 177.

    CrossRef  CAS  PubMed  Google Scholar 

  • Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R., & Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14(5), 9643–9684.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Hofrichter, M. (2002). Lignin conversion by manganese peroxidase (MnP). Enzyme and Microbial Technology, 30(4), 454–466.

    CrossRef  CAS  Google Scholar 

  • Hong, C. Y., Ryu, S. H., Jeong, H., Lee, S. S., Kim, M., & Choi, I. G. (2017). Phanerochaete chrysosporium multienzyme catabolic system for in vivo modification of synthetic lignin to succinic acid. ACS Chemical Biology, 12(7), 1749–1759.

    CrossRef  CAS  PubMed  Google Scholar 

  • Hossain, M. A., Piyatida, P., da Silva, J. A. T., & Fujita, M. (2012). Molecular mechanism of heavy metal toxicity and tolerance in plants: Central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. Journal of Botany, 37, 872875.

    Google Scholar 

  • Imfeld, G., & Vuilleumier, S. (2012). Measuring the effects of pesticides on bacterial communities in soil: A critical review. European Journal of Soil Biology, 49, 22–30.

    CrossRef  CAS  Google Scholar 

  • Ingram, D. S., Vince-Prue, D., & Gregory, P. J. (2015). Science and the garden: The scientific basis of horticultural practice. New York: Wiley.

    Google Scholar 

  • Isikhuemhen, O. S., Anoliefo, G. O., & Oghale, O. I. (2003). Bioremediation of crude oil polluted soil by the white rot fungus, Pleurotus tuberregium (Fr.) Sing. Environmental Science and Pollution Research, 10(2), 108–112.

    CrossRef  CAS  PubMed  Google Scholar 

  • Javaid, A., Bajwa, R., Shafique, U., & Anwar, J. (2011). Removal of heavy metals by adsorption on Pleurotus ostreatus. Biomass and Bioenergy, 35(5), 1675–1682.

    CrossRef  CAS  Google Scholar 

  • Jeffries, P., Gianinazzi, S., Perotto, S., Turnau, K., & Barea, J. M. (2003). The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biology and Fertility of Soils, 37(1), 1–16.

    Google Scholar 

  • Johansson, J. F., Paul, L. R., & Finlay, R. D. (2004). Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiology Ecology, 48(1), 1–13.

    CrossRef  CAS  PubMed  Google Scholar 

  • John, J. (2013). Assessment of arbuscular mycorrhizal fungi in a green roof system. http://hdl.handle.net/10222/36259

    Google Scholar 

  • Johnsen, A. R., Wick, L. Y., & Harms, H. (2005). Principles of microbial PAH-degradation in soil. Environmental Pollution, 133(1), 71–84.

    CrossRef  CAS  PubMed  Google Scholar 

  • Johnson, S. B., Yoon, T. H., Slowey, A. J., & Brown, G. E. (2004). Adsorption of organic matter at mineral/water interfaces: 3. Implications of surface dissolution for adsorption of oxalate. Langmuir, 20(26), 11480–11492.

    CrossRef  CAS  PubMed  Google Scholar 

  • Jomova, K., & Valko, M. (2011). Advances in metal-induced oxidative stress and human disease. Toxicology, 283(2–3), 65–87.

    CrossRef  CAS  PubMed  Google Scholar 

  • Joy, J. I. T. H. I. N., Jose, C. I. N. T. I. L., Mathew, P., Thomas, S. A. B. U., & Khalaf, M. N. (2015). Biological delignification of biomass. Green Polymers and Environment Pollution Control, 2015, 271.

    CrossRef  Google Scholar 

  • Jozefczak, M., Remans, T., Vangronsveld, J., & Cuypers, A. (2012). Glutathione is a key player in metal-induced oxidative stress defenses. International Journal of Molecular Sciences, 13(3), 3145–3175.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Juhasz, A. L., & Naidu, R. (2000). Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: A review of the microbial degradation of benzo [α] pyrene. International Biodeterioration and Biodegradation, 45(1–2), 57–88.

    CrossRef  CAS  Google Scholar 

  • Juwarkar, A. A., Singh, S. K., & Mudhoo, A. (2010). A comprehensive overview of elements in bioremediation. Reviews in Environmental Science and Bio/technology, 9(3), 215–288.

    CrossRef  CAS  Google Scholar 

  • Kadri, T., Rouissi, T., Brar, S. K., Cledon, M., Sarma, S., & Verma, M. (2017). Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review. Journal of Environmental Sciences, 51, 52–74.

    CrossRef  Google Scholar 

  • Keiluweit, M., Nico, P. S., Johnson, M. G., & Kleber, M. (2010). Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science and Technology, 44(4), 1247–1253.

    CrossRef  CAS  PubMed  Google Scholar 

  • Kerem, Z., Friesem, D., & Hadar, Y. (1992). Lignocellulose degradation during solid-state fermentation: Pleurotus ostreatus versus Phanerochaete chrysosporium. Applied and Environmental Microbiology, 58(4), 1121–1127.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khullar, S., & Reddy, M. S. (2018). Ectomycorrhizal fungi and its role in metal homeostasis through metallothionein and glutathione mechanisms. Current Biotechnology, 7(3), 231–241.

    CrossRef  CAS  Google Scholar 

  • Kim, K. H., Jahan, S. A., Kabir, E., & Brown, R. J. (2013). A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environment International, 60, 71–80.

    CrossRef  CAS  PubMed  Google Scholar 

  • Kirk, T. K., & Farrell, R. L. (1987). Enzymatic “combustion”: The microbial degradation of lignin. Annual Reviews in Microbiology, 41(1), 465–501.

    CrossRef  CAS  Google Scholar 

  • Konhauser, K. O. (1998). Diversity of bacterial iron mineralization. Earth-Science Reviews, 43(3–4), 91–121.

    CrossRef  CAS  Google Scholar 

  • Kubartová, A., Ranger, J., Berthelin, J., & Beguiristain, T. (2009). Diversity and decomposing ability of saprophytic fungi from temperate forest litter. Microbial Ecology, 58(1), 98–107.

    CrossRef  PubMed  Google Scholar 

  • Kumar, K. S., Dahms, H. U., Won, E. J., Lee, J. S., & Shin, K. H. (2015). Microalgae - a promising tool for heavy metal remediation. Ecotoxicology and Environmental Safety, 113, 329–352.

    CrossRef  CAS  Google Scholar 

  • Kushwaha, M., Verma, S., & Chatterjee, S. (2016). Profenofos, an acetylcholinesterase-inhibiting organophosphorus pesticide: A short review of its usage, toxicity, and biodegradation. Journal of Environmental Quality, 45(5), 1478–1489.

    CrossRef  CAS  PubMed  Google Scholar 

  • Kvesitadze, G., Khatisashvili, G., Sadunishvili, T., & Ramsden, J. J. (2006). Biochemical mechanisms of detoxification in higher plants: Basis of phytoremediation. Berlin/Heidelberg: Springer.

    Google Scholar 

  • Lambers, H., Raven, J. A., Shaver, G. R., & Smith, S. E. (2008). Plant nutrient-acquisition strategies change with soil age. Trends in Ecology and Evolution, 23(2), 95–103.

    CrossRef  PubMed  Google Scholar 

  • Lamichhane, S., Krishna, K. B., & Sarukkalige, R. (2016). Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: A review. Chemosphere, 148, 336–353.

    CrossRef  CAS  PubMed  Google Scholar 

  • Lavelle, P., & Spain, A. V. (2001). Soil ecology. Dordrecht: Springer Science and Business Media.

    CrossRef  Google Scholar 

  • Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota–a review. Soil Biology and Biochemistry, 43(9), 1812–1836.

    CrossRef  CAS  Google Scholar 

  • Leitão, A. L. (2009). Potential of Penicillium species in the bioremediation field. International Journal of Environmental Research and Public Health, 6(4), 1393–1417.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Lemery, J., & Auerbach, P. (2017). Enviromedics: The impact of climate change on human health. Lanham: Rowman & Littlefield.

    Google Scholar 

  • Lenoir, I., Fontaine, J., & Sahraoui, A. L. H. (2016). Arbuscular mycorrhizal fungal responses to abiotic stresses: A review. Phytochemistry, 123, 4–15.

    CrossRef  CAS  PubMed  Google Scholar 

  • Leonowicz, A., Cho, N., Luterek, J., Wilkolazka, A., Wojtas-Wasilewska, M., Matuszewska, A., & Rogalski, J. (2001). Fungal laccase: Properties and activity on lignin. Journal of Basic Microbiology, 41(3–4), 185–227.

    CrossRef  CAS  PubMed  Google Scholar 

  • Li, X., & Jia, R. (2008). Decolorization and biosorption for Congo red by system rice hull-Schizophyllum sp. F17 under solid-state condition in a continuous flow packed-bed bioreactor. Bioresource Technology, 99(15), 6885–6892.

    CrossRef  CAS  PubMed  Google Scholar 

  • Lynd, L. R., Weimer, P. J., Van Zyl, W. H., & Pretorius, I. S. (2002). Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66(3), 506–577.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynes, M. A., Pietrosimone, K., Marusov, G., Donaldson, D. V., Melchiorre, C., Yin, X., Lawrence, D. A., & McCabe, M. J. (2010). Metal influences on immune function. In Cellular and molecular biology of metals (p. 379). New York: CRC Press.

    CrossRef  Google Scholar 

  • Magan, N. (2007). Fungi in extreme environments. The Mycota, 4, 85–103.

    CrossRef  Google Scholar 

  • Mahmood, K., Jadoon, S., Mahmood, Q., Irshad, M., & Hussain, J. (2014). Synergistic effects of toxic elements on heat shock proteins. BioMed Research International, 2014, 1–17.

    Google Scholar 

  • Marques, A. P., Rangel, A. O., & Castro, P. M. (2009). Remediation of heavy metal contaminated soils: Phytoremediation as a potentially promising clean-up technology. Critical Reviews in Environmental Science and Technology, 39(8), 622–654.

    CrossRef  CAS  Google Scholar 

  • Marschner, P. (2012). Rhizosphere biology. In Marschner’s mineral nutrition of higher plants (3rd ed., pp. 369–388). London: Academic.

    CrossRef  Google Scholar 

  • Martínez, Á. T., Speranza, M., Ruiz-Dueñas, F. J., Ferreira, P., Camarero, S., Guillén, F., & Río Andrade, J. C. D. (2005). Biodegradation of lignocellulosics: Microbial, chemical, and enzymatic aspects of the fungal attack of lignin. International Microbiology, 8(3), 195–204.

    PubMed  Google Scholar 

  • Martínez, Á. T., Rencoret, J., Marques, G., Gutiérrez, A., Ibarra, D., Jiménez-Barbero, J., & José, C. (2008). Monolignol acylation and lignin structure in some non woody plants: A 2D NMR study. Phytochemistry, 69(16), 2831–2843.

    CrossRef  PubMed  CAS  Google Scholar 

  • Matés, J. M., Pérez-Gómez, C., & De Castro, I. N. (1999). Antioxidant enzymes and human diseases. Clinical Biochemistry, 32(8), 595–603.

    CrossRef  PubMed  Google Scholar 

  • Megharaj, M., Ramakrishnan, B., Venkateswarlu, K., Sethunathan, N., & Naidu, R. (2011). Bioremediation approaches for organic pollutants: A critical perspective. Environment International, 37(8), 1362–1375.

    CrossRef  CAS  PubMed  Google Scholar 

  • Meharg, A. A., & Cairney, J. W. (2000). Ectomycorrhizas-extending the capabilities of rhizosphere remediation. Soil Biology and Biochemistry, 32(11–12), 1475–1484.

    CrossRef  CAS  Google Scholar 

  • Messens, J., & Silver, S. (2006). Arsenate reduction: Thiol cascade chemistry with convergent evolution. Journal of Molecular Biology, 362(1), 1–17.

    CrossRef  CAS  PubMed  Google Scholar 

  • Mkandawire, M., & Dudel, E. G. (2007). Are Lemna spp. effective phytoremediation agents. Bioremediation, Biodiversity and Bioavailability, 1(1), 56–71.

    Google Scholar 

  • Mohan, D., & Pittman, C. U. (2007). Arsenic removal from water/wastewater using adsorbents – A critical review. Journal of Hazardous Materials, 142(1–2), 1–53.

    CrossRef  CAS  PubMed  Google Scholar 

  • Mohan, S. V., Kisa, T., Ohkuma, T., Kanaly, R. A., & Shimizu, Y. (2006). Bioremediation technologies for treatment of PAH-contaminated soil and strategies to enhance process efficiency. Reviews in Environmental Science and Bio/Technology, 5(4), 347–374.

    CrossRef  CAS  Google Scholar 

  • Moktali, V., Park, J., Fedorova-Abrams, N. D., Park, B., Choi, J., Lee, Y. H., & Kang, S. (2012). Systematic and searchable classification of cytochrome P450 proteins encoded by fungal and oomycete genomes. BMC Genomics, 13(1), 525.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Morelli, I. S., Saparrat, M. C. N., Del Panno, M. T., Coppotelli, B. M., & Arrambari, A. (2013). Bioremediation of PAH-contaminated soil by fungi. In Fungi as bioremediators (pp. 159–179). Berlin/Heidelberg: Springer.

    CrossRef  Google Scholar 

  • Morozova, O. V., Shumakovich, G. P., Shleev, S. V., & Yaropolov, Y. I. (2007). Laccase-mediator systems and their applications: A review. Applied Biochemistry and Microbiology, 43(5), 523–535.

    CrossRef  CAS  Google Scholar 

  • Mudhoo, A., Garg, V. K., & Wang, S. (2012). Removal of heavy metals by biosorption. Environmental Chemistry Letters, 10(2), 109–117.

    CrossRef  CAS  Google Scholar 

  • Mueller, K. E. (2005). Investigations into the use of trees for phytoremediation of pah contaminated soils (Doctoral dissertation). University of Cincinnati.

    Google Scholar 

  • Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Remediation technologies for metal-contaminated soils and groundwater: An evaluation. Engineering Geology, 60(1–4), 193–207.

    CrossRef  Google Scholar 

  • Murphy, A., Zhou, J., Goldsbrough, P. B., & Taiz, L. (1997). Purification and immunological identification of Metallothioneins 1 and 2 from Arabidopsis thaliana. Plant Physiology, 113(4), 1293–1301.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy, B., Măicăneanu, A., Indolean, C., Mânzatu, C., Silaghi-Dumitrescu, L., & Majdik, C. (2014). Comparative study of Cd (II) biosorption on cultivated Agaricus bisporus and wild Lactarius piperatus based biocomposites. Linear and nonlinear equilibrium modelling and kinetics. Journal of the Taiwan Institute of Chemical Engineers, 45(3), 921–929.

    CrossRef  CAS  Google Scholar 

  • Nasr, M., & Arp, P. A. (2011). Hg concentrations and accumulations in fungal fruiting bodies, as influenced by forest soil substrates and moss carpets. Applied Geochemistry, 26(11), 1905–1917.

    CrossRef  CAS  Google Scholar 

  • Nnorom, I. C., Jarzyńska, G., Drewnowska, M., Dryżałowska, A., Kojta, A., Pankavec, S., & Falandysz, J. (2013). Major and trace elements in sclerotium of Pleurotus tuber-regium (Ósū) mushroom – Dietary intake and risk in southeastern Nigeria. Journal of Food Composition and Analysis, 29(1), 73–81.

    CrossRef  CAS  Google Scholar 

  • Noctor, G., Mhamdi, A., Chaouch, S., Han, Y. I., Neukermans, J., Marquez-Garcia, B. E. L. E. N., & Foyer, C. H. (2012). Glutathione in plants: An integrated overview. Plant, Cell and Environment, 35(2), 454–484.

    CrossRef  CAS  PubMed  Google Scholar 

  • Nordberg, J., & Arner, E. S. (2001). Reactive oxygen species, antioxidants, and the mammalian thioredoxin system1. Free Radical Biology and Medicine, 31(11), 1287–1312.

    CrossRef  CAS  PubMed  Google Scholar 

  • Nunes, C. S., & Malmlöf, K. (2018). Enzymatic decontamination of antimicrobials, phenols, heavy metals, pesticides, polycyclic aromatic hydrocarbons, dyes, and animal waste. In Enzymes in human and animal nutrition (pp. 331–359). New York: Academic.

    CrossRef  Google Scholar 

  • Nykiel-Szymańska, J., Stolarek, P., & Bernat, P. (2018). Elimination and detoxification of 2, 4-D by Umbelopsis isabellina with the involvement of cytochrome P450. Environmental Science and Pollution Research, 25(3), 2738–2743.

    CrossRef  PubMed  CAS  Google Scholar 

  • Oyetayo, V. O., Adebayo, A. O., & Ibileye, A. (2012). Assessment of the biosorption potential of heavy metals by Pleurotus tuberregium. International Journal of Advanced Biological Research, 2, 293–297.

    Google Scholar 

  • Özdemir, S., Kilinc, E., Poli, A., Nicolaus, B., & Güven, K. (2009). Biosorption of Cd, Cu, Ni, Mn and Zn from aqueous solutions by thermophilic bacteria, Geobacillus toebii sub. sp. decanicus and Geobacillus thermoleovorans sub. sp. stromboliensis: Equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal, 152(1), 195–206.

    CrossRef  CAS  Google Scholar 

  • Pala, S. A., Wani, A. H., Boda, R. H., & Wani, B. A. (2014). Mushroom refinement endeavor auspicate non-green revolution in the offing. Nusantara Bioscience, 6(2), 173–185.

    Google Scholar 

  • Parmar, P., Dave, B., Sudhir, A., Panchal, K., & Subramanian, R. B. (2013). Physiological, biochemical and molecular response of plants against heavy metals stress. International Journal of Current Research, 5(1), 80–89.

    CAS  Google Scholar 

  • Pearce, C. I., Lloyd, J. R., & Guthrie, J. T. (2003). The removal of colour from textile wastewater using whole bacterial cells: A review. Dyes and Pigments, 58(3), 179–196.

    CrossRef  CAS  Google Scholar 

  • Pérez, J., Munoz-Dorado, J., de la Rubia, T. D. L. R., & Martinez, J. (2002). Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. International Microbiology, 5(2), 53–63.

    CrossRef  PubMed  CAS  Google Scholar 

  • Pierart, A., Shahid, M., Séjalon-Delmas, N., & Dumat, C. (2015). Antimony bioavailability: Knowledge and research perspectives for sustainable agricultures. Journal of Hazardous Materials, 289, 219–234.

    CrossRef  CAS  PubMed  Google Scholar 

  • Pointing, S. (2001). Feasibility of bioremediation by white-rot fungi. Applied Microbiology and Biotechnology, 57(1–2), 20–33.

    CAS  PubMed  Google Scholar 

  • Polak, J., & Jarosz-Wilkolazka, A. (2012). Fungal laccases as green catalysts for dye synthesis. Process Biochemistry, 47(9), 1295–1307.

    CrossRef  CAS  Google Scholar 

  • Priyadharsini, P., Rojamala, K., Ravi, R. K., Muthuraja, R., Nagaraj, K., & Muthukumar, T. (2016). Mycorrhizosphere: The extended rhizosphere and its significance. In Plant-microbe interaction: An approach to sustainable agriculture (pp. 97–124). Singapore: Springer.

    CrossRef  Google Scholar 

  • Puglisi, E., Hamon, R., Vasileiadis, S., Coppolecchia, D., & Trevisan, M. (2012). Adaptation of soil microorganisms to trace element contamination: A review of mechanisms, methodologies, and consequences for risk assessment and remediation. Critical Reviews in Environmental Science and Technology, 42(22), 2435–2470.

    CrossRef  Google Scholar 

  • Purahong, W., Wubet, T., Lentendu, G., Schloter, M., Pecyna, M. J., Kapturska, D., & Buscot, F. (2016). Life in leaf litter: Novel insights into community dynamics of bacteria and fungi during litter decomposition. Molecular Ecology, 25(16), 4059–4074.

    CrossRef  CAS  PubMed  Google Scholar 

  • Purnomo, A. S., Ashari, K., & Hermansyah, F. T. (2017). Evaluation of the synergistic effect of mixed cultures of white-rot fungus Pleurotus ostreatus and biosurfactant-producing bacteria on DDT biodegradation. Journal of Microbiology and Biotechnology, 27(7), 1306–1315.

    CrossRef  CAS  PubMed  Google Scholar 

  • Purohit, J., Anirudha, C., Mohan, K. B., & Singh, N. K. (2018). Mycoremediation of agricultural soil: Bioprospection for sustainable development. In Mycoremediation and environmental sustainability (pp. 91–120). Cham: Springer.

    CrossRef  Google Scholar 

  • Qu, J., Zang, T., Gu, H., Li, K., Hu, Y., Ren, G., & Jin, Y. (2015). Biosorption of copper ions from aqueous solution by Flammulina velutipes spent substrate. Bio Resources, 10(4), 8058–8075.

    CAS  Google Scholar 

  • Rabaey, K., & Verstraete, W. (2005). Microbial fuel cells: Novel biotechnology for energy generation. Trends in Biotechnology, 23(6), 291–298.

    CrossRef  CAS  PubMed  Google Scholar 

  • Raghukumar, S. (2017). Physiology, biochemistry, and biotechnology. In Fungi in coastal and oceanic marine ecosystems (pp. 265–306). Cham: Springer.

    CrossRef  Google Scholar 

  • Rajinipriya, M., Nagalakshmaiah, M., Robert, M., & Elkoun, S. (2018). Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: A review. ACS Sustainable Chemistry and Engineering, 6(3), 2807–2828.

    CrossRef  CAS  Google Scholar 

  • Rashid, A., Bhatti, H. N., Iqbal, M., & Noreen, S. (2016). Fungal biomass composite with bentonite efficiency for nickel and zinc adsorption: A mechanistic study. Ecological Engineering, 91, 459–471.

    CrossRef  Google Scholar 

  • Rauser, W. E. (1995). Phytochelatins and related peptides. Structure, biosynthesis, and function. Plant Physiology, 109(4), 1141.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Read, D. J., & Perez-Moreno, J. (2003). Mycorrhizas and nutrient cycling in ecosystems–A journey towards relevance. New Phytologist, 157(3), 475–492.

    CrossRef  PubMed  Google Scholar 

  • Richter, H., & Howard, J. B. (2000). Formation of polycyclic aromatic hydrocarbons and their growth to soot a review of chemical reaction pathways. Progress in Energy and Combustion Science, 26(4–6), 565–608.

    CrossRef  CAS  Google Scholar 

  • Rillig, M. C., & Mummey, D. L. (2006). Mycorrhizas and soil structure. New Phytologist, 171(1), 41–53.

    CrossRef  CAS  PubMed  Google Scholar 

  • Roshchina, V. V., & Roshchina, V. D. (2012). The excretory function of higher plants. Berlin/Heidelberg: Springer.

    Google Scholar 

  • Rouches, E., Herpoël-Gimbert, I., Steyer, J. P., & Carrere, H. (2016). Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: A review. Renewable and Sustainable Energy Reviews, 59, 179–198.

    CrossRef  CAS  Google Scholar 

  • Rout, M. E. (2014). The plant microbiome. In Advances in botanical research (Vol. 69, pp. 279–309). Waltham: Academic.

    Google Scholar 

  • Saeedi, M., Li, L. Y., & Salmanzadeh, M. (2012). Heavy metals and polycyclic aromatic hydrocarbons: Pollution and ecological risk assessment in street dust of Tehran. Journal of Hazardous Materials, 227, 9–17.

    CrossRef  PubMed  CAS  Google Scholar 

  • Saichek, R. E., & Reddy, K. R. (2005). Electrokinetically enhanced remediation of hydrophobic organic compounds in soils: A review. Critical Reviews in Environmental Science and Technology, 35(2), 115–192.

    CrossRef  CAS  Google Scholar 

  • Saranraj, P., & Stella, D. (2014). Impact of sugar mill effluent to environment and bioremediation: A review. World Applied Sciences Journal, 30(3), 299–316.

    Google Scholar 

  • Sardrood, B. P., Goltapeh, E. M., & Varma, A. (2013). An introduction to bioremediation. In Fungi as bioremediators (pp. 3–27). Berlin/Heidelberg: Springer.

    CrossRef  Google Scholar 

  • Sarma, V. V. (2018). Obligate marine fungi and bioremediation. In Mycoremediation and environmental sustainability (pp. 307–323). Cham: Springer.

    CrossRef  Google Scholar 

  • Schiffer, M. B. (1986). Radiocarbon dating and the “old wood” problem: The case of the Hohokam chronology. Journal of Archaeological Science, 13(1), 13–30.

    CrossRef  Google Scholar 

  • Schmidt, T., & Schaechter, M. (2012). Topics in ecological and environmental microbiology. Burlington: Elsevier.

    Google Scholar 

  • Schutzendubel, A., & Polle, A. (2002). Plant responses to abiotic stresses: Heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany, 53(372), 1351–1365.

    CAS  PubMed  Google Scholar 

  • Sharma, S. S., & Dietz, K. J. (2006). The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany, 57(4), 711–726.

    CrossRef  CAS  PubMed  Google Scholar 

  • Sharma, S., Tiwari, S., Hasan, A., Saxena, V., & Pandey, L. M. (2018). Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils. 3 Biotech, 8(4), 216.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Siddiquee, S., Rovina, K., Azad, S. A., Naher, L., Suryani, S., & Chaikaew, P. (2015). Heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: A review. Journal of Microbial and Biochemical Technology, 7(6), 384–393.

    CrossRef  CAS  Google Scholar 

  • Singh, O. V., Labana, S., Pandey, G., Budhiraja, R., & Jain, R. K. (2003). Phytoremediation: An overview of metallic ion decontamination from soil. Applied Microbiology and Biotechnology, 61(5–6), 405–412.

    CrossRef  CAS  PubMed  Google Scholar 

  • Singh, P. C., Srivastava, S., Shukla, D., Bist, V., Tripathi, P., Anand, V., & Srivastava, S. (2018). Mycoremediation mechanisms for heavy metal resistance/tolerance in plants. In Mycoremediation and environmental sustainability (pp. 351–381). Cham: Springer.

    CrossRef  Google Scholar 

  • Sivaramakrishnan, S., Gangadharan, D., Nampoothiri, K. M., Soccol, C. R., & Pandey, A. (2006). α-Amylases from microbial sources–an overview on recent developments. Food Technology and Biotechnology, 44(2), 173–184.

    CAS  Google Scholar 

  • Smith, S. E., & Read, D. J. (2010). Mycorrhizal symbiosis. New York: Academic.

    Google Scholar 

  • Soden, D. M., & Dobson, A. D. (2001). Differential regulation of laccase gene expression in Pleurotus sajor-caju. Microbiology, 147(7), 1755–1763.

    CrossRef  CAS  PubMed  Google Scholar 

  • Spokas, K. A., Cantrell, K. B., Novak, J. M., Archer, D. W., Ippolito, J. A., Collins, H. P., & Lentz, R. D. (2012). Biochar: A synthesis of its agronomic impact beyond carbon sequestration. Journal of Environmental Quality, 41(4), 973–989.

    CrossRef  CAS  PubMed  Google Scholar 

  • Stamets, P. (2011). Growing gourmet and medicinal mushrooms. Berkeley: Ten Speed Press.

    Google Scholar 

  • Stanic, A. (2017). Preparation of Thiol Conjugates of the Mycotoxin Deoxynivalenol and their Occurrence in Nature. http://urn.nb.no/URN:NBN:no-58380

  • Strong, P. J., & Burgess, J. E. (2008). Treatment methods for wine-related and distillery wastewaters: A review. Bioremediation Journal, 12(2), 70–87.

    CrossRef  CAS  Google Scholar 

  • Sud, D., Mahajan, G., & Kaur, M. P. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions – A review. Bioresource Technology, 99(14), 6017–6027.

    CrossRef  CAS  PubMed  Google Scholar 

  • Sudha, M., Saranya, A., Selvakumar, G., & Sivakumar, N. (2014). Microbial degradation of azo dyes: A review. International Journal of Current Microbiology and Applied Sciences, 3(2), 670–690.

    CAS  Google Scholar 

  • Sugasini, A., Rajagopal, K., & Banu, N. (2014). A study on biosorption potential of Aspergillus sp. of tannery effluent. Advances in Bioscience and Biotechnology, 5(10), 853.

    CrossRef  CAS  Google Scholar 

  • Sutherland, C., & Venkobachar, C. (2010). A diffusion-chemisorption kinetic model for simulating biosorption using forest macro-fungus, fomes fasciatus. International Research Journal of Plant Science, 1(4), 107–117.

    Google Scholar 

  • Sytar, O., Kumar, A., Latowski, D., Kuczynska, P., Strzałka, K., & Prasad, M. N. V. (2013). Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiologiae Plantarum, 35(4), 985–999.

    CrossRef  CAS  Google Scholar 

  • Tabibzadeh, S. (2016). Nature creates, adapts, protects and sustains life using hydrogen sulfide. Frontiers in Bioscience, 21, 528–560.

    CrossRef  CAS  Google Scholar 

  • Tadkaew, N., Hai, F. I., McDonald, J. A., Khan, S. J., & Nghiem, L. D. (2011). Removal of trace organics by MBR treatment: The role of molecular properties. Water Research, 45(8), 2439–2451.

    CrossRef  CAS  PubMed  Google Scholar 

  • Tahir, M. W., Zaidi, N. A., Rao, A. A., Blank, R., Vellekoop, M. J., & Lang, W. (2018). A fungus spores dataset and a convolutional neural networks based approach for fungus detection. IEEE Transactions on Nano Bioscience, 17(3), 5–22.

    Google Scholar 

  • Tak, H. I., Ahmad, F., & Babalola, O. O. (2013). Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. In Reviews of environmental contamination and toxicology (Vol. 223, pp. 33–52). New York: Springer.

    Google Scholar 

  • Tan, Y. H. (2011) Behavioral properties of locally isolated Acinetobacter species in degrading hydrocarbon chain in crude oil and used cooking oil (Doctoral dissertation). UTAR.

    Google Scholar 

  • Tangahu, B. V., Abdullah, S., Rozaimah, S., Basri, H., Idris, M., Anuar, N., & Mukhlisin, M. (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering, 2011, 1–31.

    CrossRef  Google Scholar 

  • Tay, C. C., Liew, H. H., Yin, C. Y., Abdul-Talib, S., Surif, S., Suhaimi, A. A., & Yong, S. K. (2011). Biosorption of cadmium ions using Pleurotus ostreatus: Growth kinetics, isotherm study and biosorption mechanism. Korean Journal of Chemical Engineering, 28(3), 825–830.

    CrossRef  CAS  Google Scholar 

  • Teng, Y., Luo, Y., Sun, M., Liu, Z., Li, Z., & Christie, P. (2010). Effect of bioaugmentation by Paracoccus sp. strain HPD-2 on the soil microbial community and removal of polycyclic aromatic hydrocarbons from an aged contaminated soil. Bioresource Technology, 101(10), 3437–3443.

    CrossRef  CAS  PubMed  Google Scholar 

  • Tian, H., Ma, Y. J., Li, W. Y., & Wang, J. W. (2018). Efficient degradation of triclosan by an endophytic fungus Penicillium oxalicum B4. Environmental Science and Pollution Research, 25(9), 8963–8975.

    CrossRef  CAS  PubMed  Google Scholar 

  • Toljander, J. F., Lindahl, B. D., Paul, L. R., Elfstrand, M., & Finlay, R. D. (2007). Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiology Ecology, 61(2), 295–304.

    CrossRef  CAS  PubMed  Google Scholar 

  • Tsarevsky, N. V., & Matyjaszewski, K. (2007). Green atom transfer radical polymerization: From process design to preparation of well-defined environmentally friendly polymeric materials. Chemical Reviews, 107(6), 2270–2299.

    CrossRef  CAS  PubMed  Google Scholar 

  • Valášková, V. (2010). Physiology and ecology of saprotrophic basidiomycetes degrading dead plant biomass. http://hdl.handle.net/20.500.11956/24782

    Google Scholar 

  • Vander Oost, R., Beyer, J., & Vermeulen, N. P. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: A review. Environmental Toxicology and Pharmacology, 13(2), 57–149.

    CrossRef  CAS  Google Scholar 

  • Vara, S. (2017). Mycoremediation of lignocelluloses. In Handbook of research on inventive bioremediation techniques (pp. 264–286). New York: IGI Global.

    CrossRef  Google Scholar 

  • Vassilev, A., Schwitzguébel, J. P., Thewys, T., Van Der Lelie, D., & Vangronsveld, J. (2004). The use of plants for remediation of metal-contaminated soils. The Scientific World Journal, 4, 9–34.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Verbruggen, N., Hermans, C., & Schat, H. (2009). Mechanisms to cope with arsenic or cadmium excess in plants. Current Opinion in Plant Biology, 12(3), 364–372.

    CrossRef  CAS  PubMed  Google Scholar 

  • Waghunde, R. R., Shelake, R. M., & Sabalpara, A. N. (2016). Trichoderma: A significant fungus for agriculture and environment. African Journal of Agricultural Research, 11(22), 1952–1965.

    CrossRef  Google Scholar 

  • Walker, G. M., & White, N. A. (2017). Introduction to fungal physiology. In Fungi: Biology and applications (pp. 1–35). Hoboken: Wiley.

    Google Scholar 

  • Wang, J., & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27(2), 195–226.

    CrossRef  PubMed  CAS  Google Scholar 

  • Wu, Y., Luo, Y., Zou, D., Ni, J., Liu, W., Teng, Y., & Li, Z. (2008). Bioremediation of polycyclic aromatic hydrocarbons contaminated soil with Monilinia sp.: Degradation and microbial community analysis. Biodegradation, 19(2), 247–257.

    CrossRef  CAS  PubMed  Google Scholar 

  • Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. Isrn Ecology, 11, 1–19.

    CrossRef  Google Scholar 

  • Xiong, X. Q., Liao, H. D., Ma, J. S., Liu, X. M., Zhang, L. Y., Shi, X. W., & Zhu, Y. H. (2014). Isolation of a rice endophytic bacterium, Pantoea sp. Sd-1, with ligninolytic activity and characterization of its rice straw degradation ability. Letters in Applied Microbiology, 58(2), 123–129.

    CrossRef  CAS  PubMed  Google Scholar 

  • Xu, P., Zeng, G., Huang, D., Liu, L., Zhao, M., Lai, C., & Zhang, C. (2016). Metal bioaccumulation, oxidative stress and antioxidant defenses in Phanerochaete chrysosporium response to Cd exposure. Ecological Engineering, 87, 150–156.

    CrossRef  Google Scholar 

  • Xue, J., Yu, Y., Bai, Y., Wang, L., & Wu, Y. (2015). Marine oil-degrading microorganisms and biodegradation process of petroleum hydrocarbon in marine environments: A review. Current Microbiology, 71(2), 220–228.

    CrossRef  CAS  PubMed  Google Scholar 

  • Yang, S., Hai, F. I., Nghiem, L. D., Price, W. E., Roddick, F., Moreira, M. T., & Magram, S. F. (2013). Understanding the factors controlling the removal of trace organic contaminants by white-rot fungi and their lignin modifying enzymes: A critical review. Bioresource Technology, 141, 97–108.

    CrossRef  CAS  PubMed  Google Scholar 

  • Zavarzina, A. G., Lisov, A. A., Zavarzin, A. A., & Leontievsky, A. A. (2010). Fungal oxidoreductases and humification in forest soils. In Soil enzymology (pp. 207–228). Berlin/Heidelberg: Springer.

    CrossRef  Google Scholar 

  • Zenk, M. H. (1996). Heavy metal detoxification in higher plants-A review. Gene, 179(1), 21–30.

    CrossRef  CAS  PubMed  Google Scholar 

  • Zhang, Y., & Tao, S. (2009). Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmospheric Environment, 43(4), 812–819.

    CrossRef  CAS  Google Scholar 

  • Zhang, X., Wang, H., He, L., Lu, K., Sarmah, A., Li, J., Bolan, N. S., Pei, J., & Huang, H. (2013). Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environmental Science and Pollution Research, 20(12), 8472–8483.

    CrossRef  CAS  PubMed  Google Scholar 

  • Zhang, C., Chen, W., & Alvarez, P. J. (2014). Manganese peroxidase degrades pristine but not surface-oxidized (carboxylated) single-walled carbon nanotubes. Environmental Science and Technology, 48(14), 7918–7923.

    CrossRef  CAS  PubMed  Google Scholar 

  • Zhao, F. J., Zhu, Y. G., & Meharg, A. A. (2013). Methylated arsenic species in rice: Geographical variation, origin, and uptake mechanisms. Environmental Science and Technology, 47(9), 3957–3966.

    CrossRef  CAS  PubMed  Google Scholar 

  • Zucca, P., Rescigno, A., Rinaldi, A. C., & Sanjust, E. (2014). Biomimetic metalloporphines and metalloporphyrins as potential tools for delignification: Molecular mechanisms and application perspectives. Journal of Molecular Catalysis A: Chemical, 388, 2–34.

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chandra, P., Enespa (2019). Mycoremediation of Environmental Pollutants from Contaminated Soil. In: Varma, A., Choudhary, D. (eds) Mycorrhizosphere and Pedogenesis. Springer, Singapore. https://doi.org/10.1007/978-981-13-6480-8_15

Download citation