Cell Balancing Topologies in Battery Energy Storage Systems: A Review

  • Ashraf Bani Ahmad
  • Chia Ai OoiEmail author
  • Dahaman Ishak
  • Jiashen Teh
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 547)


The performance of a battery energy storage system is highly affected by cell imbalance. Capacity degradation of an individual cell which leads to non-utilization for the available capacity of a BESS is the main drawback of cell imbalance. Cell imbalance is common due to internal and/or external sources such as manufacturing deviations, self-discharge rate variation and discharging the cells in an unequal number of cycles. Accordingly, several cell balancing topologies have been proposed by the researchers in the last decade. This paper presents a review of the proposed cell balancing topologies for BESSs. Comparison among the topologies is performed for four categories: balancing speed, charge/discharge capability, main elements required to balance n cell, and application types.


Battery Energy storage Cell balancing Active Passive 



This work was supported by Universiti Sains Malaysia under the project 304/PELECT/60313053.


  1. 1.
    Díaz-González, F., Sumper, A., Gomis-Bellmunt, O., Villafáfila-Robles, R.: A review of energy storage technologies for wind power applications. Renew. Sustain. Energy Rev. 16, 2154–2171 (2012)CrossRefGoogle Scholar
  2. 2.
    Luo, X., Wang, J., Dooner, M., Clarke, J.: Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energy 137, 511–536 (2015)CrossRefGoogle Scholar
  3. 3.
    Castillo, A., Gayme, D.: Grid-scale energy storage applications in renewable energy integration: a survey. Energy Convers. Manag. 87, 885–894 (2014)CrossRefGoogle Scholar
  4. 4.
    Soloveichik, G.: Battery technologies for large-scale stationary energy storage. Annu. Rev. Chem. Biomol. Eng. 2, 503–527 (2011)CrossRefGoogle Scholar
  5. 5.
    Einhorn, M., Roessler, W., Fleig, J.: Improved performance of serially connected Li-ion batteries with active cell balancing in electric vehicles. IEEE Trans. Veh. Technol. 60, 2448–2457 (2011)CrossRefGoogle Scholar
  6. 6.
    Lee, I.: Hybrid PWM-resonant converter for electric vehicle on-board battery chargers. IEEE Trans. Power Electron. 31, 3639–3649 (2016)CrossRefGoogle Scholar
  7. 7.
    Brandl, M., Gall, H., Wenger, M., Lorentz, V., Giegerich, M., Baronti, F., et al.: Batteries and battery management systems for electric vehicles. In: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 971–976 (2012)Google Scholar
  8. 8.
    Crolla, D.: Encyclopedia of Automotive Engineering. Wiley-Blackwell, West Sussex, UK (2015)Google Scholar
  9. 9.
    Gallardo-Lozano, J., Romero-Cadaval, E., Milanes-Montero, M., Guerrero, A.: Battery equalization active methods. J. Power Sources 246, 934–949 (2014)CrossRefGoogle Scholar
  10. 10.
    Gallardo-Lozano, J., Romero-Cadaval, E., Milanes-Montero, M., Guerrero-Martinez, M.: A novel active battery equalization control with on-line unhealthy cell detection and cell change decision. J. Power Sources 299, 356–370 (2015)CrossRefGoogle Scholar
  11. 11.
    Kutkut, N., Divan, D.: Dynamic equalization techniques for series battery stacks. In: 18th International Telecommunications Energy Conference in 1996, INTELEC’96, pp. 514–521 (1996)Google Scholar
  12. 12.
    Cadar, D., Petreus, V., Patarau, T.: An energy converter method for battery cell balancing. In: 33rd International Spring Seminar on Electronics Technology (ISSE) in 2010, pp. 290–293 (2010)Google Scholar
  13. 13.
    Shang, Y., Zhang, C., Cui, N., Guerrero, J.: A cell-to-cell battery equalizer with zero-current switching and zero-voltage gap based on quasi-resonant LC converter and boost converter. IEEE Trans. Power Electron. 30, 3731–3747 (2015)CrossRefGoogle Scholar
  14. 14.
    Lee, K., Chung, M., Sung, Y., Kang, B.: Active cell balancing of Li-ion batteries using series resonant circuit. IEEE Trans. Industr. Electron. 62, 5491–5501 (2015)CrossRefGoogle Scholar
  15. 15.
    Ooi, C.A.: Balancing Control for Grid-Scale Battery Energy Storage Systems. Cardiff University (2016)Google Scholar
  16. 16.
    Kim, M., Kim, H., Kim, H., Moon, G.: A chain structure of switched capacitor for improved cell balancing speed of lithium-ion batteries. IEEE Trans. Industr. Electron. 61, 3989–3999 (2014)CrossRefGoogle Scholar
  17. 17.
    Shang, Y., Xia, B., Zhang, C., Cui, N., Yang, J., Mi, C.: An automatic equalizer based on forward-flyback converter for series-connected battery strings. IEEE Trans. Industr. Electron. 64, 5380–5391 (2017)CrossRefGoogle Scholar
  18. 18.
    Mi, S., Li, C.: A high-efficiency active battery-balancing circuit using multiwinding transformer. IEEE Trans. Ind. Appl. 49, 198–207 (2013)CrossRefGoogle Scholar
  19. 19.
    Chen, Y., Liu, X., Cui, Y., Zou, J., Yang, S.: A multiwinding transformer cell-to-cell active equalization method for lithium-ion batteries with reduced number of driving circuits. IEEE Trans. Power Electron. 31, 4916–4929 (2016)Google Scholar
  20. 20.
    Phung, T., Collet, A., Crebier, J.: An optimized topology for next-to-next balancing of series-connected lithium-ion cells. IEEE Trans. Power Electron. 29, 4603–4613 (2014)CrossRefGoogle Scholar
  21. 21.
    Mestrallet, F., Kerachev, L., Crebier, J., Collet, A.: Multiphase interleaved converter for lithium battery active balancing. IEEE Trans. Power Electron. 29, 2874–2881 (2014)CrossRefGoogle Scholar
  22. 22.
    Ooi, C.A., Rogers, D., Jenkins, N.: Balancing control for grid-scale battery energy storage system. Proc. Inst. Civ. Eng. Energy 168, 145–157 (2015)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ashraf Bani Ahmad
    • 1
  • Chia Ai Ooi
    • 1
    Email author
  • Dahaman Ishak
    • 1
  • Jiashen Teh
    • 1
  1. 1.School of Electrical and Electronic EngineeringUniversiti Sains Malaysia (USM)Nibong TebalMalaysia

Personalised recommendations