Skip to main content

Introduction to Walsh Analysis and Wavelets

  • Chapter
  • First Online:
Construction of Wavelets Through Walsh Functions

Abstract

The trigonometric Fourier series has played a very significant role in solving problems of science and technology. The concept of non-trigonometric Fourier series such as Haar–Fourier series and Walsh–Fourier series were introduced by Haar [1] and Walsh [2], respectively; Kaczmarz, Steinhaus, and Paley studied some aspects of Walsh system between 1929 and 1931.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haar, A. (2010). Zur theorie der orthogonal funktionen systeme. Mathematische Annalen, 69, 331–371.

    Article  Google Scholar 

  2. Walsh, J. L. (1923). A closed set of normal orthogonal functions. American Journal of Mathematics, 45, 5–24.

    Article  MathSciNet  Google Scholar 

  3. Paley, R. E. A. C. (1932). A remarkable system of orthogonal functions. Proceedings of the London Mathematical Society, 34, 241–279.

    Article  MathSciNet  Google Scholar 

  4. Fine, N. J. (1949). On the Walsh functions. Transactions of the American Mathematical Society, 65(3), 372–414.

    Article  MathSciNet  Google Scholar 

  5. Schipp, F., Wade, W. R., & Simon, P. (1990). Walsh series. New York: Adam Hilger.

    MATH  Google Scholar 

  6. Beauchamp, K. G. (1975). Walsh functions and their applications. New York: Academic Press.

    MATH  Google Scholar 

  7. Siddiqi, A. H. (1978). Walsh Function. Aligarh: AMU.

    Google Scholar 

  8. Maqusi, M. (1981). Applied Walsh analysis. London: Heyden.

    MATH  Google Scholar 

  9. Golubov, B. I., Efimov, A. V., & V. A. Skvortsov (2008) Walsh series and transforms (English Translation Of 1st ed.). Moscow: Urss; Dordrecht: Kluwer (1991).

    Google Scholar 

  10. Daubechies, I. (1988). Orthonormal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics, 41, 909–996.

    Article  MathSciNet  Google Scholar 

  11. Meyer, Y. (1992). Wavelets and operators. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  12. Daubechies, I. (1992). Ten lectures on wavelets. Philadelphia: SIAM.

    Book  Google Scholar 

  13. Mallat, S. (1989). Multiresolution approximations and wavelets. Transactions of the American Mathematical Society, 315, 69–88.

    MathSciNet  MATH  Google Scholar 

  14. Walnut, D. F. (2002). Wavelet analysis. Basel: Birkhauser.

    MATH  Google Scholar 

  15. Frazier, M. W. (1999). An introduction to wavelets through linear algebra. New York: Springer.

    MATH  Google Scholar 

  16. Christensen, O. (2003). An introduction to frames and Riesz bases. Basel: Birkhaeuser.

    Book  Google Scholar 

  17. Wojtaszyk, P. (1997). A mathematical introduction to wavelets (Vol. 37)., London mathematical society Cambridge Cambridge: Cambridge University Press.

    Book  Google Scholar 

  18. Siddiqi, A. H. (2018). Functional analysis with applications. Berlin: Springer Nature.

    Book  Google Scholar 

  19. Fridli, S., Manchanda, P., & Siddiqi, A. H. (2008). Approximation by Walsh Norlund means. Acta Scientiarum Mathmaticarum (Szeged), 74, 593–608.

    MATH  Google Scholar 

  20. Rodionov, E. A., & Farkov, Y. A. (2009). Estimates of the smoothness of Dyadic orthogonal wavelets of Daubechies type. Mathematical Notes, 86(3), 407–421.

    Google Scholar 

  21. Nielsen, M. (2000). Walsh type wavelet packet expansion. Applied and Computational Harmonic Analysis, 9, 265–285.

    Article  MathSciNet  Google Scholar 

  22. Mallat, S. (1999). A wavelet tour of signal processing. New York: Academic Press.

    MATH  Google Scholar 

  23. Coifman, R. R., Meyer, Y., Quake, S., & Wickerhauser, M. V. (1993). Signal processing and compression with wavelet packets. Progress in wavelets analysis and applications (pp. 77–93). Gif-Sur-Yvette: Frontieres.

    MATH  Google Scholar 

  24. Manchanda, P., & Meenakshi. (2009). New classes of wavelets. In A.H., Siddiqi, A.K. Gupta, & M. Brokate (Eds.) Conference Proceedings Modeling Of Engineering and Technological Problems (vol. 1146, pp. 253–271). New York

    Google Scholar 

  25. Malozemov, V. N., & Masharskii, S. M. (2002). Generalized wavelet bases related to the discrete Vilenkin-Chrestenson transform. St. Petersburg Mathematical Journal, 13, 75–106.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Farkov .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Farkov, Y.A., Manchanda, P., Siddiqi, A.H. (2019). Introduction to Walsh Analysis and Wavelets. In: Construction of Wavelets Through Walsh Functions. Industrial and Applied Mathematics. Springer, Singapore. https://doi.org/10.1007/978-981-13-6370-2_1

Download citation

Publish with us

Policies and ethics