Skip to main content

The Maintaining and Directed Differentiation of Hematopoietic Stem Cells Under Microgravity

  • Chapter
  • First Online:

Part of the book series: Research for Development ((REDE))

Abstract

Hematopoietic stem cells (HSCs) are a major kind of pluripotent stem cells, which can give rise to all the other blood cells through the process of haematopoiesis and maintain the homeostasis of organism. HSCs are divided into three types based on their differentiation stage, including long-term self-renewing HSCs (LT-HSCs), short-term self-renewing HSCs (ST-HSCs) and multipotent progenitors (MPPs). These HSCs eventually differentiate into mature blood cells and immune cells after experiencing various common lymphoid progenitor (CLP) and common myeloid progenitor (CMP). The proliferation and differentiation of HSCs have been widely studied and revealed be controlled by various factors, molecules and transcription factors but litter is known about how microgravity affects HSCs. Our study was conducted in two flight programs, SJ-10 recoverable microgravity experimental satellite (SJ-10 satellite) program research and Tianzhou-1 cargo ship program, and mainly focuses on the maintaining and directed differentiation of hematopoietic stem cells. Our results revealed some new mechanisms for maintaining and directed differentiation under microgravity conditions, with the potential to boost immune system, and provide potential drugs for the prevention or treatment of immune system weakening in spaceflight.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CBSC:

Cord blood stem cells

CFU-G:

Colony forming units-granulocyte

CFU-GM:

Colony forming units-granulocyte macrophage

CFU-M:

Colony forming units-macrophage

CLP:

Common lymphoid progenitor

CMP:

Common myeloid progenitor

DC:

Dendritic cell

EP:

Erythrocyte progenitor

GM-CSF:

Granulocyte/monocyte colony-stimulating factor

GMP:

Granulocyte/macrophage progenitor

GP:

Granulocyteprogenitor

HSCs:

Hematopoietic stem cells

HSPCs:

Hematopoietic stem and progenitor cells

LT-HSCs:

Long-term self-renewing HSCs

MacP:

Macrophage progenitor

M-CSF:

Macrophage-colony stimulating factor

MEP:

Megakaryocyte/erythrocyte progenitor

MkP:

Megakaryocyte progenitor

MPPs:

Multipotent progenitors

NGS:

Next-generation sequencing

NK:

Natural killer

RBCM:

Red blood cell mass

RWV:

Rotating wall vessel

SJ-10 satellite:

SJ-10 recoverable microgravity experimental satellite

SL-3:

Spacelab 3

SLS-1:

Splace lab Life Science 1

ST-HSCs:

Short-term self-renewing HSCs

STS-40:

Space Shuttle Orbiter Columbia

WBC:

White blood cell

References

  • Allebban Z, Ichiki AT, Gibson LA et al (1994) Effects of spaceflight on the number of rat peripheral blood leukocytes and lymphocyte subsets. J Leukoc Biol 55(2)a: 209–213

    Google Scholar 

  • Anderson KL, Smith KA, Conners K et al (1998) Myeloid development is selectively disrupted in PU.1 null mice. Blood 91(10): 3702–3710

    Google Scholar 

  • Antonchuk J, Sauvageau G, Humphries RK (2002) HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell 109(1):39–45

    CAS  PubMed  Google Scholar 

  • Bishop AE, Buttery LD, Polak JM (2002) Embryonic stem cells. J Pathol 197(4):424–429

    PubMed  Google Scholar 

  • Blaber E, Marcal H, Burns BP (2010) Bioastronautics: the influence of microgravity on astronaut health. Astrobiology 10(5):463–473

    PubMed  Google Scholar 

  • Bradford GB, Williams B, Rossi R et al (1997) Quiescence, cycling, and turnover in the primitive hematopoietic stem cell compartment. Exp Hematol 25(5):445–453

    CAS  PubMed  Google Scholar 

  • Bromleigh VC, Freedman LP (2000) p21 is a transcriptional target of HOXA10 in differentiating myelomonocytic cells. Genes & Dev 14(20):2581–2586. https://doi.org/10.1101/Gad.817100

  • Brun AC, Bjornsson JM, Magnusson M et al (2004) Hoxb4-deficient mice undergo normal hematopoietic development but exhibit a mild proliferation defect in hematopoietic stem cells. Blood 103(11):4126–4133

    CAS  PubMed  Google Scholar 

  • Cabrita GJ, Ferreira BS, da Silva CL et al (2003) Hematopoietic stem cells: from the bone to the bioreactor. Trends Biotechnol 21(5):233–240

    CAS  PubMed  Google Scholar 

  • Cheng T, Rodrigues N, Shen H et al (2000) Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 287(5459):1804–1808

    CAS  PubMed  Google Scholar 

  • Cheshier SH, Morrison SJ, Liao X et al (1999) In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc Natl Acad Sci USA 96(6):3120–3125

    CAS  PubMed  Google Scholar 

  • Chiu B, Wan JZ, Abley D et al (2005) Induction of vascular endothelial phenotype and cellular proliferation from human cord blood stem cells cultured in simulated microgravity. Acta Astronaut 56(9–12):918–922

    PubMed  Google Scholar 

  • Chung YJ, Park BB, Kang YJ et al (2006) Unique effects of Stat3 on the early phase of hematopoietic stem cell regeneration. Blood 108(4):1208–1215

    CAS  PubMed  Google Scholar 

  • Cobas M, Wilson A, Ernst B et al (2004) Beta-catenin is dispensable for hematopoiesis and lymphopoiesis. J Exp Med 199(2):221–229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crucian BE, Stowe RP, Pierson DL et al (2008) Immune system dysregulation following short- vs long-duration spaceflight. Aviat Space Environ Med 79(9):835–843

    PubMed  Google Scholar 

  • Davis TA, Wiesmann W Kidwell W et al (1996) Effect of spaceflight on human stem cell hematopoiesis: suppression of erythropoiesis and myelopoiesis. J Leukoc Biol 60(1):69–76

    Google Scholar 

  • DeKoter RP, Singh H (2000) Regulation of B lymphocyte and macrophage development by graded expression of PU.1. Science 288(5470):1439–1441

    Google Scholar 

  • DeKoter RP, Walsh JC, Singh H (1998) PU.1 regulates both cytokine-dependent proliferation and differentiation of granulocyte/macrophage progenitors. EMBO J 17(15):4456–4468

    Google Scholar 

  • Domaratskaya EI, Michurina TV, Bueverova EI et al (2002) Studies on clonogenic hemopoietic cells of vertebrate in space: problems and perspectives. Adv Space Res 30(4):771–776

    CAS  PubMed  Google Scholar 

  • Drexler HG, Meyer C, Zaborski M et al (1998) Growth-inhibitory effects of transforming growth factor-beta 1 on myeloid leukemia cell lines. Leuk Res 22(10):927–938

    CAS  PubMed  Google Scholar 

  • Duncan AW, Rattis FM, DiMascio LN et al (2005) Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol 6(3):314–322

    CAS  PubMed  Google Scholar 

  • Elwood NJ, Zogos H, Pereira DS et al (1998) Enhanced megakaryocyte and erythroid development from normal human CD34(+) cells: consequence of enforced expression of SCL. Blood 91(10):3756–3765

    CAS  PubMed  Google Scholar 

  • Evans CA, Pierce A, Winter SA et al (1999) Activation of granulocyte-macrophage colony-stimulating factor and interleukin-3 receptor subunits in a multipotential hematopoietic progenitor cell line leads to differential effects on development. Blood 94(5):1504–1514

    CAS  PubMed  Google Scholar 

  • Fischer CL, Johnson PC, Berry CA (1967) Red blood cell mass and plasma volume changes in manned space flight. J Am Med Assoc 200(7):579

    CAS  Google Scholar 

  • Forsberg EC, Bhattacharya D, Weissman IL (2006) Hematopoietic stem cells: expression profiling and beyond. Stem Cell Rev 2(1):23–30

    CAS  PubMed  Google Scholar 

  • Graebe A, Schuck EL, Lensing P et al (2004) Physiological, pharmacokinetic, and pharmacodynamic changes in space. J Clin Pharmacol 44(8):837–853

    CAS  PubMed  Google Scholar 

  • Grigor’ev AI (2007) Physiological problems of manned mission to Mars. Ross Fiziol Zh Im I M Sechenova 93(5):473–484

    PubMed  Google Scholar 

  • Hans RS (2007) The potential of stem cells: an inventory. In: Human biotechnology as social challenge, England. Ashgate Publishing, Ltd., p 28

    Google Scholar 

  • Hao SX, Ren R (2000) Expression of interferon consensus sequence binding protein (ICSBP) is downregulated in Bcr-Abl-induced murine chronic myelogenous leukemia-like disease, and forced coexpression of ICSBP inhibits Bcr-Abl-induced myeloproliferative disorder. Mol Cell Biol 20(4):1149–1161

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heyworth C, Gale K, Dexter M, May G, Enver T (1999) A GATA-2/estrogen receptor chimera functions as a ligand-dependent negative regulator of self-renewal. Genes & Dev 13(14):1847–1860. https://doi.org/10.1101/gad.13.14.1847

  • Hock H, Hamblen MJ, Rooke HM et al (2004a) Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature 431(7011):1002–1007

    CAS  PubMed  Google Scholar 

  • Hock H, Meade E, Medeiros S et al (2004b) Tel/Etv6 is an essential and selective regulator of adult hematopoietic stem cell survival. Genes Dev 18(19):2336–2341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgson GS, Bradley TR (1979) Properties of haematopoietic stem cells surviving 5-fluorouracil treatment: evidence for a pre-CFU-S cell? Nature 281(5730):381–382

    CAS  PubMed  Google Scholar 

  • Holtschke T, Lohler J, Kanno Y et al (1996) Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell 87(2):307–317

    CAS  PubMed  Google Scholar 

  • Hughes-Fulford M, Chang TT, Martinez EM et al (2015) Spaceflight alters expression of microRNA during T-cell activation. FASEB J 29(12):4893–4900

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang SA, Crucian B, Sams C et al (2015) Post-spaceflight (STS-135) mouse splenocytes demonstrate altered activation properties and surface molecule expression. PLoS ONE 10(5):e0124380

    PubMed  PubMed Central  Google Scholar 

  • Ichiki AT, Gibson LA, Jago TL et al (1996) Effects of spaceflight on rat peripheral blood leukocytes and bone marrow progenitor cells. J Leukoc Biol 60(1):37–43

    CAS  PubMed  Google Scholar 

  • Iliukhin AV, Burkovskaia TE (1981) Cytokinetic evaluation of erythropoiesis on prolonged orbital flights. Kosm Biol Aviakosm Med 15(6):42–46

    CAS  PubMed  Google Scholar 

  • Ilyin EA, Serova LV, Portugalov VV et al (1975) Preliminary results of examinations of rats after a 22-day flight aboard the Cosmos-605 biosatellite. Aviat Space Environ Med 46(3):319–321

    CAS  PubMed  Google Scholar 

  • Iwama A, Oguro H, Negishi M et al (2004) Enhanced self-renewal of hematopoietic stem cells mediated by the polycomb gene product Bmi-1. Immunity 21(6):843–851

    CAS  PubMed  Google Scholar 

  • Iwasaki H, Somoza C, Shigematsu H et al. (2005) Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation. Blood 106(5):1590–1600

    Google Scholar 

  • Johnson PC, Kimzey SL, Driscoll TB (1975) Postmission plasma volume and red-cell mass changes in the crews of the first two Skylab missions. Acta Astronaut 2(3–4):311–317

    CAS  PubMed  Google Scholar 

  • Kato Y, Iwama A, Tadokoro Y et al (2005) Selective activation of STAT5 unveils its role in stem cell self-renewal in normal and leukemic hematopoiesis. J Exp Med 202(1):169–179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly LM, Englmeier U, Lafon I et al (2000) MafB is an inducer of monocytic differentiation. EMBO J 19(9):1987–1997

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo M, Scherer DC, Miyamoto T et al (2000) Cell-fate conversion of lymphoid-committed progenitors by instructive actions of cytokines. Nature 407(6802):383–386

    CAS  PubMed  Google Scholar 

  • Kozinets GI, Korol’kov VI, Britvan II et al (1983) Morphofunctional properties of the peripheral blood and bone marrow cells of rats following a flight on board the Kosmos-936 biosatellite. Kosm Biol Aviakosm Med 17(2):61–65

    CAS  PubMed  Google Scholar 

  • Kraemer WJ, Mastro AM, Gordon SE et al (2004) Responses of plasma proenkephalin peptide F in rats following 14 days of spaceflight. Aviat Space Environ Med 75(2):114–117

    CAS  PubMed  Google Scholar 

  • Krause DS, Fackler MJ, Civin CI et al (1996) CD34: structure, biology, and clinical utility. Blood 87(1):1–13

    CAS  PubMed  Google Scholar 

  • Krishnaraju K, Hoffman B, Liebermann DA (2001) Early growth response gene 1 stimulates development of hematopoietic progenitor cells along the macrophage lineage at the expense of the granulocyte and erythroid lineages. Blood 97(5):1298–1305

    CAS  PubMed  Google Scholar 

  • Krystal G, Lam V, Dragowska W et al (1994) Transforming growth factor beta 1 is an inducer of erythroid differentiation. J Exp Med 180(3):851–860

    CAS  PubMed  Google Scholar 

  • Lange RD, Andrews RB, Gibson LA et al (1987) Hematological measurements in rats flown on Spacelab shuttle, SL-3. Am J Physiol 252(2 Pt 2):R216–R221

    CAS  PubMed  Google Scholar 

  • Lange RD, Gibson LA, Driscoll TB et al (1994) Effects of microgravity and increased gravity on bone marrow of rats. Aviat Space Environ Med 65(8):730–735

    CAS  PubMed  Google Scholar 

  • Leon HA, Serova LV, Cummins J et al (1978) Alterations in erythrocyte survival parameters in rats after 19.5 days aboard Cosmos 782. Aviat Space Environ Med 49(1 Pt 1):66–69

    Google Scholar 

  • Lessard J, Sauvageau G (2003) Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423(6937):255–260

    CAS  PubMed  Google Scholar 

  • Long XX, Zhong TY, Ping BH (2011) Impacts of simulated microgravity on proliferation of K562 Cell. Chin J Microcirc 1:010

    Google Scholar 

  • Mancini SJ, Mantei N, Dumortier A et al (2005) Jagged1-dependent Notch signaling is dispensable for hematopoietic stem cell self-renewal and differentiation. Blood 105(6):2340–2342

    CAS  PubMed  Google Scholar 

  • Matsumura I, Kawasaki A, Tanaka H et al (2000) Biologic significance of GATA-1 activities in Ras-mediated megakaryocytic differentiation of hematopoietic cell lines. Blood 96(7):2440–2450

    CAS  PubMed  Google Scholar 

  • Michurina TV, Domaratskaya EI, Nikonova TM et al (1996) Blood and clonogenic hemopoietic cells of newts after the space flight. Adv Space Res 17(6–7):295–298

    CAS  PubMed  Google Scholar 

  • Moore KA, Lemischka IR (2006) Stem cells and their niches. Science 311(5769):1880–1885

    CAS  PubMed  Google Scholar 

  • Nash PV, Mastro AM (1992) Variable lymphocyte responses in rats after space flight. Exp Cell Res 202(1):125–131

    CAS  PubMed  Google Scholar 

  • Nerlov C, Graf T (1998) PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors. Genes Dev 12(15):2403–2412

    Google Scholar 

  • Nutt SL, Metcalf D, D’Amico A et al (2005) Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors. J Exp Med 201(2):221–231

    Google Scholar 

  • Park IK, Qian D, Kiel M et al (2003) Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423(6937):302–305

    CAS  PubMed  Google Scholar 

  • Passegue E, Wagers AJ, Giuriato S et al (2005) Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J Exp Med 202(11):1599–1611

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paulsen K, Tauber S, Dumrese C et al (2015) Regulation of ICAM-1 in cells of the monocyte/macrophage system in microgravity. Biomed Res Int 2015:538786

    PubMed  PubMed Central  Google Scholar 

  • Pawlak G, Grasset MF, Arnaud S et al (2000) Receptor for macrophage colony-stimulating factor transduces a signal decreasing erythroid potential in the multipotent hematopoietic EML cell line. Exp Hematol 28(10):1164–1173

    CAS  PubMed  Google Scholar 

  • Plett PA, Frankovitz SM, Abonour R et al (2001) Proliferation of human hematopoietic bone marrow cells in simulated microgravity. Vitro Cell Dev Biol Anim 37(2):73–78

    CAS  Google Scholar 

  • Plett PA, Abonour R, Frankovitz SM et al (2004) Impact of modeled microgravity on migration, differentiation, and cell cycle control of primitive human hematopoietic progenitor cells. Exp Hematol 32(8):773–781

    CAS  PubMed  Google Scholar 

  • Reya T, Morrison SJ, Clarke MF et al (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111

    CAS  PubMed  Google Scholar 

  • Reya T, Duncan AW, Ailles L et al (2003) A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423(6938):409–414

    CAS  PubMed  Google Scholar 

  • Rippon HJ, Bishop AE (2004) Embryonic stem cells. Cell Prolif 37(1):23–34

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sauvageau G, Iscove NN, Humphries RK (2004) In vitro and in vivo expansion of hematopoietic stem cells. Oncogene 23(43):7223–7232

    CAS  PubMed  Google Scholar 

  • Schmidt M, Nagel S, Proba J et al (1998) Lack of interferon consensus sequence binding protein (ICSBP) transcripts in human myeloid leukemias. Blood 91(1):22–29

    CAS  PubMed  Google Scholar 

  • Schwarz RP, Goodwin TJ, Wolf DA (1992) Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity. J Tissue Cult Methods 14(2):51–57

    CAS  PubMed  Google Scholar 

  • Scott EW, Simon MC, Anastasi J et al (1994) Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265(5178):1573–1577

    Google Scholar 

  • Seita J, Weissman IL (2010) Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med 2(6):640–653

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shvets VN, Vatsek A, Kozinets GI et al (1984) Hemopoietic status of rats exposed to weightlessness. Kosm Biol Aviakosm Med 18(4):12–16

    CAS  PubMed  Google Scholar 

  • Sonnenfeld G (2002) The immune system in space and microgravity. Med Sci Sports Exerc 34(12):2021–2027

    CAS  PubMed  Google Scholar 

  • Sonnenfeld G, Mandel AD, Konstantinova IV et al (1990) Effects of spaceflight on levels and activity of immune cells. Aviat Space Environ Med 61(7):648–653

    CAS  PubMed  Google Scholar 

  • Sonnenfeld G, Mandel AD, Konstantinova IV et al (1992) Spaceflight alters immune cell function and distribution. J Appl Physiol (1985) 73(2 Suppl):191S–195S

    Google Scholar 

  • Stier S, Cheng T, Dombkowski D et al (2002) Notch1 activation increases hematopoietic stem cell self-renewal in vivo and favors lymphoid over myeloid lineage outcome. Blood 99(7):2369–2378

    CAS  PubMed  Google Scholar 

  • Stowe RP, Sams CF, Pierson DL (2011) Adrenocortical and immune responses following short- and long-duration spaceflight. Aviat Space Environ Med 82(6):627–634

    PubMed  Google Scholar 

  • Sytkowski AJ, Davis KL (2001) Erythroid cell growth and differentiation in vitro in the simulated microgravity environment of the NASA rotating wall vessel bioreactor. Vitro Cell Dev Biol Anim 37(2):79–83

    CAS  Google Scholar 

  • Tamura T, Mancini A, Joos H, Koch A, Hakim C, Dumanski J et al (1999) FMIP, a novel Fms-interacting protein, affects granulocyte/macrophage differentiation. Oncogene 18(47):6488–6495. https://doi.org/10.1038/sj.onc.1203062

  • Tamura T, Nagamura-Inoue T, Shmeltzer Z, Kuwata T, Ozato K (2000) ICSBP directs bipotential myeloid progenitor cells to differentiate into mature macrophages. Immunity 13(2):155–165

    CAS  PubMed  Google Scholar 

  • Tauber S, Lauber BA, Paulsen K et al (2017) Cytoskeletal stability and metabolic alterations in primary human macrophages in long-term microgravity. PLoS ONE 12(4):e0175599

    PubMed  PubMed Central  Google Scholar 

  • Taylor GR, Neale LS, Dardano JR (1986) Immunological analyses of U.S. Space Shuttle crewmembers. Aviat Space Environ Med 57(3):213–217

    Google Scholar 

  • Taylor GR, Konstantinova I, Sonnenfeld G et al (1997) Changes in the immune system during and after spaceflight. Adv Space Biol Med 6:1–32

    CAS  PubMed  Google Scholar 

  • Tsao YD, Goodwin TJ, Wolf DA et al (1992) Responses of gravity level variations on the NASA/JSC bioreactor system. Physiologist 35(1 Suppl):S49–S50

    CAS  PubMed  Google Scholar 

  • Udden MM, Driscoll TB, Gibson LA et al (1995) Blood volume and erythropoiesis in the rat during spaceflight. Aviat Space Environ Med 66(6):557–561

    CAS  PubMed  Google Scholar 

  • Vacek A, Serova LV, Rotkovska D et al (1985) Changes in the number of haemopoietic stem cells (CFUs) in bone marrow and spleens of pregnant rats after a short space flight onboard the Cosmos-1514 biosatellite. Folia Biol (Praha) 31(5):361–365

    CAS  Google Scholar 

  • Vacek A, Bueverova EI, Michurina TV et al (1990) Decrease in the number of progenitors of fibroblasts (CFUf) in bone marrow of rats after a 14-day flight onboard the Cosmos-2044 biosatellite. Folia Biol (Praha) 36(3–4):194–197

    CAS  Google Scholar 

  • Vacek A, Michurina TV, Serova LV et al (1991) Decrease in the number of progenitors of erythrocytes (BFUe, CFUe), granulocytes and macrophages (GM-CFC) in bone marrow of rats after a 14-day flight onboard the Cosmos-2044 Biosatellite. Folia Biol (Praha) 37(1):35–41

    CAS  Google Scholar 

  • Vernikos J (1996) Human physiology in space. BioEssays 18(12):1029–1037

    CAS  PubMed  Google Scholar 

  • Wichman HA (2005) Behavioral and health implications of civilian spaceflight. Aviat Space Environ Med 76(6 Suppl):B164–B171

    PubMed  Google Scholar 

  • Willert K, Brown JD, Danenberg E et al (2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423(6938):448–452

    CAS  PubMed  Google Scholar 

  • Williams D, Kuipers A, Mukai C et al (2009) Acclimation during space flight: effects on human physiology. CMAJ 180(13):1317–1323

    PubMed  PubMed Central  Google Scholar 

  • Wilson A, Murphy MJ, Oskarsson T et al (2004) c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev 18(22):2747–2763

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yi ZC, Xia B, Xue M et al (2009) Simulated microgravity inhibits the proliferation of K562 erythroleukemia cells but does not result in apoptosis. Adv Space Res 44(2):233–244

    CAS  Google Scholar 

  • Yu H, Yuan Y, Shen H et al (2006) Hematopoietic stem cell exhaustion impacted by p18 INK4C and p21 Cip1/Waf1 in opposite manners. Blood 107(3):1200–1206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan Y, Shen H, Franklin DS et al (2004) In vivo self-renewing divisions of haematopoietic stem cells are increased in the absence of the early G1-phase inhibitor, p18INK4C. Nat Cell Biol 6(5):436–442

    CAS  PubMed  Google Scholar 

  • Zeng H, Yucel R, Kosan C et al (2004) Transcription factor Gfi1 regulates self-renewal and engraftment of hematopoietic stem cells. EMBO J 23(20):4116–4125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Zhang X, Iwama A et al (2000) PU.1 inhibits GATA-1 function and erythroid differentiation by blocking GATA-1 DNA binding. Blood 96(8):2641–2648

    Google Scholar 

  • Zou LX, Cui SY, Zhong J et al (2011) Upregulation of erythropoietin receptor in UT-7/EPO cells inhibits simulated microgravity-induced cell apoptosis. Adv Space Res 48(2):390–394

    Google Scholar 

Download references

Acknowledgements

The authors sincerely thank Dr. Shujin Sun from Institute of Mechanics, Chinese Academy of Sciences for free helping and supporting in the supply of microgravity instruments, and Prof. Enkui Duan and Dr. Xiaohua Lei from Institute of Zoology, Chinese Academy of Sciences for valuable opinions and suggestions in the design of our experiment and manuscript. The authors also appreciated Dr. Lu Shi from Institute of Zoology, Chinese Academy of Sciences for proofreading and editing our manuscript. This work was supported by grant from the National Natural Science Foundation of China (NSFC U1738111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, P., Qian, J., Tian, H., Zhao, Y. (2019). The Maintaining and Directed Differentiation of Hematopoietic Stem Cells Under Microgravity. In: Duan, E., Long, M. (eds) Life Science in Space: Experiments on Board the SJ-10 Recoverable Satellite. Research for Development. Springer, Singapore. https://doi.org/10.1007/978-981-13-6325-2_9

Download citation

Publish with us

Policies and ethics