Small Colony Variant Selection, Biofilm Induction, and Interspecies Interactions of Ocular Clinical Pseudomonas aeruginosa

  • Sadhana Sagar
  • Shilpa Deshpande Kaistha


Pseudomonas aeruginosa, an opportunistic pathogen, is frequently isolated from ocular infections. In this study, antibiotic resistance and biofilm formation ability of ocular isolate, Ps. aeruginosa AV2 is characterized. Ps. aeruginosa AV2 is shown to be a potent multiple drug resistant, biofilm former using the adherence, Congo red binding, and acyl homoserine lactone production assays. The extracellular products of the isolate show strong antimicrobial activity against interspecies ocular isolates Staphylococcus aureus, Micrococcus luteus, Bacillus cereus, and Enterobacter aerogenes. Antimicrobial activity was also found against reference strains S. aureus ATCC 25923 and S. aureus ATCC 33529. The active compounds in the cell-free extract (CFE) were characterized to be stable at 55 °C and pH 7.0 and non-proteinaceous in nature. ATR-FTIR spectroscopy peaks show the presence of amines, phenolic, and lactone groups. In the presence of the CFE, S. aureus, E. coli, and Ps. aeruginosa exhibit approximately twofold induction in biofilm type of growth. While the CFE has no effect on interspecies mature biofilms, it showed induction of intraspecies mature biofilm. The results suggest that although Ps. aeruginosa secondary metabolites may be characterized as possessing antimicrobial activity, they may in fact increase intra- and interspecies cells to adhere to substrates and form biofilms. Inter-/intraspecies microbial infections are common in the eye. Hence, polymicrobial interactions at infectious site may lead to development of microbial populations such as biofilms that are refractory to antimicrobial treatments.


Biofilm Antimicrobial activity Pseudomonas aeruginosa cell-free extract 



Financial support from Department of Science and Technology and Department of Atomic Energy, Government of India, is gratefully acknowledged. We are grateful for ATR-FTIR facility used at Indian Institute of Technology, Kanpur.


  1. 1.
    Goldsworthy MJH (2008) Gene expression of Pseudomonas aeruginosa and MRSA within a catheter-associated urinary tract infection biofilm model. Biosci Hor 1:28–37CrossRefGoogle Scholar
  2. 2.
    Pihl M, Chávez de Paz LE, Schmidtchen A, Svensäter G, Davies JR (2010) Effects of clinical isolates of Pseudomonas aeruginosa on Staphylococcus epidermidis biofilm formation. FEMS Immunol Med Microbiol 59(3):504–512CrossRefGoogle Scholar
  3. 3.
    Qin Z, Yang L, Qu D, Molin S, Tolker-Nielsen T (2009) Pseudomonas aeruginosa extracellular products inhibit staphylococcal growth, and disrupt established biofilms produced by Staphylococcus epidermidis. Microbiology 7:2148–2156CrossRefGoogle Scholar
  4. 4.
    Machan ZA, Pitt TL, White W, Watson D, Taylor GW, Cole PJ, Wilson R (1991) Interaction between Pseudomonas aeruginosa and Staphylococcus aureus: description of an anti-staphylococcal substance. J Med Microbiol 34(4):213–217CrossRefGoogle Scholar
  5. 5.
    Hoffman LR, Deziel E, D'Argenio DA, Lepine F, Emerson J, McNamara S, Gibson RL, Ramsey BW, Miller SI (2006) Selection for Staphylococcus aureus small-colony variants due to growth in the presence of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 103:19890–19895CrossRefGoogle Scholar
  6. 6.
    Kessler E, Safrin M, Olson JC, Ohman DE (1993) Secreted LasA of Pseudomonas aeruginosa is a staphylolytic protease. J Biol Chem 10:7503–7508Google Scholar
  7. 7.
    Klepac-Ceraj V, Lemon KP, Martin TR, Allgaier M, Kembel SW, Knapp AA, Lory S, Brodie EL, Lynch SV, Bohannan BJ, Green JL, Maurer BA, Kolter R (2010) Relationship between cystic fibrosis respiratory tract bacterial communities and age, genotype, antibiotics and Pseudomonas aeruginosa. Environ Microbiol 12(5):1293–1303CrossRefGoogle Scholar
  8. 8.
    Anderson GG, O’Toole GA (2008) Innate and induced resistance mechanisms of bacterial biofilms. In: Romeo T (ed) Bacterial biofilms. Springer, Heidelberg, pp 85–105CrossRefGoogle Scholar
  9. 9.
    López D, Vlamakis H, Kolter R (2010) Biofilms. Cold Spring Harb Perspect Biol 12(7):398CrossRefGoogle Scholar
  10. 10.
    Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1951) Colorimetric method for determination of sugars and related substances. Nature 28:167–174CrossRefGoogle Scholar
  11. 11.
    McLean RJC, Pierson LS III, Fuqua C (2004) A simple screening protocol for the identification of quorum signal antagonists. J Microbiol Meth 58(3):351–360CrossRefGoogle Scholar
  12. 12.
    O’Toole GA, Kotler R (1998) Initiation of biofilm formation in Pseudomonas fluorescensWCS365 proceed via multiple, convergent signaling pathways: a genetic analysis. Mol Microbiol 28:449–461CrossRefGoogle Scholar
  13. 13.
    Rashid MH, Kornberg A (2000) Inorganic polyphosphate is needed for swimming, swarming and twitching motilities of Pseudomonas aeruginosa. PNAS 97(9):4885–4890CrossRefGoogle Scholar
  14. 14.
    Kay WW, Phipps BM, Ishiguro EE, Trust TJ (1985) Porphyrin binding by the surface array virulence protein of Aeromonassalmonicida. J Bacteriol 164:1332–1336PubMedPubMedCentralGoogle Scholar
  15. 15.
    Abate G, Mshana RN, Miorner H (1998) Evaluation of a colorimetric assay based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) for rapid detection of rifampicin resistance in Mycobacterium tuberculosis. Int J Tuberc Lung Dis 2:1011–1016PubMedGoogle Scholar
  16. 16.
    Rosenberg M (1984a) Bacterial adherence to hydrocarbon: a useful technique for studying cell surface hydrophobicity. FEMS Microbiol Lett 22:289–295CrossRefGoogle Scholar
  17. 17.
    Yang Y, Lee T, Kim JH, Kim EJ, Joo H, Lee C, Kim B (2006) High-throughput detection method of quorum sensing molecules by colorimetry and its applications. Anal Chem 356:297–299Google Scholar
  18. 18.
    Clinical Laboratory Standards Institute (2008) Performance standards for antimicrobial disc susceptibility tests CLSI 28(1)Google Scholar
  19. 19.
    Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams & Wilkins, BaltimoreGoogle Scholar
  20. 20.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein estimation with Folin Phenol reagents. J Biol Chem 193:265–275Google Scholar
  21. 21.
    Nyquist RA (1990) Infrared group frequency assignments aided by solvent studies. Appl Spectrosc 44(4):594–599CrossRefGoogle Scholar
  22. 22.
    Biswas L, Biswas R, Schlag M, Bertram R, Götz F (2009) Small-colony variant selection as a survival strategy for Staphylococcus aureus in the presence of Pseudomonas aeruginosa. Appl Environ Microbiol 75(21):6910–6912CrossRefGoogle Scholar
  23. 23.
    Voggu L, Schlag S, Biswas R, Rosenstein R, Rausch C, Götz F (2006) Microevolution of cytochrome bd oxidase in Staphylococci and its implication in resistance to respiratory toxins released by Pseudomonas. J Bacteriol 188(23):8079–8086CrossRefGoogle Scholar
  24. 24.
    Lopes SP, Machado I, Pereira MO (2011) Role of planktonic and sessile extracellular metabolic byproducts on Pseudomonas aeruginosa and Escherichia coli intra and interspecies relationships. J Indian Microbiol Biotechnol 38(1):133–140CrossRefGoogle Scholar
  25. 25.
    Mashburn LM, Jett AM, Akins DR, Whiteley M (2005) Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture. J Bacteriol 187(2):554–566CrossRefGoogle Scholar
  26. 26.
    Hoffman LR, D’Argenio DA, MJ MC, Zhang Z, Jones RA, Miller SI (2005) Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436:1171–1175CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sadhana Sagar
    • 1
  • Shilpa Deshpande Kaistha
    • 2
  1. 1.Agriculture MicrobiologyRani Lakshmi Bai Central Agricultural UniversityJhansiIndia
  2. 2.Department of Microbiology, Institute of Biosciences & BiotechnologyChhatrapati Shahu Ji Maharaj UniversityKanpurIndia

Personalised recommendations