Skip to main content

Energy Efficiency and Collaborative Optimization Theory of 5G Heterogeneous Wireless Multi Networks

  • Chapter
  • First Online:
  • 757 Accesses

Abstract

In recent years, with the rapid development of the wireless communication industry, wireless communication networks are becoming more effective in the direction of network diversification, high bandwidth, high frequency band, ubiquity, synergy, overlap and application integration and more flexible to meet the needs of people’s different communication services, a variety of mature wireless access technologies are being rapidly deployed in various scenarios.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Niebert, N., A. Sehieder, H. Abramowiez, et al. 2004. Ambient networks: An architecture for communication networks beyond 3G. IEEE Wireless Communications 11: 14–22.

    Article  Google Scholar 

  2. Akyildiz, I.F., S. Mohanty, and X. Jiang. 2005. A ubiquitous mobile communication architecture for next-generation heterogeneous wireless systems. IEEE Communication Magazine 43 (6): 329–336.

    Article  Google Scholar 

  3. China Mobile will focus on reducing electricity consumption in 2010, saving electricity by 8 billion degrees [Online]. Available: http://www.cctime.com/html/2008-4-1/2008411532549078.htm.

  4. Beijing Statistics Bureau, Beijing general investigation team of National Bureau of statistics. 2011 Beijing statistical yearbook [Online]. Available: http://share.tjnj.net/navibook-0-N2011090106.html.

  5. By the end of 2014, the number of 4G base stations in China increased to 1 million [Online]. Available: http://www.chinairn.com/news/20140307/173802741.html.

  6. Lister, D. 2009. An operator’s view on green radio. In Keynote speech, IEEE International Conference on Green Computing and Communications.

    Google Scholar 

  7. Hu, R.Q., Y. Qian, S. Kota, and G. Giambene. 2011. Hetnets-a new paradigm for increasing cellular capacity and coverage. IEEE Wireless Communications: 8–9.

    Article  Google Scholar 

  8. China Telecom, Consideration on Multi-RAT coordination schemes and issues, 3GPP TSG-RAN WG3 #83#R3-140039.

    Google Scholar 

  9. Richter, F., A. J. Fehske, and G. P. Fettweis. 2009. Energy efficiency aspects of base station deployment strategies for cellular networks. In Proceedings of IEEE Vehicular Technology Conference (VTC Fall): 1–5.

    Google Scholar 

  10. Wang, W., and G. Shen. 2010. Energy efficiency of heterogeneous cellular network. In Proceedings of IEEE Vehicular Technology Conference (VTC Fall): 1–5.

    Google Scholar 

  11. Soh, Y., and T. Quek. 2013. Energy efficient heterogeneous cellular networks. IEEE Journal of Selected Areas in Communications 31 (5): 840–850.

    Article  Google Scholar 

  12. ECR Initiative: Network and telecom equipment—energy and performance assessment, test procedure and measurement methodology. August 2008.

    Google Scholar 

  13. Quek, T., W. C. Cheung, and M. Kountouris. 2011. Energy efficiency analysis of two-tier heterogeneous networks. In Proceedings of IEEE European Wireless Conference, Vienna, Austria, pp. 1–5.

    Google Scholar 

  14. Lorincz, J., and T. Matijevic. 2013. Energy-efficiency analyses of heterogeneous macro and microbase station sites. Computers & Electrical Engineering.

    Google Scholar 

  15. ITU 2012 executive summary, Measuring the Information Society [Online]. Available: http://www.itu.int/dmspub/itu-d/opb/ind/D-IND-ICTOI-2012-SUMPDF-E.pdf.

  16. Lee, S., K. Kim, K. Hong, D. Griffith, Y.H. Kim, and N. Golmie. 2009. A probabilistic call admission control algorithm for WLAN in heterogeneous wireless environment. IEEE Transactions on Wireless Communications 8 (4): 1672–1676.

    Article  Google Scholar 

  17. Damnjanovic, A., J. Montojo, Y. Wei, T. Ji, T. Luo, M. Vajapeyam, T. Yoo, O. Song, and D. Malladi. 2011. A survey on 3gpp heterogeneous networks. IEEE Wireless Communication 18 (3): 10–21.

    Article  Google Scholar 

  18. Haykin, S. 2005. Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications 23 (2): 201–220.

    Article  Google Scholar 

  19. Knisely, D., T. Yoshizawa, and F. Favichia. 2009. Standardization of femtocells in 3GPP. IEEE Communications Magazine 47 (9): 68–75.

    Article  Google Scholar 

  20. Corliano, A., and M. Hufschmid. 2008. Energieverbrauch der mobilen kommunikation. Bundesamt fur Energie, Ittigen, Switzerland, Tech. Rep., in German (Feb 2008).

    Google Scholar 

  21. ETSI, Environmental Engineering (EE). 2012. Principles for mobile network level energy efficiency (Nov 2012) [Online]. Available: http://www.etsi.org/deliver/etsitr/103100103199/103117/01.01.0160/tr103117v010101p.pdf.

  22. Mitola, J., and G. Maguire. 1999. Cognitive radio: Making software radios more personal. IEEE Personal Communication 6 (4): 13–18.

    Article  Google Scholar 

  23. Middleton, G., K. Hooli, A. Tolli, and J. Lilleberg. 2006. Inter-operator spectrum sharing in a broadband cellular network. In Proceedings of IEEE 9th International Symposium on Spread Spectrum Techniques & Applications, pp. 376–380.

    Google Scholar 

  24. Kamal, H., M. Coupechoux, and P. Godlewski. 2009. Inter-operator spectrum sharing for cellular networks using game theory. In Proceedings of IEEE Symposium Personal, Indoor & Mobile Radio Communication, (PIMRC), pp. 425–429.

    Google Scholar 

  25. Wang, X., P. Krishnamurthy, and D. Tipper. 2013. Wireless network virtualization. In Proceedings of International Conference on Computing, Networking and Communication (ICNC), San Diego, CA (January 2013).

    Google Scholar 

  26. Meddour, D.-E., T. Rasheed, and Y. Gourhant. 2011. On the role of infrastructure sharing for mobile network operators in emerging markets. Computer Networks 55 (7): 1576–1591.

    Article  Google Scholar 

  27. Hoffmann, M., and M. Staufer. 2011. Network virtualization for future mobile networks: General architecture and applications. In Proceedings of IEEE International Conference on Communication Workshops (ICC), Kyoto (June 2011).

    Google Scholar 

  28. 3GPP. March 2013. Technical Specification Group services and system aspects; network sharing; architecture and functional description: 3rd generation partnership project (3GPP), TS 23.251 V11.5.0 [Online]. Available: http://www.3gpp.org/ftp/Specs/htmlinfo/23251.htm.

  29. NEC Corporation. 2013. RAN sharing NEC’s approach towards active radio access network sharing: NEC Corporation, Tech. Rep.

    Google Scholar 

  30. Networks, N. S. 2013. Nsn nw sharing moran and mocn for 3G: Report.

    Google Scholar 

  31. Mobile, C. 2011. C-RAN: The road towards green RAN: Report.

    Google Scholar 

  32. V. UK. 2012. Better coverage. Fewer masts. Your complete guide to our network joint venture! [Online]. Available: http://blog.vodafone.co.uk/2012/11/20/better-coverage-fewer-masts-your-complete-guide-to-our-network-joint-venture/.

  33. Kearney. 2012. The rise of the tower business [Online]. Available: http://www.atkearney.com.

  34. Frisanco, T, et al. Infrastructure sharing and shared operations for mobile network operators from a deployment and operations view. In NOMS 2008-2008 IEEE Network Operations and Management Symposium. IEEE, 2008.

    Google Scholar 

  35. 3GPP. September 2013. Technical specification group services and system aspects; service aspects and requirements for network sharing: 3rd generation partnership project (3GPP), TR 22.951 V11.0.0 [Online]. Available: http://www.3gpp.org/ftp/specs/html-INFO/22951.htm.

  36. Panchal, J., Yates, R., and Buddhikot, M. 2013. Mobile network resource sharing options: Performance comparisons. IEEE Transactions Wireless Communications: 1–13.

    Google Scholar 

  37. Kokku, R., R. Mahindra, H. Zhang, and S. Rangarajan. 2012. Nvs: A substrate for virtualizing wireless resources in cellular networks. IEEE/ACM Transactions on Networking 20 (5): 1333–1346.

    Article  Google Scholar 

  38. Esteves, R. P., L. Z. Granville, and R. Boutaba. 2013. On the management of virtual networks. IEEE Communications Magazine 51 (7).

    Article  Google Scholar 

  39. ONF Market Education Committee. 2012. Software-defined networking: The new norm for networks. ONF White Paper. Palo Alto, US: Open Networking Foundation.

    Google Scholar 

  40. McKeown, N., T. Anderson, H. Balakrishnan, et al. 2008. OpenFlow: Enabling innovation in campus networks. ACM SIGCOMM Computer Communication Review 38 (2): 69–74.

    Article  Google Scholar 

  41. Qing-Yun, Zuo, et al. 2013. Research on OpenFlow-Based SDN Technologies. Journal of Software 24 (5): 1078–1097. (in Chinese).

    Article  Google Scholar 

  42. Yap, K. K., R. Sherwood, M. Kobayashi, et al. 2010. Blueprint for introducing innovation into wireless mobile networks. In Proceedings of the Second ACM SIGCOMM Workshop on Virtualized Infrastructure Systems and Architectures. ACM, pp. 25–32.

    Google Scholar 

  43. Naudts, B., M. Kind, F. J. Westphal, et al. 2012. Techno-economic analysis of software defined networking as architecture for the virtualization of a mobile network. In 2012 European Workshop on Software Defined Networking. IEEE, pp. 67–72.

    Google Scholar 

  44. Costa-Perez, X., J. Swetina, T. Guo, et al. 2013. Radio access network virtualization for future mobile carrier networks. IEEE Communications Magazine 51 (7).

    Article  Google Scholar 

  45. Costa-Pérez, X., A. Festag, H.J. Kolbe, et al. 2013. Latest trends in telecommunication standards. ACM SIGCOMM Computer Communication Review 43 (1): 64–71.

    Article  Google Scholar 

  46. Pentikousis, K., Y. Wang, and W. Hu. 2013. Mobileflow: Toward software-defined mobile networks. IEEE Communications Magazine 51 (7).

    Article  Google Scholar 

  47. Kempf, J., B. Johansson, S. Pettersson, et al. 2012. Moving the mobile evolved packet core to the cloud. In IEEE 8th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). IEEE, pp. 784–791.

    Google Scholar 

  48. Li, L. E., Z. M. Mao, and J. Rexford. 2012. Toward software-defined cellular networks. In 2012 European Workshop on Software Defined Networking (EWSDN). IEEE, pp. 7–12.

    Google Scholar 

  49. Dely, P., A. Kassler, L. Chow, et al. 2013. A software-defined networking approach for handover management with real-time video in WLANs. Journal of Modern Transportation 21: 58–65.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Publishing House of Electronics Industry, Beijing and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ge, X., Zhang, W. (2019). Energy Efficiency and Collaborative Optimization Theory of 5G Heterogeneous Wireless Multi Networks. In: 5G Green Mobile Communication Networks. Springer, Singapore. https://doi.org/10.1007/978-981-13-6252-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6252-1_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6251-4

  • Online ISBN: 978-981-13-6252-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics