Traditional Nanostructures and Nanomaterials in Batteries

  • Xing-Long Wu
  • Jin-Zhi Guo
  • Yu-Guo GuoEmail author


Traditional nanostructures and nanomaterials, such as conductive additives, separators and current collectors also play a key role in batteries although they are minority components. In this section, we summarize the research progress of traditional nanostructures and nanomaterials in rechargeable batteries, discussing the effects of these nano components on the electrochemical properties of batteries.



Carbon nanofiber


Carbon nanotube


Lithium ion battery


Acetylene black


Super P


Ketjen black


Single-walled carbon nanotube


Multi-walled carbon nanotube


Vapor deposit carbon fiber


Chemical vapor deposition


Mesoporous carbon




Vapor-grown carbon fiber






Gel polymer electrolyte


Poly(methyl methacrylate) nanoparticle array




Poly(ethylene glycol) dimethacrylate




Poly(ethylene oxide)




Aramid nanofiber


Poly(m-phenylene isophthalamide)


Poly(vinyl alchol)


Poly(phthalazinone ether sulfone ketone)




Poly(arylene ether ketone)


Poly(lactic acid)


Glass fiber/polyimide




1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide


Graphene-carbon nanotube hybrid


Cu-coated carbon cloth


3D porous dendritic current collector


Polyethylene terephthalate


Physical vapour deposition


Super-aligned carbon nanotube






  1. 1.
    Wang, J., & Sun, X. (2012). Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. Energy & Environmental Science, 5, 5163–5185.CrossRefGoogle Scholar
  2. 2.
    Qingtang, Z., Zuolong, Y., Ping, D., et al. (2010). Carbon nanomaterials used as conductive additives in lithium ion batteries. Recent Patents on Nanotechnology, 4, 100–110.CrossRefGoogle Scholar
  3. 3.
    Li, X., Kang, F., & Shen, W. (2006). Multiwalled carbon nanotubes as a conducting additive in a LiNi0.7Co0.3O2 cathode for rechargeable lithium batteries. Carbon, 44, 1334–1336.CrossRefGoogle Scholar
  4. 4.
    Arora, P., & Zhang, Z. (2004). Battery separators. Chemical Reviews, 104, 4419–4462.CrossRefGoogle Scholar
  5. 5.
    Lee, H., Yanilmaz, M., Toprakci, O., et al. (2014). A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy & Environmental Science, 7, 3857–3886.CrossRefGoogle Scholar
  6. 6.
    Wu, H.-C., Lin, Y.-P., Lee, E., et al. (2009). High-performance carbon-based supercapacitors using Al current-collector with conformal carbon coating. Materials Chemistry and Physics, 117, 294–300.CrossRefGoogle Scholar
  7. 7.
    Jiang, J., Nie, P., Ding, B., et al. (2016). Effect of graphene modified Cu current collector on the performance of Li4Ti5O12 anode for lithium-ion batteries. ACS Applied Materials & Interfaces, 8, 30926–30932.CrossRefGoogle Scholar
  8. 8.
    Dudney, N. J., & Li, J. (2015). Using all energy in a battery. Science, 347, 131–132.CrossRefGoogle Scholar
  9. 9.
    Park, M., Zhang, X., Chung, M., et al. (2010). A review of conduction phenomena in Li-ion batteries. Journal of Power Sources, 195, 7904–7929.CrossRefGoogle Scholar
  10. 10.
    Bonaccorso, F., Colombo, L., Yu, G., et al. (2015). Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science, 347, 1246501.CrossRefGoogle Scholar
  11. 11.
    Kucinskis, G., Bajars, G., & Kleperis, J. (2013). Graphene in lithium ion battery cathode materials: A review. Journal of Power Sources, 240, 66–79.CrossRefGoogle Scholar
  12. 12.
    Kuroda, S., Tobori, N., Sakuraba, M., et al. (2003). Charge-discharge properties of a cathode prepared with ketjen black as the electro-conductive additive in lithium ion batteries. Journal of Power Sources, 119–121, 924–928.CrossRefGoogle Scholar
  13. 13.
    Spahr, M. E., Goers, D., Leone, A., et al. (2011). Development of carbon conductive additives for advanced lithium ion batteries. Journal of Power Sources, 196, 3404–3413.CrossRefGoogle Scholar
  14. 14.
    Jin, Y., Li, B., Zhang, Z., et al. (2011). Production of high purity conductive carbon black by high temperature treatment. Nanoscience and Nanotechnology Letters, 3, 784–787.CrossRefGoogle Scholar
  15. 15.
    Liu, Z., Lee, J. Y., & Lindner, H. J. (2001). Effects of conducting carbon on the electrochemical performance of LiCoO2 and LiMn2O4 cathodes. Journal of Power Sources, 97–98, 361–365.CrossRefGoogle Scholar
  16. 16.
    Novák, P., Panitz, J. C., Joho, F., et al. (2000). Advanced in situ methods for the characterization of practical electrodes in lithium-ion batteries. Journal of Power Sources, 90, 52–58.CrossRefGoogle Scholar
  17. 17.
    Imhof, R., & Novák, P. (1999). Oxidative electrolyte solvent degradation in lithium-ion batteries: An in situ differential electrochemical mass spectrometry investigation. Journal of the Electrochemical Society, 146, 1702–1706.CrossRefGoogle Scholar
  18. 18.
    Jang, D. H., & Oh, S. (1998). Effects of carbon additives on spinel dissolution and capacity losses in 4 V Li/LixMn2O4 rechargeable cells. Electrochimica Acta, 43, 1023–1029.CrossRefGoogle Scholar
  19. 19.
    Dominko, R., Gaberscek, M., Drofenik, J., et al. (2003). The role of carbon black distribution in cathodes for Li ion batteries. Journal of Power Sources, 119–121, 770–773.CrossRefGoogle Scholar
  20. 20.
    Li, X., Kang, F., Bai, X., et al. (2007). A novel network composite cathode of LiFePO4/multiwalled carbon nanotubes with high rate capability for lithium ion batteries. Electrochemistry Communications, 9, 663–666.CrossRefGoogle Scholar
  21. 21.
    Zhang, H.-L., Zhang, Y., Zhang, X.-G., et al. (2006). Urchin-like nano/micro hybrid anode materials for lithium ion battery. Carbon, 44, 2778–2784.CrossRefGoogle Scholar
  22. 22.
    Liu, C., Li, F., Ma, L. P., et al. (2010). Advanced materials for energy storage. Advanced Materials, 22, E28–E62.CrossRefGoogle Scholar
  23. 23.
    Sakamoto, J. S., & Dunn, B. (2002). Vanadium oxide-carbon nanotube composite electrodes for use in secondary lithium batteries. Journal of the Electrochemical Society, 149, A26–A30.CrossRefGoogle Scholar
  24. 24.
    Sheem, K., Lee, Y. H., & Lim, H. S. (2006). High-density positive electrodes containing carbon nanotubes for use in Li-ion cells. Journal of Power Sources, 158, 1425–1430.CrossRefGoogle Scholar
  25. 25.
    Forney, M. W., Dzara, M. J., Doucett, A. L., et al. (2014). Advanced germanium nanoparticle composite anodes using single wall carbon nanotube conductive additives. Journal of Materials Chemistry A, 2, 14528–14535.CrossRefGoogle Scholar
  26. 26.
    Guoping, W., Qingtang, Z., Zuolong, Y., et al. (2008). The effect of different kinds of nano-carbon conductive additives in lithium ion batteries on the resistance and electrochemical behavior of the LiCoO2 composite cathodes. Solid State Ionics, 179, 263–268.CrossRefGoogle Scholar
  27. 27.
    Su, F.-Y., He, Y.-B., Li, B., et al. (2012). Could graphene construct an effective conducting network in a high-power lithium ion battery? Nano Energy, 1, 429–439.CrossRefGoogle Scholar
  28. 28.
    Su, F.-Y., You, C., He, Y.-B., et al. (2010). Flexible and planar graphene conductive additives for lithium-ion batteries. Journal of Materials Chemistry, 20, 9644–9650.CrossRefGoogle Scholar
  29. 29.
    Zhang, B., Yu, Y., Liu, Y., et al. (2013). Percolation threshold of graphene nanosheets as conductive additives in Li4Ti5O12 anodes of Li-ion batteries. Nanoscale, 5, 2100–2106.CrossRefGoogle Scholar
  30. 30.
    Bi, H., Huang, F., Tang, Y., et al. (2013). Study of LiFePO4 cathode modified by graphene sheets for high-performance lithium ion batteries. Electrochimica Acta, 88, 414–420.CrossRefGoogle Scholar
  31. 31.
    Liu, T., Sun, S., Zang, Z., et al. (2017). Effects of graphene with different sizes as conductive additives on the electrochemical performance of a LiFePO4 cathode. RSC Advances, 7, 20882–20887.CrossRefGoogle Scholar
  32. 32.
    Kehrwald, D., Shearing, P. R., Brandon, N. P., et al. (2011). Local tortuosity inhomogeneities in a lithium battery composite electrode. Journal of the Electrochemical Society, 158, A1393–A1399.CrossRefGoogle Scholar
  33. 33.
    Vijayaraghavan, B., Ely, D. R., Chiang, Y.-M., et al. (2012). An analytical method to determine tortuosity in rechargeable battery electrodes. Journal of the Electrochemical Society, 159, A548–A552.CrossRefGoogle Scholar
  34. 34.
    Suthar, B., Northrop, P. W. C., Rife, D., et al. (2015). Effect of porosity, thickness and tortuosity on capacity fade of anode. Journal of the Electrochemical Society, 162, A1708–A1717.CrossRefGoogle Scholar
  35. 35.
    Ke, L. U., Lv, W., Su, F.-Y., et al. (2015). Electrode thickness control: Precondition for quite different functions of graphene conductive additives in LiFePO4 electrode. Carbon, 92, 311–317.CrossRefGoogle Scholar
  36. 36.
    Ha, J., Park, S.-K., Yu, S.-H., et al. (2013). A chemically activated graphene-encapsulated LiFePO4 composite for high-performance lithium ion batteries. Nanoscale, 5, 8647–8655.CrossRefGoogle Scholar
  37. 37.
    Tang, R., Yun, Q., Lv, W., et al. (2016). How a very trace amount of graphene additive works for constructing an efficient conductive network in LiCoO2-based lithium-ion batteries. Carbon, 103, 356–362.CrossRefGoogle Scholar
  38. 38.
    Yang, J., Wang, J., Tang, Y., et al. (2013). LiFePO4-graphene as a superior cathode material for rechargeable lithium batteries: impact of stacked graphene and unfolded graphene. Energy & Environmental Science, 6, 1521–1528.CrossRefGoogle Scholar
  39. 39.
    Dominko, R., Gaberšček, M., Drofenik, J., et al. (2003). Influence of carbon black distribution on performance of oxide cathodes for Li ion batteries. Electrochimica Acta, 48, 3709–3716.CrossRefGoogle Scholar
  40. 40.
    Chiaki, S., Gaku, O., Masataka, T., et al. (2008). The reinforcing effect of combined carbon nanotubes and acetylene blacks on the positive electrode of lithium-ion batteries. Chemsuschem, 1, 911–915.CrossRefGoogle Scholar
  41. 41.
    Cheon, S. E., Kwon, C. W., Kim, D. B., et al. (2000). Effect of binary conductive agents in LiCoO2 cathode on performances of lithium ion polymer battery. Electrochimica Acta, 46, 599–605.CrossRefGoogle Scholar
  42. 42.
    Wang, K., Wu, Y., Luo, S., et al. (2013). Hybrid super-aligned carbon nanotube/carbon black conductive networks: A strategy to improve both electrical conductivity and capacity for lithium ion batteries. Journal of Power Sources, 233, 209–215.CrossRefGoogle Scholar
  43. 43.
    Liu, X.-Y., Peng, H.-J., Zhang, Q., et al. (2014). Hierarchical carbon nanotube/carbon black scaffolds as short- and long-range electron pathways with superior li-ion storage performance. Acs Sustainable Chemistry & Engineering, 2, 200–206.CrossRefGoogle Scholar
  44. 44.
    Seid, K. A., Badot, J. C., Dubrunfaut, O., et al. (2013). Multiscale electronic transport in Li1+xNi1/3-uCo1/3-vMn1/3-wO2: A broadband dielectric study from 40 Hz to 10 GHz. Physical Chemistry Chemical Physics, 15, 19790–19798.CrossRefGoogle Scholar
  45. 45.
    Seid, K. A., Badot, J. C., Dubrunfaut, O., et al. (2012). Multiscale electronic transport mechanism and true conductivities in amorphous carbon-LiFePO4 nanocomposites. Journal of Materials Chemistry, 22, 2641–2649.CrossRefGoogle Scholar
  46. 46.
    Hong, J. K., Lee, J. H., & Oh, S. M. (2002). Effect of carbon additive on electrochemical performance of LiCoO2 composite cathodes. Journal of Power Sources, 111, 90–96.CrossRefGoogle Scholar
  47. 47.
    Zhang, Q., Peng, G., Wang, G., et al. (2009). Effect of mesoporous carbon containing binary conductive additives in lithium ion batteries on the electrochemical performance of the LiCoO2 composite cathodes. Solid State Ionics, 180, 698–702.CrossRefGoogle Scholar
  48. 48.
    Kang, X., Utsunomiya, H., Achiha, T., et al. (2010). Effect of conductive additives and surface fluorination on the electrochemical properties of lithium titanate (Li4/3Ti5/3O4). Journal of the Electrochemical Society, 157, A437–A442.CrossRefGoogle Scholar
  49. 49.
    Utsunomiya, H., Nakajima, T., Ohzawa, Y., et al. (2010). Influence of conductive additives and surface fluorination on the charge/discharge behavior of lithium titanate (Li4/3Ti5/3O4). Journal of Power Sources, 195, 6805–6810.CrossRefGoogle Scholar
  50. 50.
    Wang, Q., Su, F.-Y., Tang, Z.-Y., et al. (2012). Synergetic effect of conductive additives on the performance of high power lithium ion batteries. New Carbon Materials, 27, 427–432.CrossRefGoogle Scholar
  51. 51.
    Bian, X., Fu, Q., Qiu, C., et al. (2015). Carbon black and vapor grown carbon fibers binary conductive additive for the Li1.18Co0.15Ni0.15Mn0.52O2 electrodes for Li-ion batteries. Materials Chemistry and Physics, 156, 69–75.CrossRefGoogle Scholar
  52. 52.
    Wei, W., Lv, W., Wu, M.-B., et al. (2013). The effect of graphene wrapping on the performance of LiFePO4 for a lithium ion battery. Carbon, 57, 530–533.CrossRefGoogle Scholar
  53. 53.
    Badot, J.-C., Ligneel, E., Dubrunfaut, O., et al. (2009). A multiscale description of the electronic transport within the hierarchical architecture of a composite electrode for lithium batteries. Advanced Functional Materials, 19, 2749–2758.CrossRefGoogle Scholar
  54. 54.
    Chen, Y. H., Wang, C. W., Liu, G., et al. (2007). Selection of conductive additives in Li-ion battery cathodes-A numerical study. Journal of the Electrochemical Society, 154, A978–A986.CrossRefGoogle Scholar
  55. 55.
    Bauer, W., Nötzel, D., Wenzel, V., et al. (2015). Influence of dry mixing and distribution of conductive additives in cathodes for lithium ion batteries. Journal of Power Sources, 288, 359–367.CrossRefGoogle Scholar
  56. 56.
    Bockholt, H., Haselrieder, W., & Kwade, A. (2016). Intensive powder mixing for dry dispersing of carbon black and its relevance for lithium-ion battery cathodes. Powder Technology, 297, 266–274.CrossRefGoogle Scholar
  57. 57.
    Jiang, R., Cui, C., & Ma, H. (2013). Using graphene nanosheets as a conductive additive to enhance the rate performance of spinel LiMn2O4 cathode material. Physical Chemistry Chemical Physics, 15, 6406–6415.CrossRefGoogle Scholar
  58. 58.
    Abraham, K. M. (1993). Directions in secondary lithium battery research and development. Electrochimica Acta, 38, 1233–1248.CrossRefGoogle Scholar
  59. 59.
    Deimede, V., & Elmasides, C. (2015). Separators for lithium-on batteries: A review on the production processes and recent developments. Energy Technology, 3, 453–468.CrossRefGoogle Scholar
  60. 60.
    Yang, M., & Hou, J. (2012). Membranes in lithium ion batteries. Membranes, 2, 367–383.CrossRefGoogle Scholar
  61. 61.
    Djian, D., Alloin, F., Martinet, S., et al. (2007). Lithium-ion batteries with high charge rate capacity: Influence of the porous separator. Journal of Power Sources, 172, 416–421.CrossRefGoogle Scholar
  62. 62.
    Wu, M.-S., Chiang, P.-C. J., Lin, J.-C., et al. (2004). Correlation between electrochemical characteristics and thermal stability of advanced lithium-ion batteries in abuse tests-short-circuit tests. Electrochimica Acta, 49, 1803–1812.CrossRefGoogle Scholar
  63. 63.
    Love, C. T. (2011). Thermomechanical analysis and durability of commercial micro-porous polymer Li-ion battery separators. Journal of Power Sources, 196, 2905–2912.CrossRefGoogle Scholar
  64. 64.
    Huang, X. (2014). Performance evaluation of a non-woven lithium ion battery separator prepared through a paper-making process. Journal of Power Sources, 256, 96–101.CrossRefGoogle Scholar
  65. 65.
    Tarascon, J. M., & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature, 414, 359–367.CrossRefGoogle Scholar
  66. 66.
    Yuan, F., Chen, H. Z., Yang, H. Y., et al. (2005). PAN-PRO solid polymer electrolytes with high ionic conductivity. Materials Chemistry and Physics, 89, 390–394.CrossRefGoogle Scholar
  67. 67.
    Pu, W., He, X., Wang, L., et al. (2006). Preparation of PVDF-HFP microporous membrane for Li-ion batteries by phase inversion. Journal of Membrane Science, 272, 11–14.CrossRefGoogle Scholar
  68. 68.
    Chiu, C. Y., Yen, Y. J., Kuo, S. W., et al. (2007). Complicated phase behavior and ionic conductivities of PVP-co-PMMA-based polymer electrolytes. Polymer, 48, 1329–1342.CrossRefGoogle Scholar
  69. 69.
    Kim, D. W., Oh, B., Park, J. H., et al. (2000). Gel-coated membranes for lithium-ion polymer batteries. Solid State Ionics, 138, 41–49.CrossRefGoogle Scholar
  70. 70.
    Park, J.-H., Park, W., Kim, J. H., et al. (2011). Close-packed poly(methyl methacrylate) nanoparticle arrays-coated polyethylene separators for high-power lithium-ion polymer batteries. Journal of Power Sources, 196, 7035–7038.CrossRefGoogle Scholar
  71. 71.
    Sohn, J.-Y., Im, J. S., Gwon, S.-J., et al. (2009). Preparation and characterization of a PVDF-HFP/PEGDMA-coated PE separator for lithium-ion polymer battery by electron beam irradiation. Radiation Physics and Chemistry, 78, 505–508.CrossRefGoogle Scholar
  72. 72.
    Lee, H., Alcoutlabi, M., Toprakci, O., et al. (2014). Preparation and characterization of electrospun nanofiber-coated membrane separators for lithium-ion batteries. Journal of Solid State Electrochemistry, 18, 2451–2458.CrossRefGoogle Scholar
  73. 73.
    Liu, Q., Xia, M., Chen, J., et al. (2015). High performance hybrid Al2O3/poly(vinyl alcohol-co-ethylene) nanofibrous membrane for lithium-ion battery separator. Electrochimica Acta, 176, 949–955.CrossRefGoogle Scholar
  74. 74.
    Liang, X., Yang, Y., Jin, X., et al. (2015). The high performances of SiO2/Al2O3-coated electrospun polyimide fibrous separator for lithium-ion battery. Journal of Membrane Science, 493, 1–7.CrossRefGoogle Scholar
  75. 75.
    Jeong, H.-S., & Lee, S.-Y. (2011). Closely packed SiO2 nanoparticles/poly(vinylidene fluoride-hexafluoropropylene) layers-coated polyethylene separators for lithium-ion batteries. Journal of Power Sources, 196, 6716–6722.CrossRefGoogle Scholar
  76. 76.
    Shi, C., Zhang, P., Chen, L., et al. (2014). Effect of a thin ceramic-coating layer on thermal and electrochemical properties of polyethylene separator for lithium-ion batteries. Journal of Power Sources, 270, 547–553.CrossRefGoogle Scholar
  77. 77.
    Kim, K. J., Kwon, H. K., Park, M.-S., et al. (2014). Ceramic composite separators coated with moisturized ZrO2 nanoparticles for improving the electrochemical performance and thermal stability of lithium ion batteries. Physical Chemistry Chemical Physics, 16, 9337–9343.CrossRefGoogle Scholar
  78. 78.
    Zhu, X., Jiang, X., Ai, X., et al. (2015). A highly thermostable ceramic-grafted microporous polyethylene separator for safer lithium-ion batteries. ACS Applied Materials & Interfaces, 7, 24119–24126.CrossRefGoogle Scholar
  79. 79.
    Zhu, X., Jiang, X., Ai, X., et al. (2016). TiO2 ceramic-grafted polyethylene separators for enhanced thermostability and electrochemical performance of lithium-ion batteries. Journal of Membrane Science, 504, 97–103.CrossRefGoogle Scholar
  80. 80.
    Yang, P., Zhang, P., Li, C., et al. (2015). The functional separator coated with core-shell structured silica-poly(methyl methacrylate) sub-microspheres for lithium-ion batteries. Journal of Membrane Science, 474, 148–155.CrossRefGoogle Scholar
  81. 81.
    Xu, W., Wang, Z., Shi, L., et al. (2015). Layer-by-layer deposition of organic-inorganic hybrid multilayer on microporous polyethylene separator to enhance the electrochemical performance of lithium-ion battery. ACS Applied Materials & Interfaces, 7, 20678–20686.CrossRefGoogle Scholar
  82. 82.
    Shin, W.-K., Yoo, J.-H., & Kim, D.-W. (2015). Surface-modified separators prepared with conductive polymer and aluminum fluoride for lithium-ion batteries. Journal of Power Sources, 279, 737–744.CrossRefGoogle Scholar
  83. 83.
    Hu, S., Lin, S., Tu, Y., et al. (2016). Novel aramid nanofiber-coated polypropylene separators for lithium ion batteries. Journal of Materials Chemistry A, 4, 3513–3526.CrossRefGoogle Scholar
  84. 84.
    Ye, W., Zhu, J., Liao, X., et al. (2015). Hierarchical three-dimensional micro/nano-architecture of polyaniline nanowires wrapped-on polyimide nanofibers for high performance lithium-ion battery separators. Journal of Power Sources, 299, 417–424.CrossRefGoogle Scholar
  85. 85.
    Amatucci, G. G., Blyr, A., Sigala, C., et al. (1997). Surface treatments of Li1+xMn2−xO4 spinels for improved elevated temperature performance. Solid State Ionics, 104, 13–25.CrossRefGoogle Scholar
  86. 86.
    Qiao, R., Wang, Y., Olalde-Velasco, P., et al. (2015). Direct evidence of gradient Mn(II) evolution at charged states in LiNi0.5Mn1.5O4 electrodes with capacity fading. Journal of Power Sources, 273, 1120–1126.CrossRefGoogle Scholar
  87. 87.
    Man, C., Jiang, P., Wong, K.-W., et al. (2014). Enhanced wetting properties of a polypropylene separator for a lithium-ion battery by hyperthermal hydrogen induced cross-linking of poly(ethylene oxide). Journal of Materials Chemistry A, 2, 11980–11986.CrossRefGoogle Scholar
  88. 88.
    Li, Z., Pauric, A. D., Goward, G. R., et al. (2014). Manganese sequestration and improved high-temperature cycling of Li-ion batteries by polymeric aza-15-crown-5. Journal of Power Sources, 272, 1134–1141.CrossRefGoogle Scholar
  89. 89.
    Lee, Y., Lee, H., Lee, T., et al. (2015). Synergistic thermal stabilization of ceramic/co-polyimide coated polypropylene separators for lithium-ion batteries. Journal of Power Sources, 294, 537–544.CrossRefGoogle Scholar
  90. 90.
    Wang, J., Hu, Z., Yin, X., et al. (2015). Alumina/Phenolphthalein polyetherketone ceramic composite polypropylene separator film for lithium ion power batteries. Electrochimica Acta, 159, 61–65.CrossRefGoogle Scholar
  91. 91.
    Zhang, F., Ma, X., Cao, C., et al. (2014). Poly(vinylidene fluoride)/SiO2 composite membranes prepared by electrospinning and their excellent properties for nonwoven separators for lithium-ion batteries. Journal of Power Sources, 251, 423–431.CrossRefGoogle Scholar
  92. 92.
    Sheng-Heng, C., & Arumugam, M. (2014). Bifunctional separator with a light-weight carbon-coating for dynamically and statically stable lithium-sulfur batteries. Advanced Functional Materials, 24, 5299–5306.CrossRefGoogle Scholar
  93. 93.
    Zhao, D., Qian, X., Jin, L., et al. (2016). Separator modified by Ketjen black for enhanced electrochemical performance of lithium-sulfur batteries. RSC Advances, 6, 13680–13685.CrossRefGoogle Scholar
  94. 94.
    Juan, B., Tony, J., Markus, K., et al. (2015). Functional mesoporous carbon-coated separator for long-life, high-energy lithium-sulfur batteries. Advanced Functional Materials, 25, 5285–5291.CrossRefGoogle Scholar
  95. 95.
    Stoeck, U., Balach, J., Klose, M., et al. (2016). Reconfiguration of lithium sulphur batteries: “Enhancement of Li–S cell performance by employing a highly porous conductive separator coating”. Journal of Power Sources, 309, 76–81.CrossRefGoogle Scholar
  96. 96.
    Zhang, Z., Wang, G., Lai, Y., et al. (2015). Nitrogen-doped porous hollow carbon sphere-decorated separators for advanced lithium-sulfur batteries. Journal of Power Sources, 300, 157–163.CrossRefGoogle Scholar
  97. 97.
    Balach, J., Jaumann, T., Klose, M., et al. (2016). Improved cycling stability of lithium-sulfur batteries using a polypropylene-supported nitrogen-doped mesoporous carbon hybrid separator as polysulfide adsorbent. Journal of Power Sources, 303, 317–324.CrossRefGoogle Scholar
  98. 98.
    Guangmin, Z., Lu, L., Da-Wei, W., et al. (2015). A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li–S batteries. Advanced Materials, 27, 641–647.CrossRefGoogle Scholar
  99. 99.
    Ting-Zhou, Z., Jia-Qi, H., Hong-Jie, P., et al. (2016). Rational integration of polypropylene/graphene oxide/nafion as ternary-layered separator to retard the shuttle of polysulfides for lithium-sulfur batteries. Small (Weinheim an der Bergstrasse, Germany), 12, 381–389.CrossRefGoogle Scholar
  100. 100.
    Chi-Hao, C., Sheng-Heng, C., & Arumugam, M. (2016). Effective stabilization of a high-loading sulfur cathode and a lithium-metal anode in Li–S Batteries Utilizing SWCNT-modulated separators. Small (Weinheim an der Bergstrasse, Germany), 12, 174–179.CrossRefGoogle Scholar
  101. 101.
    Kang, G.-D., & Cao, Y.-M. (2014). Application and modification of poly(vinylidene fluoride) (PVDF) membranes-A review. Journal of Membrane Science, 463, 145–165.CrossRefGoogle Scholar
  102. 102.
    Liang, Y., Cheng, S., Zhao, J., et al. (2013). Heat treatment of electrospun polyvinylidene fluoride fibrous membrane separators for rechargeable lithium-ion batteries. Journal of Power Sources, 240, 204–211.CrossRefGoogle Scholar
  103. 103.
    Kim, J.-H., Kim, J.-H., Choi, E.-S., et al. (2014). Nanoporous polymer scaffold-embedded nonwoven composite separator membranes for high-rate lithium-ion batteries. RSC Advances, 4, 54312–54321.CrossRefGoogle Scholar
  104. 104.
    Wu, D., Shi, C., Huang, S., et al. (2015). Electrospun nanofibers for sandwiched polyimide/poly (vinylidene fluoride)/polyimide separators with the thermal shutdown function. Electrochimica Acta, 176, 727–734.CrossRefGoogle Scholar
  105. 105.
    Zhai, Y., Wang, N., Mao, X., et al. (2014). Sandwich-structured PVdF/PMIA/PVdF nanofibrous separators with robust mechanical strength and thermal stability for lithium ion batteries. Journal of Materials Chemistry A, 2, 14511–14518.CrossRefGoogle Scholar
  106. 106.
    Banerjee, A., Ziv, B., Shilina, Y., et al. (2016). Improving stability of Li-ion batteries by means of transition metal ions trapping separators. Journal of the Electrochemical Society, 163, A1083–A1094.CrossRefGoogle Scholar
  107. 107.
    Xiao, W., Zhao, L., Gong, Y., et al. (2015). Preparation and performance of poly(vinyl alcohol) porous separator for lithium-ion batteries. Journal of Membrane Science, 487, 221–228.CrossRefGoogle Scholar
  108. 108.
    Lu, C., Qi, W., Li, L., et al. (2013). Electrochemical performance and thermal property of electrospun PPESK/PVDF/PPESK composite separator for lithium-ion battery. Journal of Applied Electrochemistry, 43, 711–720.CrossRefGoogle Scholar
  109. 109.
    Miao, Y.-E., Zhu, G.-N., Hou, H., et al. (2013). Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries. Journal of Power Sources, 226, 82–86.CrossRefGoogle Scholar
  110. 110.
    Zhihong, L., Wen, J., Qingshan, K., et al. (2013). A Core@sheath nanofibrous separator for lithium ion batteries obtained by coaxial electrospinning. Macromolecular Materials and Engineering, 298, 806–813.CrossRefGoogle Scholar
  111. 111.
    Le Mong, A., & Kim, D. (2016). Tailor-made pore controlled poly (arylene ether ketone) membranes as a lithium-ion battery separator. Journal of Power Sources, 304, 301–310.CrossRefGoogle Scholar
  112. 112.
    Chun, S.-J., Choi, E.-S., Lee, E.-H., et al. (2012). Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries. Journal of Materials Chemistry, 22, 16618–16626.CrossRefGoogle Scholar
  113. 113.
    Weng, B., Xu, F., Alcoutlabi, M., et al. (2015). Fibrous cellulose membrane mass produced via forcespinning® for lithium-ion battery separators. Cellulose, 22, 1311–1320.CrossRefGoogle Scholar
  114. 114.
    Liao, H., Hong, H., Zhang, H., et al. (2016). Preparation of hydrophilic polyethylene/methylcellulose blend microporous membranes for separator of lithium-ion batteries. Journal of Membrane Science, 498, 147–157.CrossRefGoogle Scholar
  115. 115.
    Kim, J.-M., Kim, C., Yoo, S., et al. (2015). Agarose-biofunctionalized, dual-electrospun heteronanofiber mats: Toward metal-ion chelating battery separator membranes. Journal of Materials Chemistry A, 3, 10687–10692.CrossRefGoogle Scholar
  116. 116.
    Jiang, F., Yin, L., Yu, Q., et al. (2015). Bacterial cellulose nanofibrous membrane as thermal stable separator for lithium-ion batteries. Journal of Power Sources, 279, 21–27.CrossRefGoogle Scholar
  117. 117.
    Kim, J.-H., Kim, J.-H., Choi, K.-H., et al. (2014). Inverse opal-inspired, nanoscaffold battery separators: A new membrane opportunity for high-performance energy storage systems. Nano Letters, 14, 4438–4448.CrossRefGoogle Scholar
  118. 118.
    Luo, X., Pan, W., Liu, H., et al. (2015). Glass fiber fabric mat as the separator for lithium-ion battery with high safety performance. Ionics, 21, 3135–3139.CrossRefGoogle Scholar
  119. 119.
    Zhang, B., Wang, Q., Zhang, J., et al. (2014). A superior thermostable and nonflammable composite membrane towards high power battery separator. Nano Energy, 10, 277–287.CrossRefGoogle Scholar
  120. 120.
    He, M., Zhang, X., Jiang, K., et al. (2015). Pure inorganic separator for lithium ion batteries. ACS Applied Materials & Interfaces, 7, 738–742.CrossRefGoogle Scholar
  121. 121.
    Holtmann, J., Schäfer, M., Niemöller, A., et al. (2016). Boehmite-based ceramic separator for lithium-ion batteries. Journal of Applied Electrochemistry, 46, 69–76.CrossRefGoogle Scholar
  122. 122.
    Raja, M., Angulakshmi, N., Thomas, S., et al. (2014). Thin, flexible and thermally stable ceramic membranes as separator for lithium-ion batteries. Journal of Membrane Science, 471, 103–109.CrossRefGoogle Scholar
  123. 123.
    Padmaraj, O., Nageswara Rao, B., Jena, P., et al. (2014). Electrochemical studies of electrospun organic/inorganic hybrid nanocomposite fibrous polymer electrolyte for lithium battery. Polymer, 55, 1136–1142.CrossRefGoogle Scholar
  124. 124.
    Raja, M., Kumar, T. P., Sanjeev, G., et al. (2014). Montmorillonite-based ceramic membranes as novel lithium-ion battery separators. Ionics, 20, 943–948.CrossRefGoogle Scholar
  125. 125.
    Raja, M., Sanjeev, G., Prem Kumar, T., et al. (2015). Lithium aluminate-based ceramic membranes as separators for lithium-ion batteries. Ceramics International, 41, 3045–3050.CrossRefGoogle Scholar
  126. 126.
    Nunes-Pereira, J., Costa, C. M., Sousa, R. E., et al. (2014). Li-ion battery separator membranes based on barium titanate and poly(vinylidene fluoride-co-trifluoroethylene): Filler size and concentration effects. Electrochimica Acta, 117, 276–284.CrossRefGoogle Scholar
  127. 127.
    Goodenough, J. B., & Park, K.-S. (2013). The Li-ion rechargeable battery: A perspective. Journal of the American Chemical Society, 135, 1167–1176.CrossRefGoogle Scholar
  128. 128.
    Goodenough, J. B. (2013). Evolution of strategies for modern rechargeable batteries. Accounts of Chemical Research, 46, 1053–1061.CrossRefGoogle Scholar
  129. 129.
    Myung, S.-T., Hitoshi, Y., & Sun, Y.-K. (2011). Electrochemical behavior and passivation of current collectors in lithium-ion batteries. Journal of Materials Chemistry, 21, 9891–9911.CrossRefGoogle Scholar
  130. 130.
    Zhang, S. S., & Jow, T. R. (2002). Aluminum corrosion in electrolyte of Li-ion battery. Journal of Power Sources, 109, 458–464.CrossRefGoogle Scholar
  131. 131.
    Zhang, X., Winget, B., Doeff, M., et al. (2005). Corrosion of aluminum current collectors in lithium-ion batteries with electrolytes containing LiPF6. Journal of the Electrochemical Society, 152, B448–B454.CrossRefGoogle Scholar
  132. 132.
    Yang, H., Kwon, K., Devine, T. M., et al. (2000). Aluminum corrosion in lithium batteries an investigation using the electrochemical quartz crystal microbalance. Journal of the Electrochemical Society, 147, 4399–4407.CrossRefGoogle Scholar
  133. 133.
    Wen, J., Yu, Y., & Chen, C. (2012). A review on lithium-ion batteries safety issues: Existing problems and possible solutions. Materials Express, 2, 197–212.CrossRefGoogle Scholar
  134. 134.
    Zhang, X., Ross, P. N., Kostecki, R., et al. (2001). Diagnostic characterization of high power lithium-ion batteries for use in hybrid electric vehicles. Journal of the Electrochemical Society, 148, A463–A470.CrossRefGoogle Scholar
  135. 135.
    Lecoeur, C., Tarascon, J.-M., & Guery, C. (2010). Al current collectors for Li-ion batteries made via a template-free electrodeposition process in ionic liquids. Journal of the Electrochemical Society, 157, A641–A646.CrossRefGoogle Scholar
  136. 136.
    Perre, E., Nyholm, L., Gustafsson, T., et al. (2008). Direct electrodeposition of aluminium nano-rods. Electrochemistry Communications, 10, 1467–1470.CrossRefGoogle Scholar
  137. 137.
    Portet, C., Taberna, P. L., Simon, P., et al. (2006). Modification of Al current collector/active material interface for power improvement of electrochemical capacitor electrodes. Journal of the Electrochemical Society, 153, A649–A653.CrossRefGoogle Scholar
  138. 138.
    Wu, H.-C., Wu, H.-C., Lee, E., et al. (2010). High-temperature carbon-coated aluminum current collector for enhanced power performance of LiFePO4 electrode of Li-ion batteries. Electrochemistry Communications, 12, 488–491.CrossRefGoogle Scholar
  139. 139.
    Lecoeur, C., Tarascon, J.-M., & Guery, C. (2011). Al current collectors for Li-ion batteries made via an oxidation process in ionic liquids. Electrochemical and Solid-State Letters, 14, A6–A9.CrossRefGoogle Scholar
  140. 140.
    Xiao, H., Pender, J. P., Meece-Rayle, M. A., et al. (2017). Reduced-graphene oxide/poly(acrylic acid) aerogels as a three-dimensional replacement for metal-foil current collectors in lithium-ion batteries. ACS Applied Materials & Interfaces, 9, 22641–22651.CrossRefGoogle Scholar
  141. 141.
    Huang, J.-Q., Zhai, P.-Y., Peng, H.-J., et al. (2017). Metal/nanocarbon layer current collectors enhanced energy efficiency in lithium-sulfur batteries. Science Bulletin, 62, 1267–1274.CrossRefGoogle Scholar
  142. 142.
    Yuan, W., Luo, J., Yan, Z., et al. (2017). High-performance CuO/Cu composite current collectors with array-pattern porous structures for lithium-ion batteries. Electrochimica Acta, 226, 89–97.CrossRefGoogle Scholar
  143. 143.
    Wu, Y. P., Rahm, E., & Holze, R. (2003). Carbon anode materials for lithium ion batteries. Journal of Power Sources, 114, 228–236.CrossRefGoogle Scholar
  144. 144.
    Yue, H., Li, F., Yang, Z., et al. (2014). Facile preparation of Mn3O4-coated carbon nanofibers on copper foam as a high-capacity and long-life anode for lithium-ion batteries. Journal of Materials Chemistry A, 2, 17352–17358.CrossRefGoogle Scholar
  145. 145.
    Taberna, P. L., Mitra, S., Poizot, P., et al. (2006). High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nature Materials, 5, 567–573.CrossRefGoogle Scholar
  146. 146.
    Bai, B., & Liu, Q. (2017). Enhanced cycle performance of silicon-based anode by annealing Cu-coated carbon cloth current collector for flexible lithium-ion battery. Catalysis Letters, 147, 2962–2966.CrossRefGoogle Scholar
  147. 147.
    Woo, K. S., Ho, Y. J., Bongki, S., et al. (2014). Graphite/silicon hybrid electrodes using a 3D current collector for flexible batteries. Advanced Materials, 26, 2977–2982.CrossRefGoogle Scholar
  148. 148.
    Kim, G., Jeong, S., Shin, J.-H., et al. (2014). 3D amorphous silicon on nanopillar copper electrodes as anodes for high-rate lithium-ion batteries. ACS Nano, 8, 1907–1912.CrossRefGoogle Scholar
  149. 149.
    Liu, B., Soares, P., Checkles, C., et al. (2013). Three-dimensional hierarchical ternary nanostructures for high-performance Li-Ion battery anodes. Nano Letters, 13, 3414–3419.CrossRefGoogle Scholar
  150. 150.
    Sakineh, C., Chuang, P., Di, H., et al. (2014). Ideal three-dimensional electrode structures for electrochemical energy storage. Advanced Materials, 26, 2440–2445.CrossRefGoogle Scholar
  151. 151.
    Yang, C.-P., Yin, Y.-X., Zhang, S.-F., et al. (2015). Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nature Communications, 6, 8058.CrossRefGoogle Scholar
  152. 152.
    Zhang, H., Yu, X., & Braun, P. V. (2011). Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nature Nanotechnology, 6, 277–281.CrossRefGoogle Scholar
  153. 153.
    Kim, J.-H., Kang, S. H., Zhu, K., et al. (2011). Ni–NiO core-shell inverse opal electrodes for supercapacitors. Chemical Communications, 47, 5214–5216.CrossRefGoogle Scholar
  154. 154.
    Lang, X., Hirata, A., Fujita, T., et al. (2011). Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nature Nanotechnology, 6, 232–236.CrossRefGoogle Scholar
  155. 155.
    Chen, Z., Ren, W., Gao, L., et al. (2011). Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nature Materials, 10, 424–428.CrossRefGoogle Scholar
  156. 156.
    Soria, M. L., Chacón, J., & Hernández, J. C. (2001). Metal hydride electrodes and Ni/MH batteries for automotive high power applications. Journal of Power Sources, 102, 97–104.CrossRefGoogle Scholar
  157. 157.
    Kim, T. K., Chen, W., & Wang, C. (2011). Heat treatment effect of the Ni foam current collector in lithium ion batteries. Journal of Power Sources, 196, 8742–8746.CrossRefGoogle Scholar
  158. 158.
    Du, N., Fan, X., Yu, J., et al. (2011). Ni3Si2-Si nanowires on Ni foam as a high-performance anode of Li-ion batteries. Electrochemistry Communications, 13, 1443–1446.CrossRefGoogle Scholar
  159. 159.
    Yang, C., Zhang, D., Zhao, Y., et al. (2011). Nickel foam supported Sn-Co alloy film as anode for lithium ion batteries. Journal of Power Sources, 196, 10673–10678.CrossRefGoogle Scholar
  160. 160.
    Liu, T., Zhao, L., Wang, D., et al. (2013). Corrosion resistance of nickel foam modified with electroless Ni–P alloy as positive current collector in a lithium ion battery. RSC Advances, 3, 25648–25651.CrossRefGoogle Scholar
  161. 161.
    Huang, X.-L., Xu, D., Yuan, S., et al. (2014). Dendritic Ni–P-coated melamine foam for a lightweight, low-cost, and amphipathic three-dimensional current collector for binder-free electrodes. Advanced Materials, 26, 7264–7270.CrossRefGoogle Scholar
  162. 162.
    Poetz, S., Fuchsbichler, B., Schmuck, M., et al. (2014). Development of a 3D current collector for the positive electrode in lithium-ion batteries. Journal of Applied Electrochemistry, 44, 989–994.CrossRefGoogle Scholar
  163. 163.
    Hu, L., Wu, H., La Mantia, F., et al. (2010). Thin, flexible secondary Li-ion paper batteries. ACS Nano, 4, 5843–5848.CrossRefGoogle Scholar
  164. 164.
    Lytle, J. C., Wallace, J. M., Sassin, M. B., et al. (2011). The right kind of interior for multifunctional electrode architectures: Carbon nanofoam papers with aperiodic submicrometre pore networks interconnected in 3D. Energy & Environmental Science, 4, 1913–1925.CrossRefGoogle Scholar
  165. 165.
    Guo, J., Sun, A., & Wang, C. (2010). A porous silicon-carbon anode with high overall capacity on carbon fiber current collector. Electrochemistry Communications, 12, 981–984.CrossRefGoogle Scholar
  166. 166.
    Tong-Tong, Z., Xiong-Wei, W., Chun-Peng, Y., et al. (2017). Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes. Advanced Materials, 29, 1700389.CrossRefGoogle Scholar
  167. 167.
    Liu, L., Yin, Y.-X., Li, J.-Y., et al. (2017). Free-standing hollow carbon fibers as high-capacity containers for stable lithium metal anodes. Joule, 1, 563–575.CrossRefGoogle Scholar
  168. 168.
    Huan, Y., Sen, X., Ya-Xia, Y., et al. (2017). Advanced porous carbon materials for high-efficient lithium metal anodes. Advanced Energy Materials, 7, 1700530.CrossRefGoogle Scholar
  169. 169.
    Yazici, M. S., Krassowski, D., & Prakash, J. (2005). Flexible graphite as battery anode and current collector. Journal of Power Sources, 141, 171–176.CrossRefGoogle Scholar
  170. 170.
    Aliahmad, N., Agarwal, M., Shrestha, S., et al. (2013). Paper-based lithium-ion batteries using carbon nanotube-coated wood microfibers. IEEE Transactions on Nanotechnology, 12, 408–412.CrossRefGoogle Scholar
  171. 171.
    Wang, K., Luo, S., Wu, Y., et al. (2013). Super-aligned carbon nanotube films as current collectors for lightweight and flexible lithium ion batteries. Advanced Functional Materials, 23, 846–853.CrossRefGoogle Scholar
  172. 172.
    Zhong, S.-W., Hu, J.-W., Wu, Z.-P., et al. (2015). Performance of lithium ion batteries using a carbon nanotube film as a cathode current collector. Carbon, 81, 850–852.CrossRefGoogle Scholar
  173. 173.
    Sun, X., Qiu, Z., Chen, L., et al. (2017). Three-dimensional porous carbon nanotube papers as current collector and buffer for SnO2 anodes. NANO, 12, 1750141.CrossRefGoogle Scholar
  174. 174.
    Qu, H., Hou, J., Tang, Y., et al. (2016). Thin flexible lithium-ion battery featuring graphite paper based current collectors with enhanced conductivity. Canadian Journal of Chemistry, 95, 169–173.CrossRefGoogle Scholar
  175. 175.
    Yang, L. Y., Li, H. Z., Cheng, L. Z., et al. (2017). A three-dimensional surface modified carbon cloth designed as flexible current collector for high-performance lithium and sodium batteries. Journal of Alloys and Compounds, 726, 837–845.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Northeast Normal UniversityChangchun, JilinPeople’s Republic of China
  2. 2.Institute of Chemistry, Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations