Skip to main content

Microfluidic Organs-on-Chips to Reconstitute Cellular Microenvironments

  • Chapter
  • First Online:
Applications of Microfluidic Systems in Biology and Medicine

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 7))

  • 1812 Accesses

Abstract

Recent advances in microsystems technology and tissue engineering have led to the development of biomimetic microdevices to model key functional units of human organs, known as organs-on-chips. By mimicking natural tissue architecture and microenvironmental chemical and physical cues within microfluidic devices, this technology realizes organ-level function in vitro that cannot be recapitulated with conventional culture methods. Since the physiological microenvironments in living systems are mostly microfluidic in nature, microfluidic systems facilitate engineering of cellular microenvironments. Microfluidic systems allow for control of local chemical gradients and dynamic mechanical forces, which play important roles in organ development and function. This organ-on-a-chip technology has great potential to facilitate drug discovery and development, to model human physiology and disease, and to replace animal models for efficacy and toxicity testing. This chapter shows an overview of the organ-on-a-chip technology to recapitulate cellular microenvironments and especially focuses on bone marrow-on-a-chip that enables culture of living bone marrow with a functional hematopoietic niche as a novel type of approach to develop organs-on-chips.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shamir ER, Ewald AJ (2014) Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat Rev Mol Cell Biol 15:647–664

    CAS  Google Scholar 

  2. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19:1423–1437

    CAS  Google Scholar 

  3. Morrison SJ, Spradling AC (2008) Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132:598–611

    CAS  Google Scholar 

  4. Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505:327–334

    CAS  Google Scholar 

  5. Sugiyama T, Kohara H, Noda M, Nagasawa T (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25:977–988

    CAS  Google Scholar 

  6. Pampaloni F, Reynaud EG, Stelzer EH (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8:839–845

    CAS  Google Scholar 

  7. Griffith LG, Swartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7:211–224

    CAS  Google Scholar 

  8. Mazzoleni G, Di Lorenzo D, Steimberg N (2009) Modelling tissues in 3D: the next future of pharmaco-toxicology and food research? Genes Nutr 4:13–22

    CAS  Google Scholar 

  9. Paguirigan AL, Beebe DJ (2009) From the cellular perspective: exploring differences in the cellular baseline in macroscale and microfluidic cultures. Integr Biol 1:182–195

    CAS  Google Scholar 

  10. Helmlinger G, Endo M, Ferrara N et al (2000) Formation of endothelial cell networks. Nature 405:139–141

    CAS  Google Scholar 

  11. Shemesh J, Jalilian I, Shi A et al (2015) Flow-induced stress on adherent cells in microfluidic devices. Lab Chip 15:4114–4127

    CAS  Google Scholar 

  12. Whitesides GM, Ostuni E, Takayama S et al (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335–373

    CAS  Google Scholar 

  13. Gurdon JB, Bourillot PY (2001) Morphogen gradient interpretation. Nature 413:797–803

    CAS  Google Scholar 

  14. Keenan TM, Folch A (2008) Biomolecular gradients in cell culture systems. Lab Chip 8:34–57

    CAS  Google Scholar 

  15. Dertinger SKW, Chiu DT, Jeon NL, Whitesides GM (2001) Generation of gradients having complex shapes using microfluidic networks. Anal Chem 73:1240–1246

    CAS  Google Scholar 

  16. Kim S, Kim HJ, Jeon NL (2010) Biological applications of microfluidic gradient devices. Integr Biol 2:584–603

    CAS  Google Scholar 

  17. Jeon NL, Baskaran H, Dertinger SK et al (2002) Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat Biotechnol 20:826–830

    CAS  Google Scholar 

  18. Wang SJ, Saadi W, Lin F et al (2004) Differential effects of EGF gradient profiles on MDA-MB-231 breast cancer cell chemotaxis. Exp Cell Res 300:180–189

    CAS  Google Scholar 

  19. Park JY, Kim SK, Woo DH et al (2009) Differentiation of neural progenitor cells in a microfluidic chip-generated cytokine gradient. Stem Cells 27:2646–2654

    CAS  Google Scholar 

  20. Demers CJ, Soundararajan P, Chennampally P et al (2016) Development-on-chip: in vitro neural tube patterning with a microfluidic device. Development 143:1884–1892

    CAS  Google Scholar 

  21. Torisawa Y, Mosadegh B, Bersano-Begey T et al (2010) Microfluidic platform for chemotaxis in gradients formed by CXCL12 source-sink cells. Integr Biol 2:680–686

    CAS  Google Scholar 

  22. Chen X, Aledia AS, Popson SA et al (2010) Rapid anastomosis of endothelial progenitor cell-derived vessels with host vasculature is promoted by a high density of cotransplanted fibroblasts. Tissue Eng Part A 16:585–597

    CAS  Google Scholar 

  23. Newman AC, Nakatsu MN, Chou W et al (2011) The requirement for fibroblasts in angiogenesis: fibroblast-derived matrix proteins are essential for endothelial cell lumen formation. Mol Biol Cell 22:3791–3800

    CAS  Google Scholar 

  24. Moya ML, Hsu YH, Lee AP et al (2013) In vitro perfused human capillary networks. Tissue Eng Part C Methods 19:730–737

    CAS  Google Scholar 

  25. Kim S, Lee H, Chung M, Jeon NL (2013) Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip 13:1489–1500

    CAS  Google Scholar 

  26. Kim J, Chung M, Kim S et al (2015) Engineering of a biomimetic pericyte-covered 3D microvascular network. PLoS One 10:e0133880

    Google Scholar 

  27. Kim S, Chung M, Ahn J et al (2016) Interstitial flow regulates the angiogenic response and phenotype of endothelial cells in a 3D culture model. Lab Chip 16:4189–4199

    CAS  Google Scholar 

  28. Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146:873–887

    CAS  Google Scholar 

  29. Nashimoto Y, Hayashi T, Kunita I et al (2017) Integrating perfusable vascular networks with a three-dimensional tissue in a microfluidic device. Integr Biol 9:506–518

    Google Scholar 

  30. Oh S, Ryu H, Tahk D et al (2017) “Open-top” microfluidic device for in vitro three-dimensional capillary beds. Lab Chip 17:3405–3414

    CAS  Google Scholar 

  31. Takebe T, Zhang B, Radisic M (2017) Synergistic engineering: organoids meet organs-on-a-chip. Cell Stem Cell 21:297–300

    CAS  Google Scholar 

  32. Huh D, Torisawa Y, Hamilton GA et al (2012) Microengineered physiological biomimicry: organs-on-chips. Lab Chip 12:2156–2164

    CAS  Google Scholar 

  33. Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32:760–772

    CAS  Google Scholar 

  34. Esch EW, Bahinski A, Huh D (2015) Organs-on-chips at the frontiers of drug discovery. Nat Rev Drug Discov 14:248–260

    CAS  Google Scholar 

  35. Zheng F, Fu F, Cheng Y et al (2016) Organ-on-a-chip systems: microengineering to biomimic living systems. Small 17:2253–2282

    Google Scholar 

  36. Huh D, Matthews BD, Mammoto A et al (2010) Reconstituting organ-level lung functions on a chip. Science 328:1662–1668

    CAS  Google Scholar 

  37. Huh D, Leslie DC, Matthews BD et al (2012) A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med 4:159ra147

    Google Scholar 

  38. Benam KH, Villenave R, Lucchesi C et al (2016) Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat Methods 13:151–157

    CAS  Google Scholar 

  39. Benam KH, Novak R, Nawroth J et al (2016) Matched-comparative modeling of normal and diseased human airway responses using a microengineered breathing lung chip. Cell Syst 3:456–466

    CAS  Google Scholar 

  40. Kim HJ, Huh D, Hamilton G, Ingber DE (2012) Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12:2165–2174

    CAS  Google Scholar 

  41. Kim HJ, Ingber DE (2013) Gut-on-a-chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr Biol 5:1130–1140

    CAS  Google Scholar 

  42. Kim HJ, Li H, Collins JJ, Ingber DE (2016) Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc Natl Acad Sci U S A 113:E7–E15

    CAS  Google Scholar 

  43. Villenave R, Wales SQ, Hamkins-Indik T et al (2017) Human Gut-on-a-chip supports polarized infection of coxsackie B1 virus in vitro. PLoS One 12:e0169412

    Google Scholar 

  44. Kasendra M, Tovaglieri A, Sontheimer-Phelps A et al (2018) Development of a primary human Small Intestine-on-a-chip using biopsy-derived organoids. Sci Rep 8:2871

    Google Scholar 

  45. Wilmer MJ, Ng CP, Lanz HL et al (2016) Kidney-on-a-chip technology for drug-induced nephrotoxicity screening. Trends Biotechnol 34:156–170

    CAS  Google Scholar 

  46. Jang KJ, Mehr AP, Hamilton GA et al (2013) Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr Biol 5:1119–1129

    CAS  Google Scholar 

  47. Weber EJ, Chapron A, Chapron BD et al (2016) Development of a microphysiological model of human kidney proximal tubule function. Kidney Int 90:627–637

    Google Scholar 

  48. Musah S, Mammoto A, Ferrante TC et al (2017) Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat Biomed Eng 1:0069

    CAS  Google Scholar 

  49. Asada N, Takeishi S, Frenette PS (2017) Complexity of bone marrow hematopoietic stem cell niche. Int J Hematol 106:45–54

    Google Scholar 

  50. Cao X, Wu X, Frassica D et al (2011) Irradiation induces bone injury by damaging bone marrow microenvironment for stem cells. Proc Natl Acad Sci U S A 108:1609–1614

    CAS  Google Scholar 

  51. Askmyr M, Quach J, Purton LE (2011) Effects of the bone marrow microenvironment on hematopoietic malignancy. Bone 48:115–120

    Google Scholar 

  52. Dhami SPS, Kappala SS, Thompson A, Szegezdi E (2016) Three-dimensional ex vivo co-culture models of the leukaemic bone marrow niche for functional drug testing. Drug Discov Today 21:1464–1471

    CAS  Google Scholar 

  53. Di Maggio N, Piccinini E, Jaworski M et al (2011) Toward modeling the bone marrow niche using scaffold-based 3D culture systems. Biomaterials 32:321–329

    Google Scholar 

  54. Choi JS, Mahadik BP, Harley BA (2015) Engineering the hematopoietic stem cell niche: frontiers in biomaterial science. Biotechnol J 10:1529–1545

    CAS  Google Scholar 

  55. Nelson MR, Roy K (2016) Bone-marrow mimicking biomaterial niches for studying hematopoietic stem and progenitor cells. J Mater Chem B 4:3490–3503

    CAS  Google Scholar 

  56. Torisawa Y, Spina CS, Mammoto T et al (2014) Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro. Nat Methods 11:663–669

    CAS  Google Scholar 

  57. Krupnick AS, Shaaban S, Radu A, Flake AW (2002) Bone marrow tissue engineering. Tissue Eng 8:145–155

    CAS  Google Scholar 

  58. Chen B, Lin H, Wang J et al (2007) Homogeneous osteogenesis and bone regeneration by demineralized bone matrix loading with collagen-targeting bone morphogenetic protein-2. Biomaterials 28:1027–1035

    CAS  Google Scholar 

  59. Schwartz Z, Doukarsky-Marx T, Nasatzky E et al (2008) Differential effects of bone graft substitutes on regeneration of bone marrow. Clin Oral Implants Res 19:1233–1245

    CAS  Google Scholar 

  60. Naveiras O, Nardi V, Wenzel PL et al (2009) Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460:259–263

    CAS  Google Scholar 

  61. Scotti C, Piccinini E, Takizawa H et al (2013) Engineering of a functional bone organ through endochondral ossification. Proc Natl Acad Sci U S A 110:3997–4002

    CAS  Google Scholar 

  62. Reinisch A, Etchart N, Thomas D et al (2015) Epigenetic and in vivo comparison of diverse MSC sources reveals an endochondral signature for human hematopoietic niche formation. Blood 125:249–260

    CAS  Google Scholar 

  63. Reinisch A, Thomas D, Corces MR et al (2016) A humanized bone marrow ossicle xenotransplantation model enables improved engraftment of healthy and leukemic human hematopoietic cells. Nat Med 22:812–821

    CAS  Google Scholar 

  64. Kumar S, Geiger H (2017) HSC niche biology and HSC expansion Ex Vivo. Trends Mol Med 23:799–819

    Google Scholar 

  65. Walasek MA, van Os R, de Haan G (2012) Hematopoietic stem cell expansion: challenges and opportunities. Ann N Y Acad Sci 1266:138–150

    CAS  Google Scholar 

  66. Csaszar E, Kirouac DC, Yu M et al (2012) Rapid expansion of human hematopoietic stem cells by automated control of inhibitory feedback signaling. Cell Stem Cell 10:218–229

    CAS  Google Scholar 

  67. Fares I, Chagraoui J, Gareau Y et al (2014) Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal. Science 345:1509–1512

    CAS  Google Scholar 

  68. Takagi M (2005) Cell processing engineering for ex-vivo expansion of hematopoietic cells. J Biosci Bioeng 99:189–196

    CAS  Google Scholar 

  69. Cook MM, Futrega K, Osiecki M et al (2012) Micromarrows – three-dimensional coculture of hematopoietic stem cells and mesenchymal stromal cells. Tissue Eng Part C Methods 18:319–328

    CAS  Google Scholar 

  70. Leisten I, Kramann R, Ventura Ferreira MS et al (2012) 3D co-culture of hematopoietic stem and progenitor cells and mesenchymal stem cells in collagen scaffolds as a model of the hematopoietic niche. Biomaterials 33:1736–1747

    CAS  Google Scholar 

  71. Ferreira MS, Jahnen-Dechent W, Labude N et al (2012) Cord blood-hematopoietic stem cell expansion in 3D fibrin scaffolds with stromal support. Biomaterials 33:6987–6997

    Google Scholar 

  72. Nichols JE, Cortiella J, Lee J et al (2009) In vitro analog of human bone marrow from 3D scaffolds with biomimetic inverted colloidal crystal geometry. Biomaterials 30:1071–1079

    CAS  Google Scholar 

  73. Huang X, Zhu B, Wang X et al (2016) Three-dimensional co-culture of mesenchymal stromal cells and differentiated osteoblasts on human bio-derived bone scaffolds supports active multi-lineage hematopoiesis in vitro: functional implication of the biomimetic HSC niche. Int J Mol Med 38:1141–1151

    CAS  Google Scholar 

  74. Sieber S, Wirth L, Cavak N et al (2017) Bone marrow-on-a-chip: long-term culture of human haematopoietic stem cells in a three-dimensional microfluidic environment. J Tissue Eng Regen Med 12:479–489

    Google Scholar 

  75. Torisawa Y, Mammoto T, Jiang E et al (2016) Modeling hematopoiesis and responses to radiation countermeasures in a bone marrow-on-a-chip. Tissue Eng Part C Methods 22:509–515

    Google Scholar 

  76. Singh VK, Romaine PL, Newman VL (2015) Biologics as countermeasures for acute radiation syndrome: where are we now? Expert Opin Biol Ther 15:465–471

    CAS  Google Scholar 

  77. Singh VK, Newman VL, Berg AN et al (2015) Animal models for acute radiation syndrome drug discovery. Expert Opin Drug Discov 10:497–517

    CAS  Google Scholar 

  78. Cary LH, Ngudiankama BF, Salber RE et al (2012) Efficacy of radiation countermeasures depends on radiation quality. Radiat Res 177:663–675

    CAS  Google Scholar 

  79. Guinan EC, Barbon CM, Kalish LA et al (2011) Bactericidal/permeability-increasing protein (rBPI21) and fluoroquinolone mitigate radiation-induced bone marrow aplasia and death. Sci Transl Med 3:110ra118

    Google Scholar 

  80. Gagliano O, Elvassore N, Luni C (2016) Microfluidic technology enhances the potential of human pluripotent stem cells. Biochem Biophys Res Commun 473:683–687

    CAS  Google Scholar 

  81. Giobbe GG, Michielin F, Luni C et al (2015) Functional differentiation of human pluripotent stem cells on a chip. Nat Methods 12:637–640

    CAS  Google Scholar 

  82. Wang G, McCain ML, Yang L et al (2014) Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat Med 20:616–623

    CAS  Google Scholar 

  83. Kim C (2015) iPSC technology-powerful hand for disease modeling and therapeutic screen. BMB Rep 48:256–265

    CAS  Google Scholar 

  84. Benam KH, Dauth S, Hassell B et al (2015) Engineered in vitro disease models. Annu Rev Pathol 10:195–262

    CAS  Google Scholar 

  85. Thon JN, Mazutis L, Wu S et al (2014) Platelet bioreactor-on-a-chip. Blood 124:1857–1867

    CAS  Google Scholar 

  86. Di Buduo CA, Wray LS, Tozzi L et al (2015) Programmable 3D silk bone marrow niche for platelet generation ex vivo and modeling of megakaryopoiesis pathologies. Blood 125:2254–2264

    Google Scholar 

  87. Avanzi MP, Mitchell WB (2014) Ex vivo production of platelets from stem cells. Br J Haematol 165:237–247

    CAS  Google Scholar 

  88. Nakamura S, Takayama N, Hirata S et al (2014) Expandable megakaryocyte cell lines enable clinically applicable generation of platelets from human induced pluripotent stem cells. Cell Stem Cell 14:535–548

    CAS  Google Scholar 

  89. Smith BW, Murphy GJ (2014) Stem cells, megakaryocytes, and platelets. Curr Opin Hematol 21:430–437

    Google Scholar 

  90. Lee HJ, Li N, Evans SM et al (2013) Biomechanical force in blood development: extrinsic physical cues drive pro-hematopoietic signaling. Differentiation 86:92–103

    CAS  Google Scholar 

  91. North TE, Goessling W, Peeters M et al (2009) Hematopoietic stem cell development is dependent on blood flow. Cell 137:736–748

    CAS  Google Scholar 

  92. Diaz MF, Li N, Lee HJ et al (2015) Biomechanical forces promote blood development through prostaglandin E2 and the cAMP-PKA signaling axis. J Exp Med 212:665–680

    CAS  Google Scholar 

  93. Adamo L, Naveiras O, Wenzel PL et al (2009) Biomechanical forces promote embryonic haematopoiesis. Nature 459:1131–1135

    CAS  Google Scholar 

  94. Wahlster L, Daley GQ (2016) Progress towards generation of human haematopoietic stem cells. Nat Cell Biol 18:1111–1117

    CAS  Google Scholar 

  95. Sugimura R, Jha DK, Han A et al (2017) Haematopoietic stem and progenitor cells from human pluripotent stem cells. Nature 545:432–438

    CAS  Google Scholar 

  96. Esch MB, King TL, Shuler ML (2011) The role of body-on-a-chip devices in drug and toxicity studies. Annu Rev Biomed Eng 13:55–72

    CAS  Google Scholar 

  97. Imura Y, Sato K, Yoshimura E (2010) Micro total bioassay system for ingested substances: assessment of intestinal absorption, hepatic metabolism, and bioactivity. Anal Chem 82:9983–9988

    CAS  Google Scholar 

  98. Kimura H, Ikeda T, Nakayama H et al (2015) An on-chip small intestine-liver model for pharmacokinetic studies. J Lab Autom 20:265–273

    CAS  Google Scholar 

  99. Maschmeyer I, Lorenz AK, Schimek K et al (2015) A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip 15:2688–2699

    CAS  Google Scholar 

  100. Satoh T, Sugiura S, Shin K et al (2017) A multi-throughput multi-organ-on-a-chip system on a plate formatted pneumatic pressure-driven medium circulation platform. Lab Chip 18:115–125

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-suke Torisawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Torisawa, Ys. (2019). Microfluidic Organs-on-Chips to Reconstitute Cellular Microenvironments. In: Tokeshi, M. (eds) Applications of Microfluidic Systems in Biology and Medicine . Bioanalysis, vol 7. Springer, Singapore. https://doi.org/10.1007/978-981-13-6229-3_8

Download citation

Publish with us

Policies and ethics