Skip to main content

Spiral Inertial Microfluidics for Cell Separation and Biomedical Applications

  • Chapter
  • First Online:
Applications of Microfluidic Systems in Biology and Medicine

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 7))

Abstract

The emergence of omics studies and single cell analysis in biomedicine has advocated a critical need to develop novel cell sorting technologies to process complex and heterogenous biological samples prior analysis. Spiral inertial microfluidics is an enabling membrane-free cell separation technique developed almost a decade ago for high throughput biophysical cell separation, and has since been widely exploited for different biomedical applications. In this chapter, we will provide a comprehensive review on spiral inertial microfluidics including (1) conventional and microfluidic cell sorting techniques, (2) introduction to inertial microfluidics and Dean-coupled inertial focusing, (3) classification of major spiral devices, (4) summary of different biomedical applications, (5) recent advances in next generation spiral cell sorters, and (6) highlight key challenges for future research. With increasing advancement in microfabrication and computational simulation, we envision that spiral inertial microfluidics will play a leading role in driving research and commercialization in clinical diagnostics, as well as other research areas in chemistry and material sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Antfolk M, Laurell T (2017) Continuous flow microfluidic separation and processing of rare cells and bioparticles found in blood – a review. Anal Chim Acta 965:9–35

    CAS  Google Scholar 

  2. Tomlinson MJ, Tomlinson S, Yang XB, Kirkham J (2013) Cell separation: terminology and practical considerations. J Tissue Eng 4:2041731412472690

    Google Scholar 

  3. Bhagat AAS, Bow H, Hou HW, Tan SJ, Han J, Lim CT (2010) Microfluidics for cell separation. Med Biol Eng Comput 48(10):999–1014

    Google Scholar 

  4. Faraghat SA, Hoettges KF, Steinbach MK, van der Veen DR, Brackenbury WJ, Henslee EA et al (2017) High-throughput, low-loss, low-cost, and label-free cell separation using electrophysiology-activated cell enrichment. Proc Natl Acad Sci 114(18):4591–4596

    CAS  Google Scholar 

  5. Gossett DR, Weaver WM, Mach AJ, Hur SC, Tse HT, Lee W et al (2010) Label-free cell separation and sorting in microfluidic systems. Anal Bioanal Chem 397(8):3249–3267

    CAS  Google Scholar 

  6. Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical-analysis systems – a novel concept for chemical sensing. Sensors Actuators B-Chem 1(1–6):244–248

    CAS  Google Scholar 

  7. Lenshof A, Laurell T (2010) Continuous separation of cells and particles in microfluidic systems. Chem Soc Rev 39(3):1203–1217

    CAS  Google Scholar 

  8. Shields CW, Reyes CD, Lopez GP (2015) Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 15(5):1230–1249

    Google Scholar 

  9. Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77(3):977–1026

    CAS  Google Scholar 

  10. Sajeesh P, Sen AK (2014) Particle separation and sorting in microfluidic devices: a review. Microfluid Nanofluid 17(1):1–52

    Google Scholar 

  11. Yan S, Zhang J, Yuan D, Li WH (2017) Hybrid microfluidics combined with active and passive approaches for continuous cell separation. Electrophoresis 38(2):238–249

    CAS  Google Scholar 

  12. Berger M, Castelino J, Huang R, Shah M, Austin RH (2001) Design of a microfabricated magnetic cell separator. Electrophoresis 22(18):3883–3892

    CAS  Google Scholar 

  13. Inglis DW, Riehn R, Austin RH, Sturm JC (2004) Continuous microfluidic immunomagnetic cell separation. Appl Phys Lett 85(21):5093–5095

    CAS  Google Scholar 

  14. Pamme N, Wilhelm C (2006) Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. Lab Chip 6(8):974–980

    CAS  Google Scholar 

  15. Cetin B, Li DQ (2011) Dielectrophoresis in microfluidics technology. Electrophoresis 32(18):2410–2427

    CAS  Google Scholar 

  16. Lenshof A, Magnusson C, Laurell T (2012) Acoustofluidics 8: applications of acoustophoresis in continuous flow microsystems. Lab Chip 12(7):1210–1223

    CAS  Google Scholar 

  17. Ding XY, Peng ZL, Lin SCS, Geri M, Li SX, Li P et al (2014) Cell separation using tilted-angle standing surface acoustic waves. Proc Natl Acad Sci USA 111(36):12992–12997

    CAS  Google Scholar 

  18. MacDonald MP, Spalding GC, Dholakia K (2003) Microfluidic sorting in an optical lattice. Nature 426(6965):421–424

    CAS  Google Scholar 

  19. Yang S, Undar A, Zahn JD (2006) A microfluidic device for continuous, real time blood plasma separation. Lab Chip 6(7):871–880

    CAS  Google Scholar 

  20. Yamada M, Seki M (2005) Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab Chip 5(11):1233–1239

    CAS  Google Scholar 

  21. Yamada M, Kano K, Tsuda Y, Kobayashi J, Yamato M, Seki M et al (2007) Microfluidic devices for size-dependent separation of liver cells. Biomed Microdevices 9(5):637–645

    Google Scholar 

  22. Choi S, Song S, Choi C, Park JK (2007) Continuous blood cell separation by hydrophoretic filtration. Lab Chip 7(11):1532–1538

    CAS  Google Scholar 

  23. Kuntaegowdanahalli SS, Bhagat AAS, Kumar G, Papautsky I (2009) Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip 9(20):2973–2980

    CAS  Google Scholar 

  24. Davis JA, Inglis DW, Morton KJ, Lawrence DA, Huang LR, Chou SY et al (2006) Deterministic hydrodynamics: taking blood apart. Proc Natl Acad Sci USA 103(40):14779–14784

    CAS  Google Scholar 

  25. Sethu P, Sin A, Toner M (2006) Microfluidic diffusive filter for apheresis (leukapheresis). Lab Chip 6(1):83–89

    CAS  Google Scholar 

  26. Nagrath S, Inglis DW, Morton KJ, Lawrence DA, Huang LR, Chou SY et al (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173):1235–1239

    CAS  Google Scholar 

  27. Takagi J, Yamada M, Yasuda M, Seki M (2005) Continuous particle separation in a microchannel having asymmetrically arranged multiple branches. Lab Chip 5(7):778–784

    CAS  Google Scholar 

  28. Huang LR, Cox EC, Austin RH, Sturm JC (2004) Continuous particle separation through deterministic lateral displacement. Science 304(5673):987–990

    CAS  Google Scholar 

  29. Yamada M, Nakashima M, Seki M (2004) Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Anal Chem 76(18):5465–5471

    CAS  Google Scholar 

  30. Di Carlo D, Irimia D, Tompkins RG, Toner M (2007) Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci USA 104(48):18892–18897

    Google Scholar 

  31. Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2008) Continuous particle separation in spiral microchannels using dean flows and differential migration. Lab Chip 8(11):1906–1914. https://doi.org/10.1039/B807107A

    Article  CAS  Google Scholar 

  32. Di Carlo D, Edd JF, Humphry KJ, Stone HA, Toner M (2009) Particle segregation and dynamics in confined flows. Phys Rev Lett 102(9)

    Google Scholar 

  33. Di Carlo D (2009) Inertial microfluidics. Lab Chip 9(21):3038–3046

    Google Scholar 

  34. Amini H, Lee W, Di Carlo D (2014) Inertial microfluidic physics. Lab Chip 14(15):2739–2761

    CAS  Google Scholar 

  35. Martel JM, Toner M (2014) Inertial focusing in microfluidics. Annu Rev Biomed Eng 16:371–396

    CAS  Google Scholar 

  36. Zhang J, Yan S, Yuan D, Alici G, Nguyen NT, Warkiani ME et al (2016) Fundamentals and applications of inertial microfluidics: a review. Lab Chip 16(1):10–34

    CAS  Google Scholar 

  37. Avila K, Moxey D, de Lozar A, Avila M, Barkley D, Hof B (2011) The onset of turbulence in pipe flow. Science 333(6039):192–196

    CAS  Google Scholar 

  38. Sudarsan AP, Ugaz VM (2006) Multivortex micromixing. Proc Natl Acad Sci USA 103(19):7228–7233

    CAS  Google Scholar 

  39. Segre G, Silberberg A (1961) Radial particle displacements in Poiseuille flow of suspensions. Nature 189(476):209–210

    Google Scholar 

  40. Segré G, Silberberg A (1962) Behaviour of macroscopic rigid spheres in Poiseuille flow: part 2. Experimental results and interpretation. J Fluid Mech 14(1):136–157

    Google Scholar 

  41. Asmolov ES (1999) The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J Fluid Mech 381:63–87

    CAS  Google Scholar 

  42. Dean WR (1928) The stream-line motion of fluid in a curved pipe. (Second paper.). Philos Mag 5(30):673–695

    Google Scholar 

  43. Ookawara S, Higashi R, Street D, Ogawa K (2004) Feasibility study on concentration of slurry and classification of contained particles by microchannel. Chem Eng J 101(1–3):171–178

    CAS  Google Scholar 

  44. Gossett DR, Di Carlo D (2009) Particle focusing mechanisms in curving confined flows. Anal Chem 81(20):8459–8465

    CAS  Google Scholar 

  45. Saffman PG (1965) The lift on a small sphere in a slow shear flow. J Fluid Mech 22(2):385–400

    Google Scholar 

  46. Cherukat P, McLaughlin JB (1994) The inertial lift on a rigid sphere in a linear shear flow field near a flat wall. J Fluid Mech 263:1–18

    CAS  Google Scholar 

  47. Loth E, Dorgan AJ (2009) An equation of motion for particles of finite Reynolds number and size. Environ Fluid Mech 9(2):187–206

    Google Scholar 

  48. Zhou J, Giridhar PV, Kasper S, Papautsky I (2013) Modulation of aspect ratio for complete separation in an inertial microfluidic channel. Lab Chip 13(10):1919–1929

    CAS  Google Scholar 

  49. Zhou J, Papautsky I (2013) Fundamentals of inertial focusing in microchannels. Lab Chip 13(6):1121–1132

    CAS  Google Scholar 

  50. Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2008) Enhanced particle filtration in straight microchannels using shear-modulated inertial migration. Phys Fluids 20(10):101702

    Google Scholar 

  51. Kim TH, Yoon HJ, Stella P, Nagrath S (2014) Cascaded spiral microfluidic device for deterministic and high purity continuous separation of circulating tumor cells. Biomicrofluidics 8(6):13. Art. no. 064117

    Google Scholar 

  52. Sudarsan AP, Ugaz VM (2006) Fluid mixing in planar spiral microchannels. Lab Chip 6(1):74–82

    CAS  Google Scholar 

  53. Sudarsan AP, Ugaz VM (2006) Multivortex micromixing. Proc Natl Acad Sci 103(19):7228–7233

    CAS  Google Scholar 

  54. Wang J, Zhan Y, Ugaz VM, Lu C (2010) Vortex-assisted DNA delivery. Lab Chip 10(16):2057–2061

    CAS  Google Scholar 

  55. Martel JM, Toner M (2012) Inertial focusing dynamics in spiral microchannels. Phys Fluids 24(3):032001

    Google Scholar 

  56. Russom A, Gupta AK, Nagrath S, Di Carlo D, Edd JF, Toner M (2009) Differential inertial focusing of particles in curved low-aspect-ratio microchannels. New J Phys 11:075025

    Google Scholar 

  57. Xiang N, Chen K, Sun D, Wang S, Yi H, Ni Z (2013) Quantitative characterization of the focusing process and dynamic behavior of differently sized microparticles in a spiral microchannel. Microfluid Nanofluid 14(1):89–99

    Google Scholar 

  58. Kemna EWM, Schoeman RM, Wolbers F, Vermes I, Weitz DA, van den Berg A (2012) High-yield cell ordering and deterministic cell-in-droplet encapsulation using Dean flow in a curved microchannel. Lab Chip 12(16):2881–2887

    CAS  Google Scholar 

  59. Seo J, Lean MH, Kole A (2007) Membrane-free microfiltration by asymmetric inertial migration. Appl Phys Lett 91(3):033901

    Google Scholar 

  60. Sun J, Li M, Liu C, Zhang Y, Liu D, Liu W et al (2012) Double spiral microchannel for label-free tumor cell separation and enrichment. Lab Chip 12(20):3952–3960

    CAS  Google Scholar 

  61. Sun J, Liu C, Li M, Wang J, Xianyu Y, Hu G et al (2013) Size-based hydrodynamic rare tumor cell separation in curved microfluidic channels. Biomicrofluidics 7(1):011802

    Google Scholar 

  62. Xi W, Kong F, Yeo JC, Yu L, Sonam S, Dao M et al (2017) Soft tubular microfluidics for 2D and 3D applications. Proc Natl Acad Sci 114(40):10590–10595

    CAS  Google Scholar 

  63. Nivedita N, Ligrani P, Papautsky I (2017) Dean flow dynamics in low-aspect ratio spiral microchannels. Sci Rep 7:44072

    Google Scholar 

  64. Guan G, Wu L, Bhagat AA, Li Z, Chen PCY, Chao S et al (2013) Spiral microchannel with rectangular and trapezoidal cross-sections for size based particle separation. Sci Rep 3:1475

    Google Scholar 

  65. Wu L, Guan G, Hou HW, Asgar A, Bhagat S, Han J (2012) Separation of leukocytes from blood using spiral channel with trapezoid cross-section. Anal Chem 84(21):9324–9331

    CAS  Google Scholar 

  66. Warkiani ME, Guan G, Luan KB, Lee WC, Bhagat AAS, Chaudhuri PK et al (2014) Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells. Lab Chip 14(1):128–137

    CAS  Google Scholar 

  67. Warkiani ME, Tay AKP, Guan G, Han J (2015) Membrane-less microfiltration using inertial microfluidics. Sci Rep 5:11018

    Google Scholar 

  68. Lee W, Kwon D, Choi W, Jung GY, Au AK, Folch A et al (2015) 3D-printed microfluidic device for the detection of pathogenic bacteria using size-based separation in helical channel with trapezoid cross-section. Sci Rep 5:7717

    CAS  Google Scholar 

  69. Hou HW, Bhagat AAS, Lee WC, Huang S, Han J, Lim CT (2011) Microfluidic devices for blood fractionation. Micromachines 2(3):319–343

    Google Scholar 

  70. Hou HW, Warkiani ME, Khoo BL, Li ZR, Soo RA, Tan DS-W et al (2013) Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci Rep 3:1259

    Google Scholar 

  71. Vona G, Sabile A, Louha M, Sitruk V, Romana S, Schutze K et al (2000) Isolation by size of epithelial tumor cells – a new method for the immunomorphological and molecular characterization of circulating tumor cells. Am J Pathol 156(1):57–63

    CAS  Google Scholar 

  72. Zabaglo L, Ormerod MG, Parton M, Ring A, Smith IE, Dowsett M (2003) Cell filtration-laser scanning cytometry for the characterisation of circulating breast cancer cells. Cytometry A 55(2):102–108

    Google Scholar 

  73. Hou HW, Bhattacharyya RP, Hung DT, Han J (2015) Direct detection and drug-resistance profiling of bacteremias using inertial microfluidics. Lab Chip 15(10):2297–2307. https://doi.org/10.1039/C5LC00311C

    Article  CAS  Google Scholar 

  74. Birch CM, Hou HW, Han J, Niles JC (2015) Identification of malaria parasite-infected red blood cell surface aptamers by inertial microfluidic SELEX (I-SELEX). Sci Rep 5:11347

    Google Scholar 

  75. Yeo DC, Wiraja C, Zhou Y, Tay HM, Xu C, Hou HW (2015) Interference-free micro/nanoparticle cell engineering by use of high-throughput microfluidic separation. ACS Appl Mater Interfaces 7(37):20855–20864

    CAS  Google Scholar 

  76. Tay HM, Kharel S, Dalan R, Chen ZJ, Tan KK, Boehm BO et al (2017) Rapid purification of sub-micrometer particles for enhanced drug release and microvesicles isolation. NPG Asia Mater 9:e434

    Google Scholar 

  77. Sollier E, Murray C, Maoddi P, Di Carlo D (2011) Rapid prototyping polymers for microfluidic devices and high pressure injections. Lab Chip 11(22):3752–3765

    CAS  Google Scholar 

  78. Johnston ID, McDonnell MB, Tan CKL, McCluskey DK, Davies MJ, Tracey MC (2014) Dean flow focusing and separation of small microspheres within a narrow size range. Microfluid Nanofluid 17(3):509–518

    CAS  Google Scholar 

  79. Dong Y, Skelley AM, Merdek KD, Sprott KM, Jiang CS, Pierceall WE et al (2013) Microfluidics and circulating tumor cells. J Mol Diagn 15(2):149–157

    Google Scholar 

  80. Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC et al (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351(8):781–791

    CAS  Google Scholar 

  81. Hayes DF, Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Miller MC et al (2006) Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin Cancer Res 12(14):4218–4224

    CAS  Google Scholar 

  82. Yu L, Ng SR, Xu Y, Dong H, Wang YJ, Li CM (2013) Advances of lab-on-a-chip in isolation, detection and post-processing of circulating tumour cells. Lab Chip 13(16):3163–3182

    CAS  Google Scholar 

  83. Chen P, Huang YY, Hoshino K, Zhang XJ (2014) Multiscale immunomagnetic enrichment of circulating tumor cells: from tubes to microchips. Lab Chip 14(3):446–458

    CAS  Google Scholar 

  84. Hajba L, Guttman A (2014) Circulating tumor-cell detection and capture using microfluidic devices. Trends Anal Chem 59:9–16

    CAS  Google Scholar 

  85. Murlidhar V, Rivera-Baez L, Nagrath S (2016) Affinity versus label-free isolation of circulating tumor cells: who wins? Small 12(33):4450–4463

    CAS  Google Scholar 

  86. Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L et al (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173):1235–1239

    CAS  Google Scholar 

  87. Stott SL, Hsu CH, Tsukrov DI, Yu M, Miyamoto DT, Waltman BA et al (2010) Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci USA 107(43):18392–18397

    CAS  Google Scholar 

  88. Sun JS, Liu C, Li MM, Wang JD, Xianyu YL, Hu GQ et al (2013) Size-based hydrodynamic rare tumor cell separation in curved microfluidic channels. Biomicrofluidics 7(1):11802

    Google Scholar 

  89. Burke JM, Zubajlo RE, Smela E, White IM (2014) High-throughput particle separation and concentration using spiral inertial filtration. Biomicrofluidics 8(2):17, Art. no. 024105

    Google Scholar 

  90. Khoo BL, Warkiani ME, Tan DSW, Bhagat AAS, Irwin D, Lau DP, et al. (2014) Clinical validation of an ultra high-throughput spiral microfluidics for the detection and enrichment of viable circulating tumor cells. PLoS One 9(7):7, Art. no. e99409

    Google Scholar 

  91. Warkiani ME, Khoo BL, Tan DS-W, Bhagat AAS, Lim W-T, Yap YS et al (2014) An ultra-high-throughput spiral microfluidic biochip for the enrichment of circulating tumor cells. Analyst 139(13):3245–3255. https://doi.org/10.1039/C4AN00355A

    Article  CAS  Google Scholar 

  92. Wang JD, Lu WJ, Tang CH, Liu Y, Sun JS, Mu X et al (2015) Label-free isolation and mRNA detection of circulating tumor cells from patients with metastatic lung cancer for disease diagnosis and monitoring therapeutic efficacy. Anal Chem 87(23):11893–11900

    CAS  Google Scholar 

  93. Huang D, Shi X, Qian Y, Tang WL, Liu LB, Xiang N et al (2016) Rapid separation of human breast cancer cells from blood using a simple spiral channel device. Anal Methods 8(30):5940–5948

    CAS  Google Scholar 

  94. Warkiani ME, Khoo BL, Wu LD, Tay AKP, Bhagat AAS, Han J et al (2016) Ultra-fast, label-free isolation of circulating tumor cells from blood using spiral microfluidics. Nat Protoc 11(1):134–148

    CAS  Google Scholar 

  95. Kulasinghe A, Tran THP, Blick T, O'Byrne K, Thompson EW, Warkiani ME et al (2017) Enrichment of circulating head and neck tumour cells using spiral microfluidic technology. Sci Rep 7

    Google Scholar 

  96. Nivedita N, Garg N, Lee AP, Papautsky I (2017) A high throughput microfluidic platform for size-selective enrichment of cell populations in tissue and blood samples. Analyst 142(14):2558–2569

    CAS  Google Scholar 

  97. Bhagat AAS, Kuntaegowdanahalli SS, Kaval N, Seliskar CJ, Papautsky I (2010) Inertial microfluidics for sheath-less high-throughput flow cytometry. Biomed Microdevices 12(2):187–195

    Google Scholar 

  98. Aya-Bonilla CA, Marsavela G, Freeman JB, Lomma C, Frank MH, Khattak MA et al (2017) Isolation and detection of circulating tumour cells from metastatic melanoma patients using a slanted spiral microfluidic device. Oncotarget 8(40):67355–67368

    Google Scholar 

  99. Diogo MM, da Silva CL, Cabral JMS (2012) Separation technologies for stem cell bioprocessing. Biotechnol Bioeng 109(11):2699–2709

    CAS  Google Scholar 

  100. Zhu BL, Murthy SK (2013) Stem cell separation technologies. Curr Opin Chem Eng 2(1):3–7

    Google Scholar 

  101. Machado HL, Kittrell FS, Edwards D, White AN, Atkinson RL, Rosen JM et al (2013) Separation by cell size enriches for mammary stem cell repopulation activity. Stem Cells Transl Med 2(3):199–203

    CAS  Google Scholar 

  102. Davis PK, Ho A, Dowdy SF (2001) Biological methods for cell-cycle synchronization of mammalian cells. BioTechniques 30(6):1322−+

    Google Scholar 

  103. Choi S, Song S, Choi C, Park JK (1964-1968) Microfluidic self-sorting of mammalian cells to achieve cell cycle synchrony by hydrophoresis. Anal Chem 81(5):2009

    Google Scholar 

  104. Lee WC, Bhagat AAS, Huang S, Van Vliet KJ, Han J, Lim CT (2011) High-throughput cell cycle synchronization using inertial forces in spiral microchannels. Lab Chip 11(7):1359–1367

    CAS  Google Scholar 

  105. Lee WC, Shi H, Poon ZY, Nyan LM, Kaushik T, Shivashankar GV et al (2014) Multivariate biophysical markers predictive of mesenchymal stromal cell multipotency. Proc Natl Acad Sci USA 111(42):E4409–E4418

    CAS  Google Scholar 

  106. Nathamgari SSP, Dong BQ, Zhou F, Kang WM, Giraldo-Vela JP, McGuire T et al (2015) Isolating single cells in a neurosphere assay using inertial microfluidics. Lab Chip 15(24):4591–4597

    CAS  Google Scholar 

  107. Song HJ et al (2017) Spiral-shaped inertial stem cell device for high-throughput enrichment of iPSC-derived neural stem cells. Microfluid Nanofluid 21(4):1–9

    CAS  Google Scholar 

  108. Rossi F, Cattaneo E (2002) Opinion – neural stem cell therapy for neurological diseases: dreams and reality. Nat Rev Neurosci 3(5):401–409

    CAS  Google Scholar 

  109. Marshall GP, Reynolds BA, Laywell ED (2007) Using the neurosphere assay to quantify neural stem cells in vivo. Curr Pharm Biotechnol 8(3):141–145

    CAS  Google Scholar 

  110. Deleyrolle LP, Rietze RL, Reynolds BA (2008) The neurosphere assay, a method under scrutiny. Acta Neuropsychiatrica 20(1):2–8

    Google Scholar 

  111. Alba-Loureiro TC et al (2007) Neutrophil function and metabolism in individuals with diabetes mellitus. Braz J Med Biol Res 40(8):1037–1044

    CAS  Google Scholar 

  112. Gregory AD, Houghton AM (2011) Tumor-associated neutrophils: new targets for cancer therapy. Cancer Res 71(7):2411–2416

    CAS  Google Scholar 

  113. Papa A, Emdin M, Passino C, Michelassi C, Battaglia D, Cocci F (2008) Predictive value of elevated neutrophil-lymphocyte ratio on cardiac mortality in patients with stable coronary artery disease. Clin Chim Acta 395(1–2):27–31

    CAS  Google Scholar 

  114. Ernst E, Matrai A (1986) Altered red and white blood-cell rheology in type-ii diabetes. Diabetes 35(12):1412–1415

    CAS  Google Scholar 

  115. Pecsvarady Z, Fisher TC, Darwin CH, Fabok A, Maqueda TS, Saad MF et al (1994) Decreased polymorphonuclear leukocyte deformability in Niddm. Diabetes Care 17(1):57–63

    CAS  Google Scholar 

  116. Mowat AG, Baum J (1971) Chemotaxis of polymorphonuclear leukocytes from patients with diabetes mellitus. N Engl J Med 284(12):621–627

    CAS  Google Scholar 

  117. Delamaire M, Maugendre D, Moreno M, LeGoff MC, Allannic H, Genetet B (1997) Impaired leucocyte functions in diabetic patients. Diabet Med 14(1):29–34

    CAS  Google Scholar 

  118. Bagdade JD, Root RK, Bulger RJ (1974) Impaired leukocyte function in patients with poorly controlled diabetes. Diabetes 23(1):9–15

    CAS  Google Scholar 

  119. Hou HW, Petchakup C, Tay HM, Tam ZY, Dalan R, Chew DEK et al (2016) Rapid and label-free microfluidic neutrophil purification and phenotyping in diabetes mellitus. Sci Rep 6

    Google Scholar 

  120. Nivedita N, Papautsky I (2013) Continuous separation of blood cells in spiral microfluidic devices. Biomicrofluidics 7(5):54101

    Google Scholar 

  121. Agarwal A, Ikemoto I, Loughlin KR (1994) Effect of sperm washing on levels of reactive oxygen species in semen. Arch Androl 33(3):157–162

    CAS  Google Scholar 

  122. Swain JE, Lai D, Takayama S, Smith GD (2013) Thinking big by thinking small: application of microfluidic technology to improve ART. Lab Chip 13(7):1213–1224

    CAS  Google Scholar 

  123. Son JY, Murphy K, Samuel R, Gale BK, Carrell DT, Hotaling JM (2015) Non-motile sperm cell separation using a spiral channel. Anal Methods 7(19):8041–8047

    Google Scholar 

  124. Hou HW, Gan HY, Bhagat AAS, Li LD, Lim CT, Han J (2012) A microfluidics approach towards high-throughput pathogen removal from blood using margination. Biomicrofluidics 6(2):24115

    Google Scholar 

  125. Schaap A, Dumon J, den Toonder J (2016) Sorting algal cells by morphology in spiral microchannels using inertial microfluidics. Microfluid Nanofluid 20(9):125

    Google Scholar 

  126. Clime L, Li K, Geissler M, Hoa XD, Robideau GP, Bilodeau GJ, et al (2017) Separation and concentration of Phytophthora ramorum sporangia by inertial focusing in curving microfluidic flows. Microfluid Nanofluid 21(1):13 Art. no. 5

    Google Scholar 

  127. Schets FA, van Wijnen JH, Schijven JF, Schoon A, Husmant A (2008) Monitoring of waterborne pathogens in surface waters in Amsterdam, The Netherlands, and the potential health risk associated with exposure to Cryptosporidium and Giardia in these waters. Appl Environ Microbiol 74(7):2069–2078

    CAS  Google Scholar 

  128. Bridle H, Kersaudy-Kerhoas M, Miller B, Gavriilidou D, Katzer F, Innes EA et al (2012) Detection of Cryptosporidium in miniaturised fluidic devices. Water Res 46(6):1641–1661

    CAS  Google Scholar 

  129. Jimenez M, Miller B, Bridle HL (Jan 2017) Efficient separation of small microparticles at high flowrates using spiral channels: application to waterborne pathogens. Chem Eng Sci 157:247–254

    CAS  Google Scholar 

  130. Sarkar A, Hou HW, Mahan AE, Han J, Alter G (2016) Multiplexed affinity-based separation of proteins and cells using inertial microfluidics. Sci Rep 6

    Google Scholar 

  131. Cheung YW, Dirkzwager RM, Wong WC, Cardoso J, D’Arc Neves Costa J, Tanner JA (2017) Aptamer-mediated Plasmodium-specific diagnosis of malaria. Biochimie. in press

    Google Scholar 

  132. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510

    CAS  Google Scholar 

  133. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822

    CAS  Google Scholar 

  134. Berezovski M, Drabovich A, Krylova SM, Musheev M, Okhonin V, Petrov A et al (2005) Nonequilibrium capillary electrophoresis of equilibrium mixtures: a universal tool for development of aptamers. J Am Chem Soc 127(9):3165–3171

    CAS  Google Scholar 

  135. Sonmez U, Jaber S, Trabzon L (2017) Super-enhanced particle focusing in a novel microchannel geometry using inertial microfluidics. J Micromech Microeng 27(6):065003

    Google Scholar 

  136. Hahn Y, Hong D, Kang J, Choi S (2016) A reconfigurable microfluidics platform for microparticle separation and fluid mixing. Micromachines 7(8):139

    Google Scholar 

  137. Geng Z, Ju Y, Wang W, Li Z (2013) Continuous blood separation utilizing spiral filtration microchannel with gradually varied width and micro-pillar array. Sensors Actuators B Chem 180:122–129

    CAS  Google Scholar 

  138. Ghadami S, Kowsari-Esfahan R, Saidi MS, Firoozbakhsh K (2017) Spiral microchannel with stair-like cross section for size-based particle separation. Microfluid Nanofluid 21(7):115

    Google Scholar 

  139. Shen S, Tian C, Li T, Xu J, Chen S-W, Tu Q et al (2017) Spiral microchannel with ordered micro-obstacles for continuous and highly-efficient particle separation. Lab Chip. https://doi.org/10.1039/C7LC00691H

  140. Khoo BL, Warkiani ME, Tan DS, Bhagat AA, Irwin D, Lau DP et al (2014) Clinical validation of an ultra high-throughput spiral microfluidics for the detection and enrichment of viable circulating tumor cells. PLoS One 9(7):e99409

    Google Scholar 

  141. Miller B, Jimenez M, Bridle H (2016) Cascading and parallelising curvilinear inertial focusing systems for high volume, wide size distribution, separation and concentration of particles. Sci Rep 6:36386

    CAS  Google Scholar 

  142. Rafeie M, Zhang J, Asadnia M, Li W, Warkiani ME (2016) Multiplexing slanted spiral microchannels for ultra-fast blood plasma separation. Lab Chip 16(15):2791–2802. https://doi.org/10.1039/C6LC00713A

    Article  CAS  Google Scholar 

  143. Kwon T, Prentice H, Oliveira JD, Madziva N, Warkiani ME, Hamel J-FP et al (2017) Microfluidic cell retention device for perfusion of mammalian suspension culture. Sci Rep 7(1):6703

    Google Scholar 

  144. Robinson M, Marks H, Hinsdale T, Maitland K, Cote G (2017) Rapid isolation of blood plasma using a cascaded inertial microfluidic device. Biomicrofluidics 11(2):024109

    CAS  Google Scholar 

  145. Ryu H, Choi K, Qu Y, Kwon T, Lee JS, Han J (2017) Patient-derived airway secretion dissociation technique to isolate and concentrate immune cells using closed-loop inertial microfluidics. Anal Chem 89(10):5549–5556

    CAS  Google Scholar 

  146. Ramachandraiah H, Svahn HA, Russom A (2017) Inertial microfluidics combined with selective cell lysis for high throughput separation of nucleated cells from whole blood. RSC Adv 7(47):29505–29514. https://doi.org/10.1039/C7RA02992F

    Article  CAS  Google Scholar 

  147. Seo J, Lean MH, Kole A (2007) Membraneless microseparation by asymmetry in curvilinear laminar flows. J Chromatogr A 1162(2):126–131

    CAS  Google Scholar 

  148. Goda K, Ayazi A, Gossett DR, Sadasivam J, Lonappan CK, Sollier E et al (2012) High-throughput single-microparticle imaging flow analyzer. Proc Natl Acad Sci 109(29):11630–11635

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Wei Hou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, N., Petchakup, C., Tay, H.M., Li, K.H.H., Hou, H.W. (2019). Spiral Inertial Microfluidics for Cell Separation and Biomedical Applications. In: Tokeshi, M. (eds) Applications of Microfluidic Systems in Biology and Medicine . Bioanalysis, vol 7. Springer, Singapore. https://doi.org/10.1007/978-981-13-6229-3_5

Download citation

Publish with us

Policies and ethics