Skip to main content

Application of SERS-Based Microfluidics for In Vitro Diagnostics

  • Chapter
  • First Online:
Applications of Microfluidic Systems in Biology and Medicine

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 7))

Abstract

In this chapter, we describe SERS-based immunoassay techniques using various types of microfluidic platforms. SERS is a highly sensitive detection modality, and microfluidic platforms provide many advantages such as automatic sampling and reduced sample volume. Therefore, the integration of SERS with microfluidic platforms offers wide applications in chemical or biological analysis. These novel SERS-based microfluidic platforms provide a powerful clinical tool for highly sensitive in vitro diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brouzes E, Kruse T, Kimmerling R, Strey HH (2015) Rapid and continuous magnetic separation in droplet microfluidic devices. Lab Chip 15:908–919

    CAS  Google Scholar 

  2. Campbell FM, Ingram A, Monaghan P, Cooper J, Sattar N, Eckersall PD, Graham D (2008) SERRS immunoassay for quantitative human CRP analysis. Analyst 133:1355–1357

    CAS  Google Scholar 

  3. Chen L, Choo J (2008) Recent advances in surface-enhanced Raman scattering detection technology for microfluidic chips. Electrophoresis 29:1815–1828

    CAS  Google Scholar 

  4. Chen L, Wang G, Lim C, Seong GH, Choo J, Lee EK, Kang SH, Song JM (2009) Evaluation of passive mixing behaviors in a pillar obstruction poly(dimethylsiloxane) microfluidic mixer using fluorescence microscopy. Microfluid Nanofluid 7:267–273

    CAS  Google Scholar 

  5. Cheng Z, Choi N, Wang R, Lee S, Moon KC, Yoon SY, Chen L, Choo J (2017) Simultaneous detection of dual prostate specific antigens using surface-enhanced Raman scattering-based immunoassay for accurate diagnosis of prostate cancer. ACS Nano 11:4926–4933

    CAS  Google Scholar 

  6. Choi N, Lee K, Lim DW, Lee EK, Chang SI, Oh KW, Choo J (2012) Simultaneous detection of duplex DNA oligonucleotides using a SERS-based micro-network gradient chip. Lab Chip 12:5160–5167

    CAS  Google Scholar 

  7. Choi N, Lee J, Ko J, Jeon JH, Rhie G, deMello AJ, Choo J (2017) Integrated SERS-based microdroplet platform for the automated immunoassay of F1 antigens in Yersinia pestis. Anal Chem 89:8413–8420

    CAS  Google Scholar 

  8. Chon H, Lee S, Son SW, Oh CH, Choo J (2009) Highly sensitive immunoassay of lung cancer marker carcinoembryonic antigen using surface-enhanced Raman scattering of hollow gold nanospheres. Anal Chem 81:3029–3034

    CAS  Google Scholar 

  9. Chon H, Lim C, Ha SM, Ahn Y, Lee EK, Chang SI, Seong GH, Choo J (2010) On-chip immunoassay using surface-enhanced Raman scattering of hollow gold nanospheres. Anal Chem 82:5290–5295

    CAS  Google Scholar 

  10. Chon H, Lee S, Yoon SY, Chang SI, Lim DW, Choo J (2011) Simultaneous immunoassay for the detection of two lung cancer markers using functionalized SERS nanoprobes. Chem Commun 47:12515–12517

    CAS  Google Scholar 

  11. Chon H, Lee S, Yoon SY, Lee EK, Chang SI, Choo J (2014) SERS-based competitive immunoassay of troponin i and CK-MB markers for early diagnosis of acute myocardial infarction. Chem Commun 50:1058–1060

    CAS  Google Scholar 

  12. Chung HJ, Castro CM, Im H, Lee H, Weissleder R (2013) A magneto-DNA nanoparticle system for rapid detection and phenotyping of bacteria. Nat Nanotechnol 8:369–375

    CAS  Google Scholar 

  13. Costas C, López-Puente V, Bodelón G, González-Bello C, Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM (2015) Using surface enhanced Raman scattering to analyze the interactions of protein receptors with bacterial quorum sensing modulators. ACS Nano 9:5567–5576

    CAS  Google Scholar 

  14. Gao R, Choi N, Chang SI, Lee EK, Choo J (2014) Real-time analysis of diaquat dibromide monohydrate in water with a SERS-based integrated microdroplet sensor. Nanoscale 6:8781–8786

    CAS  Google Scholar 

  15. Gao R, Ko J, Cha K, Jeon JH, Rhie G, Choi J, deMello AJ, Choo J (2015) Fast and sensitive detection of an anthrax biomarker using SERS-based solenoid microfluidic sensor. Biosens Bioelectron 72:230–236

    CAS  Google Scholar 

  16. Gao R, Cheng Z, deMello AJ, Choo J (2016) Wash-free magnetic immunoassay of the PSA cancer marker using SERS and droplet microfluidics. Lab Chip 16:1022–1029

    CAS  Google Scholar 

  17. Grubisha DS, Lipert RJ, Park HY, Driskell J, Porter MD (2003) Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels. Anal Chem 75:5936–5943

    CAS  Google Scholar 

  18. Gu SQ, Zhang YX, Zhu Y, Du WB, Yao B, Fang Q (2011) Multifunctional picoliter droplet manipulation platform and its application in single cell analysis. Anal Chem 83:7570–7576

    CAS  Google Scholar 

  19. Han B, Choi N, Kim KH, Lim DW, Choo J (2011) Application of silver-coated magnetic microspheres to a SERS-based optofluidic sensor. J Phys Chem C 115:6290–6296

    CAS  Google Scholar 

  20. Han Z, Liu H, Wang B, Weng S, Yang L, Liu J (2015) Three-dimensional surface-enhanced Raman scattering hotspots in spherical colloidal superstructure for identification and detection of drugs in human urine. Anal Chem 87:4821–4828

    CAS  Google Scholar 

  21. He LL, Rodda T, Haynes CL, Deschains T, Strother T, Diez-Gonzalez F, Labuza TP (2011) Detection of a foreign protein in milk using surface-enhanced Raman spectroscopy coupled with antibody-modified silver dendrites. Anal Chem 83:1510–1513

    CAS  Google Scholar 

  22. Howes PD, Rana S, Stevens MM (2014) Plasmonic nanomaterials for biodiagnostics. Chem Soc Rev 43:3835–3853

    CAS  Google Scholar 

  23. Huang JA, Zhang YL, Ding H, Sun HB (2015) SERS-enabled lab-on-a-chip systems. Adv Opt Mater 3:618–633

    CAS  Google Scholar 

  24. Jahn IJ, Zukovskaja O, Zheng XS, Weber K, Bocklitz TW, Cialla-May D, Popp J (2017) Surface-enhanced Raman spectroscopy and microfluidic platforms: challenges, solutions and potential applications. Analyst 142:1022–1047

    CAS  Google Scholar 

  25. Jang J, Cho M, Lee HR, Cha K, Chun JH, Hong KJ, Park J, Rhie G (2013) Monoclonal antibody against the poly-γ-d-glutamic acid capsule of Bacillus anthracis protects mice from enhanced lethal toxin activity due to capsule and anthrax spore challenge. Biochim Biophys Acta 1830:2804–2812

    CAS  Google Scholar 

  26. Kumar S, Lodhi DK, Goel P, Neeti MP, Singh JP (2015) A facile method for fabrication of buckled PDMS silver nanorod arrays as active 3D SERS cages for bacterial sensing. Chem Commun 51:12411–12414

    CAS  Google Scholar 

  27. Lee K, Kim C, Ahn B, Panchapakesan R, Full AR, Nordee L, Kang JY, Oh KW (2009) Generalized serial dilution module for monotonic and arbitrary microfluidic gradient generators. Lab Chip 9:709–717

    CAS  Google Scholar 

  28. Lee K, Kim C, Kim Y, Ahn B, Panchapakesan R, Bang J, Kim J, Yoon YK, Kang JY, Oh KW (2011a) Micro- fluidic concentration-on-demand. Microfluid Nanofluid 11:75–86

    CAS  Google Scholar 

  29. Lee M, Lee S, Lee JH, Lim H, Seong GH, Lee EK, Chang SI, Oh CH, Choo J (2011b) Highly reproducible immunoassay of cancer markers on a gold-patterned microarray chip using surface-enhanced Raman scattering imaging. Biosens Bioelectron 26:2135–2141

    CAS  Google Scholar 

  30. Lee M, Lee K, Kim KH, Oh KW, Choo J (2012) SERS-based immunoassay using a gold array-embedded gradient microfluidic chip. Lab Chip 12:3720–3727

    CAS  Google Scholar 

  31. Li J, Skeete Z, Shan S, Yan S, Kurzatkowska K, Zhao W, Ngo QM, Holubovka P, Luo J, Hepel M, Zhong CJ (2015) Surface enhanced Raman scattering detection of cancer biomarkers with bifunctional nanocomposite probes. Anal Chem 87:10698–10702

    CAS  Google Scholar 

  32. Lim C, Hong J, Chung BG, deMello AJ, Choo J (2010) Optofluidic platforms based on surface-enhanced Raman scattering. Analyst 135:837–844

    CAS  Google Scholar 

  33. Lin L, Crew E, Yan H, Shan S, Skeete Z, Mott D, Krentsel T, Yin J, Chernova NA, Luo J, Engelhard MH, Wang C, Li Q, Zhong CJ (2013) Bifunctional nanoparticles for SERS monitoring and magnetic intervention of assembly and enzyme cutting of DNAs. J Mater Chem B 1:4320–4330

    CAS  Google Scholar 

  34. Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39:1153–1182

    CAS  Google Scholar 

  35. Marre S, Jensen KF (2010) Synthesis of micro and nanostructures in microfluidic systems. Chem Soc Rev 39:1183–1202

    CAS  Google Scholar 

  36. Morozov VN, Grove S, Turell MJ, Bailey C (2007) Three minutes-long electrophoretically assisted zeptomolar microfluidic immunoassay with magnetic-beads detection. J Am Chem Soc 129:12628–12629

    CAS  Google Scholar 

  37. Nge PN, Rogers CI, Woolley AT (2013) Advances in microfluidic materials, functions, integration, and applications. Chem Rev 113:2550–2583

    CAS  Google Scholar 

  38. Niu X, Gulati S, Edel JB, deMello AJ (2008) Pillar-induced droplet merging in microfluidic circuits. Lab Chip 8:1837–1841

    CAS  Google Scholar 

  39. Oh KW, Lee K, Ahn B, Furlani EP (2012) Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 12:515–545

    CAS  Google Scholar 

  40. Paul AM, Fan Z, Sinha SS, Shi Y, Le L, Bai F, Ray PC (2015) Bio-conjugated gold nanoparticle based SERS probe for ultrasensitive identification of mosquito-borne viruses using Raman fingerprinting. J Phys Chem C 119:23669–23675

    CAS  Google Scholar 

  41. Reza KK, Wang J, Vaidyanathan R, Dey S, Wang Y, Trau M (2017) Electrohydrodynamic-induced SERS immunoassay for extensive multiplexed biomarker sensing. Small 13:1602902

    Google Scholar 

  42. Schneider C, Schöler HF, Schneider RJ (2004) A novel enzyme-linked immunosorbent assay for ethynylestradiol using a long-chain biotinylated EE2 derivative. Steroids 69:245–253

    CAS  Google Scholar 

  43. Shaban M, Hady AGA, Serry M (2014) A new sensor for heavy metals detection in aqueous media. IEEE Sensors J 14:436–441

    CAS  Google Scholar 

  44. Shao F, Lu Z, Liu C, Han H, Chen K, Li W, He Q, Peng H, Chen J (2014) Hierarchical nanogaps within bioscaffold arrays as a high-performance SERS substrate for animal virus biosensing. ACS Appl Mater Interfaces 6:6281–6289

    CAS  Google Scholar 

  45. Shiddiky MJA, Vaidyanathan R, Rauf S, Tay Z, Trau M (2014) Molecular nanoshearing: an innovative approach to shear off molecules with AC-induced nanoscopic fluid flow. Sci Rep 4:3716

    Google Scholar 

  46. Shirtcliff EA, Granger DA, Schwartz EB, Curran MJ, Booth A, Overman WH (2000) Assessing estradiol in biobehavioral studies using saliva and blood spots: simple radioimmunoassay protocols, reliability, and comparative validity. Horm Behav 38:137–147

    CAS  Google Scholar 

  47. Stanczyk FZ, Clarke NJ (2010) Advantages and challenges of mass spectrometry assays for steroid hormones. J Steroid Biochem Mol Biol 121:491–495

    CAS  Google Scholar 

  48. Stopforth A, Burger BV, Crouch AM, Sandra P (2007) The analysis of estrone and 17β-estradiol by stir bar sorptive extraction-thermal desorption-gas chromatography/mass spectrometry: application to urine samples after oral administration of conjugated equine estrogens. J Chromatogr B 856:156–164

    CAS  Google Scholar 

  49. Stroock AD, Dertinger SK, Ajdari A, Mezic I, Stone HA, Whitesides GM (2002) Chaotic mixer for microchannels. Science 295:647–651

    CAS  Google Scholar 

  50. Tekin HC, Gijs MAM (2013) Ultrasensitive protein detection: a case for microfluidic magnetic bead-based assays. Lab Chip 13:4711–4739

    CAS  Google Scholar 

  51. Tsai SQ, Iafrate AJ, Joung JK (2014) Genome editing: a tool for research and therapy: towards a functional understanding of variants for molecular diagnostics using genome editing. Nat Med 20:1103–1104

    CAS  Google Scholar 

  52. Vaidyanathan R, Shiddiky MJA, Rauf S, Dray E, Tay Z, Trau M (2014) Tunable “Nano-shearing”: a physical mechanism to displace nonspecific cell adhesion during rare cell detection. Anal Chem 86:2042–2049

    CAS  Google Scholar 

  53. Valentini F, Compagnone D, Gentili A, Palleschi G (2002) An electrochemical ELISA procedure for the screening of 17β-estradiol in urban waste waters. Analyst 127:1333–1337

    CAS  Google Scholar 

  54. Wang G, Chen Z, Chen L (2010) Aptamer-nanoparticle-based optical probes. Prog Chem 22:489–499

    CAS  Google Scholar 

  55. Wang LY, Luo J, Shan SY, Crew E, Yin J, Zhong CJ, Wallek B, Wong SSS (2011) Bacterial inactivation using silver-coated magnetic nanoparticles as functional antimicrobial agents. Anal Chem 83:8688–8695

    CAS  Google Scholar 

  56. Wang Y, Rauf S, Grewal YS, Spadafora LJ, Shiddiky MJA, Cangelosi GA, Schlucker S, Trau M (2014) Duplex microfluidic SERS detection of pathogen antigens with nanoyeast single-chain variable fragments. Anal Chem 86:9930–9938

    CAS  Google Scholar 

  57. Wang J, Wu X, Wang C, Shao N, Dong P, Xiao R, Wang S (2015) Magnetically assisted surface-enhanced Raman spectroscopy for the detection of Staphylococcus aureus based on Aptamer recognition. ACS Appl Mater Interfaces 7:20919–20929

    CAS  Google Scholar 

  58. Wang R, Chon H, Lee S, Cheng Z, Hong SH, Yoon YH, Choo J (2016) Highly sensitive detection of hormone Estradiol E2 using surface-enhanced Raman scattering based immunoassays for the clinical diagnosis of precocious puberty. ACS Appl Mater Interfaces 8:10665–10672

    CAS  Google Scholar 

  59. Wu L, Wang Z, Fan K, Zong S, Cui Y (2015) A SERS-assisted 3D barcode chip for high-throughput biosensing. Small 23:2798–2806

    Google Scholar 

  60. Xin TB, Chen H, Lin Z, Liang SX, Lin JM (2010) A secondary antibody format chemiluminescence immunoassay for the determination of estradiol in human serum. Talanta 82:1472–1477

    CAS  Google Scholar 

  61. Xu BB, Zhang YL, Wei S, Ding H, Sun HB (2013) On-chip catalytic microreactors for modern catalysis research. ChemCatChem 5:2091–2099

    CAS  Google Scholar 

  62. Yu J, Jeon J, Choi N, Lee JO, Kim YP, Choo J (2017) SERS-based genetic assay for amplification-free detection of prostate cancer specific PCA3 mimic DNA. Sensors Actuators B 251:302–309

    CAS  Google Scholar 

  63. Zhou H, Yang D, Ivleva NP, Mircescu NE, Schubert S, Niessner R, Wieser A, Haisch C (2015) Label-free in situ discrimination of live and dead bacteria by surface-enhanced Raman scattering. Anal Chem 87:6553–6561

    CAS  Google Scholar 

Download references

Acknowledgements

The National Research Foundation of Korea supported this work through grant numbers 2017M3D1A1039287 and 2018M3A7B4071203. This work was also supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HG18C0062) and by the Agency for Chemical & Biological Detection Research Center (CBDRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaebum Choo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jeon, J., Choi, N., Moon, JI., Chen, H., Choo, J. (2019). Application of SERS-Based Microfluidics for In Vitro Diagnostics. In: Tokeshi, M. (eds) Applications of Microfluidic Systems in Biology and Medicine . Bioanalysis, vol 7. Springer, Singapore. https://doi.org/10.1007/978-981-13-6229-3_3

Download citation

Publish with us

Policies and ethics