Skip to main content

Microfluidic Technologies and Platforms for Protein Crystallography

  • Chapter
  • First Online:
Applications of Microfluidic Systems in Biology and Medicine

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 7))

Abstract

Protein crystallization and its three-dimensional structure analysis is indispensable for understanding the protein function in the body and life phenomenon. Three dimensional structure of protein also plays important role for drug discovery and it have been already used to design new drug. To determine the three dimensional protein structure, protein crystallization conditions: concentration of protein, kinds and concentration of precipitant, buffer, pH, temperature, and additives must be optimized. In addition, high-diffraction quality protein crystals are needed to determine the protein three-dimensional structure at high resolution. However, optimization of the protein crystallization condition and preparation of high quality protein crystals require the labor intensives and trial-and-error. Microfluidics can provide the solution for the problems of traditional protein crystallography. A lot of microfluidic based technologies and platforms have been developed to utilize their unique characteristics. In this chapter, microfluidic technologies and platforms for protein crystallography is summarized. In particular, the application of microfluidics for high-throughput protein crystallization condition screening, controlling of protein crystal growth, and on-chip X-ray diffraction experiment using microfluidic devices are overviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nilsson J, Ståhl S, Lundeberg J, Uhlén M, Per-Å (1997) Affinity fusion strategies for detection, purification, and immobilization of recombinant proteins. Protein Expr Purif 11:1–16

    CAS  Google Scholar 

  2. Arnau J, Lauritzen C, Petersen GE, Pedersen J (2006) Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Expr Purif 48:1–13

    CAS  Google Scholar 

  3. Maeki M, Kimura N, Sato Y, Harashima H, Tokeshi M (2018) Advances in microfluidics for lipid nanoparticles and extracellular vesicles and applications in drug delivery systems. Adv Drug Deliv Rev 128:84–100

    CAS  Google Scholar 

  4. Mazaafrianto D, Maeki M, Ishida A, Tani H, Tokeshi M (2018) Recent microdevice-based Aptamer sensors. Micromachines 9(5):202

    Google Scholar 

  5. Gong MM, Sinton D (2017) Turning the page: advancing paper-based microfluidics for broad diagnostic application. Chem Rev 117:8447–8480

    CAS  Google Scholar 

  6. Osaki T, Takeuchi S (2017) Artificial cell membrane systems for biosensing applications. Anal Chem 89:216–231

    CAS  Google Scholar 

  7. Armbrecht L, Dittrich PS (2017) Recent advances in the analysis of single cells. Anal Chem 89:2–21

    CAS  Google Scholar 

  8. Wu J, Chen Q, Lin JM (2017) Microfluidic technologies in cell isolation and analysis for biomedical applications. Analyst 142:421–441

    CAS  Google Scholar 

  9. Hao SJ, Wan Y, Xia YQ, Zou X, Zheng SY (2018) Size-based separation methods of circulating tumor cells. Adv Drug Deliv Rev 125:3–20

    CAS  Google Scholar 

  10. Kaminski TS, Garstecki P (2017) Controlled droplet microfluidic systems for multistep chemical and biological assays. Chem Soc Rev 46:6210–6226

    CAS  Google Scholar 

  11. Kurita R, Niwa O (2016) Microfluidic platforms for DNA methylation analysis. Lab Chip 16:3631–3644

    CAS  Google Scholar 

  12. Strohmeier O, Keller M, Schwemmer F, Zehnle S, Mark D, von Stetten F, Zengerle R, Paust N (2015) Centrifugal microfluidic platforms: advanced unit operations and applications. Chem Soc Rev 44:6187–6229

    CAS  Google Scholar 

  13. Gutmann B, Cantillo D, Kappe CO (2015) Continuous-flow technology-a tool for the safe manufacturing of active pharmaceutical ingredients. Angew Chem Int Ed Eng 54:6688–6728

    CAS  Google Scholar 

  14. Suryawanshi PL, Gumfekar SP, Bhanvase BA, Sonawane SH, Pimplapure MS (2018) A review on microreactors: reactor fabrication, design, and cutting-edge applications. Chem Eng Sci 189:431–448

    CAS  Google Scholar 

  15. Shi HH, Xiao Y, Ferguson S, Huang X, Wang N, Hao HX (2017) Progress of crystallization in microfluidic devices. Lab Chip 17:2167–2185

    CAS  Google Scholar 

  16. Shembekar N, Chaipan C, Utharala R, Merten CA (2016) Droplet-based microfluidics in drug discovery, transcriptomics and high-throughput molecular genetics. Lab Chip 16:1314–1331

    CAS  Google Scholar 

  17. Dittrich PS, Manz A (2006) Lab-on-a-chip: microfluidics in drug discovery. Nat Rev Drug Discov 5:210–218

    CAS  Google Scholar 

  18. Sesen M, Alan T, Neild A (2017) Droplet control technologies for microfluidic high throughput screening (muHTS). Lab Chip 17:2372–2394

    CAS  Google Scholar 

  19. Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF, Babu MM (2013) Molecular signatures of G-protein-coupled receptors. Nature 494:185–194

    CAS  Google Scholar 

  20. Surade S, Blundell TL (2012) Structural biology and drug discovery of difficult targets: the limits of ligandability. Chem Biol 19:42–50

    CAS  Google Scholar 

  21. Nooren IMA, Thornton JM (2003) Diversity of protein-protein interactions. EMBO J 22:3486–3492

    CAS  Google Scholar 

  22. Knowles TP, Vendruscolo M, Dobson CM (2014) The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol 15:384–396

    CAS  Google Scholar 

  23. Lonsdale R, Ward RA (2018) Structure-based design of targeted covalent inhibitors. Chem Soc Rev 47:3816–3830

    CAS  Google Scholar 

  24. Wang SH, Yu J (2018) Structure-based design for binding peptides in anti-cancer therapy. Biomaterials 156:1–15

    CAS  Google Scholar 

  25. Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD (2015) Molecular docking and structure-based drug design strategies. Molecules 20:13384–13421

    CAS  Google Scholar 

  26. Blundell TL, Jhoti H, Abell C (2002) High-throughput crystallography for lead discovery in drug design. Nat Rev Drug Discov 1:45–54

    CAS  Google Scholar 

  27. Liu W, Wacker D, Gati C, Han GW, James D, Wang D, Nelson G, Weierstall U, Katritch V, Barty A, Zatsepin NA, Li D, Messerschmidt M, S.b. Boutet GJ, Williams JE, Koglin MM, Seibert C, Wang STA, Shah S, Basu R, Fromme C, Kupitz KN, Rendek I, Grotjohann P, Fromme RA, Kirian KR, Beyerlein TA, White HN, Chapman M, Caffrey JCH, Spence RC, Stevens VC (2013) Serial femtosecond crystallography of G protein-coupled receptors. Science 342:1521–1524

    CAS  Google Scholar 

  28. Rosenbaum DM, Rasmussen SG, Kobilka BK (2009) The structure and function of G-protein-coupled receptors. Nature 459:356–363

    CAS  Google Scholar 

  29. Hong M, Zhang Y, Hu F (2012) Membrane protein structure and dynamics from NMR spectroscopy. Annu Rev Phys Chem 63:1–24

    CAS  Google Scholar 

  30. Cheng Y, Grigorieff N, Penczek PA, Walz T (2015) A primer to single-particle cryo-electron microscopy. Cell 161:438–449

    CAS  Google Scholar 

  31. Russo Krauss I, Merlino A, Vergara A, Sica F (2013) An overview of biological macromolecule crystallization. Int J Mol Sci 14:11643–11691

    Google Scholar 

  32. McPherson A, DeLucas LJ (2015) Microgravity protein crystallization. NPJ Microgravity 1:15010

    Google Scholar 

  33. Kundrot CE, Judge RA, Pusey ML, Snell EH (2001) Microgravity and macromolecular crystallography. Cryst Growth Des 1:87–99

    CAS  Google Scholar 

  34. Pareja-Rivera C, Cuéllar-Cruz M, Esturau-Escofet N, Demitri N, Polentarutti M, Stojanoff V, Moreno A (2016) Recent advances in the understanding of the influence of electric and magnetic fields on protein crystal growth. Cryst Growth Des 17:135–145

    Google Scholar 

  35. Li F, Lakerveld R (2018) Electric-field-assisted protein crystallization in continuous flow. Cryst Growth Des 18:2964–2971

    CAS  Google Scholar 

  36. Koizumi H, Uda S, Fujiwara K, Tachibana M, Kojima K, Nozawa J (2015) Crystallization of high-quality protein crystals using an external electric field. J Appl Crystallogr 48:1507–1513

    CAS  Google Scholar 

  37. Sazaki G, Yoshida E, Komatsu H, Nakada T, Miyashita S, Watanabe K (1997) Effects of a magnetic field on the nucleation and growth of protein crystals. J Cryst Growth 173:231–234

    CAS  Google Scholar 

  38. Shang L, Cheng Y, Zhao Y (2017) Emerging droplet microfluidics. Chem Rev 117:7964–8040

    CAS  Google Scholar 

  39. Hibara A, Fukuyama M, Chung M, Priest C, Proskurnin MA (2016) Interfacial phenomena and fluid control in micro/nanofluidics. Anal Sci 32:11–21

    CAS  Google Scholar 

  40. Beebe DJ, Mensing GA, Walker GM (2002) Physics and applications of microfluidics in biology. Annu Rev Biomed Eng 4:261–286

    CAS  Google Scholar 

  41. Di Carlo D (2009) Inertial microfluidics. Lab Chip 9:3038–3046

    Google Scholar 

  42. Li L, Ismagilov RF (2010) Protein crystallization using microfluidic technologies based on valves, droplets, and slipchip. Annu Rev Biophys 39:139–158

    CAS  Google Scholar 

  43. Zheng B, Roach LS, Ismagilov RF (2003) Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. J Am Chem Soc 125:11170–11171

    CAS  Google Scholar 

  44. Maeki M, Yamaguchi H, Tokeshi M, Miyazaki M (2016) Microfluidic approaches for protein crystal structure analysis. Anal Sci 32:3–9

    CAS  Google Scholar 

  45. Li L, Du W, Ismagilov R (2010) User-loaded slipchip for equipment-free multiplexed nanoliter-scale experiments. J Am Chem Soc 132:106–111

    CAS  Google Scholar 

  46. Li L, Mustafi D, Fu Q, Tereshko V, Chen DL, Tice JD, Ismagilov RF (2006) Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins. Proc Natl Acad Sci U S A 103:19243–19248

    CAS  Google Scholar 

  47. Hansen CL, Skordalakes E, Berger JM, Quake SR (2002) A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion. Proc Natl Acad Sci U S A 99:16531–16536

    CAS  Google Scholar 

  48. Hansen CL, Classen S, Berger JM, Quake SR (2006) A microfluidic device for kinetic optimization of protein crystallization and in situ structure determination. J Am Chem Soc 128:3142–3143

    CAS  Google Scholar 

  49. Heymann M, Opthalage A, Wierman JL, Akella S, Szebenyi DM, Gruner SM, Fraden S (2014) Room-temperature serial crystallography using a kinetically optimized microfluidic device for protein crystallization and on-chip X-ray diffraction. IUCrJ 1:349–360

    CAS  Google Scholar 

  50. Shim J-u, Cristobal G, Link DR, Thorsen T, Jia Y, Piattelli K, Fraden S (2007) Control and measurement of the phase behavior of aqueous solutions using microfluidics. J Am Chem Soc 129:8825–8835

    CAS  Google Scholar 

  51. Talreja S, Kim DY, Mirarefi AY, Zukoski CF, Kenis PJA (2005) Screening and optimization of protein crystallization conditions through gradual evaporation using a novel crystallization platform. J Appl Crystallogr 38:988–995

    CAS  Google Scholar 

  52. Guha S, Perry SL, Pawate AS, Kenis PJ (2012) Fabrication of X-ray compatible microfluidic platforms for protein crystallization. Sensors Actuators B Chem 174:1–9

    CAS  Google Scholar 

  53. Khvostichenko DS, Schieferstein JM, Pawate AS, Laible PD, Kenis PJ (2014) X-ray transparent microfluidic chip for mesophase-based crystallization of membrane proteins and on-chip structure determination. Cryst Growth Des 14:4886–4890

    CAS  Google Scholar 

  54. Liang YR, Zhu LN, Gao J, Zhao HX, Zhu Y, Ye S, Fang Q (2017) 3D-printed high-density droplet array chip for miniaturized protein crystallization screening under vapor diffusion mode. ACS Appl Mater Interfaces 9:11837–11845

    CAS  Google Scholar 

  55. Maeki M, Yamazaki S, Pawate AS, Ishida A, Tani H, Yamashita K, Sugishima M, Watanabe K, Tokeshi M, Kenis PJA, Miyazaki M (2016) A microfluidic-based protein crystallization method in 10 micrometer-sized crystallization space. CrystEngComm 18:7722–7727

    CAS  Google Scholar 

  56. Maeki M, Teshima Y, Yoshizuka S, Yamaguchi H, Yamashita K, Miyazaki M (2014) Controlling protein crystal nucleation by droplet-based microfluidics. Chem Eur J 20:1049–1056

    CAS  Google Scholar 

  57. Yamaguchi H, Maeki M, Yamashita K, Nakamura H, Miyazaki M, Maeda H (2013) Controlling one protein crystal growth by droplet-based microfluidic system. J Biochem 153:339–346

    CAS  Google Scholar 

  58. Schieferstein JM, Pawate AS, Varel MJ, Guha S, Astrauskaite I, Gennis RB, Kenis PJA (2018) X-ray transparent microfluidic platforms for membrane protein crystallization with microseeds. Lab Chip 18:944–954

    CAS  Google Scholar 

  59. Zhang S, Gerard CJJ, Ikni A, Ferry G, Vuillard LM, Boutin JA, Ferte N, Grossier R, Candoni N, Veesler S (2017) Microfluidic platform for optimization of crystallization conditions. J Cryst Growth 472:18–28

    CAS  Google Scholar 

  60. Ildefonso M, Candoni N, Veesler S (2011) Using microfluidics for fast, accurate measurement of lysozyme nucleation kinetics. Cryst Growth Des 11:1527–1530

    CAS  Google Scholar 

  61. Grossier R, Magnaldo A, Veesler S (2010) Ultra-fast crystallization due to confinement. J Cryst Growth 312:487–489

    CAS  Google Scholar 

  62. Vekilov PG (2010) Nucleation. Cryst Growth Des 10:5007–5019

    CAS  Google Scholar 

  63. Vekilov PG (2007) What determines the rate of growth of crystals from solution? Cryst Growth Des 7:2796–2810

    CAS  Google Scholar 

  64. Moukhametzianov R, Burghammer M, Edwards PC, Petitdemange S, Popov D, Fransen M, McMullan G, Schertler GF, Riekel C (2008) Protein crystallography with a micrometre-sized synchrotron-radiation beam. Acta Crystallogr D Biol Crystallogr 64:158–166

    CAS  Google Scholar 

  65. Yamamoto M, Hirata K, Yamashita K, Hasegawa K, Ueno G, Ago H, Kumasaka T (2017) Protein microcrystallography using synchrotron radiation. IUCrJ 4:529–539

    CAS  Google Scholar 

  66. Berejnov V, Husseini NS, Alsaied OA, Thorne RE (2006) Effects of cryoprotectant concentration and cooling rate on vitrification of aqueous solutions. J Appl Crystallogr 39:244–251

    CAS  Google Scholar 

  67. Pflugrath JW (2004) Macromolecular cryocrystallography--methods for cooling and mounting protein crystals at cryogenic temperatures. Methods 34:415–423

    CAS  Google Scholar 

  68. Du W-B, Sun M, Gu S-Q, Zhu Y, Fang Q (2010) Automated microfluidic screening assay platform based on droplab. Anal Chem 82:9941–9947

    CAS  Google Scholar 

  69. Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298:580–584

    CAS  Google Scholar 

  70. Li L, Du W, Ismagilov RF (2010) Multiparameter screening on slipchip used for nanoliter protein crystallization combining free interface diffusion and microbatch methods. J Am Chem Soc 132:112–119

    CAS  Google Scholar 

  71. Wang L, Sun K, Hu X, Li G, Jin Q, Zhao J (2015) A centrifugal microfluidic device for screening protein crystallization conditions by vapor diffusion. Sensors Actuators B Chem 219:105–111

    CAS  Google Scholar 

  72. Li G, Chen Q, Li J, Hu X, Zhao J (2010) A compact disk-like centrifugal microfluidic system for high-throughput nanoliter-scale protein crystallization screening. Anal Chem 82:4362–4369

    CAS  Google Scholar 

  73. Maeki M, Yamaguchi H, Yamashita K, Nakamura H, Miyazaki M, Maeda H (2012) A method for generating single crystals that rely on internal fluid dynamics of microdroplets. Chem Commun (Camb) 48:5037–5039

    CAS  Google Scholar 

  74. Maeki M, Yamaguchi H, Yamashita K, Nakamura H, Miyazaki M, Maeda H (2011) Analysis of kinetic behavior of protein crystallization in nanodroplets. Chem Lett 40:825–827

    CAS  Google Scholar 

  75. Chapman HN, Fromme P, Barty A, White TA, Kirian RA, Aquila A, Hunter MS, Schulz J, DePonte DP, Weierstall U, Doak RB, Maia FR, Martin AV, Schlichting I, Lomb L, Coppola N, Shoeman RL, Epp SW, Hartmann R, Rolles D, Rudenko A, Foucar L, Kimmel N, Weidenspointner G, Holl P, Liang M, Barthelmess M, Caleman C, Boutet S, Bogan MJ, Krzywinski J, Bostedt C, Bajt S, Gumprecht L, Rudek B, Erk B, Schmidt C, Homke A, Reich C, Pietschner D, Struder L, Hauser G, Gorke H, Ullrich J, Herrmann S, Schaller G, Schopper F, Soltau H, Kuhnel KU, Messerschmidt M, Bozek JD, Hau-Riege SP, Frank M, Hampton CY, Sierra RG, Starodub D, Williams GJ, Hajdu J, Timneanu N, Seibert MM, Andreasson J, Rocker A, Jonsson O, Svenda M, Stern S, Nass K, Andritschke R, Schroter CD, Krasniqi F, Bott M, Schmidt KE, Wang X, Grotjohann I, Holton JM, Barends TR, Neutze R, Marchesini S, Fromme R, Schorb S, Rupp D, Adolph M, Gorkhover T, Andersson I, Hirsemann H, Potdevin G, Graafsma H, Nilsson B, Spence JC (2011) Femtosecond X-ray protein nanocrystallography. Nature 470:73–77

    CAS  Google Scholar 

  76. Spence JCH (2017) XFELs for structure and dynamics in biology. IUCrJ 4:322–339

    CAS  Google Scholar 

  77. Suga M, Akita F, Hirata K, Ueno G, Murakami H, Nakajima Y, Shimizu T, Yamashita K, Yamamoto M, Ago H, Shen JR (2015) Native structure of photosystem II at 1.95 A resolution viewed by femtosecond X-ray pulses. Nature 517:99–103

    CAS  Google Scholar 

  78. Tosha T, Nomura T, Nishida T, Saeki N, Okubayashi K, Yamagiwa R, Sugahara M, Nakane T, Yamashita K, Hirata K, Ueno G, Kimura T, Hisano T, Muramoto K, Sawai H, Takeda H, Mizohata E, Yamashita A, Kanematsu Y, Takano Y, Nango E, Tanaka R, Nureki O, Shoji O, Ikemoto Y, Murakami H, Owada S, Tono K, Yabashi M, Yamamoto M, Ago H, Iwata S, Sugimoto H, Shiro Y, Kubo M (2017) Capturing an initial intermediate during the P450nor enzymatic reaction using time-resolved XFEL crystallography and caged-substrate. Nat Commun 8:1585

    Google Scholar 

  79. Zheng B, Tice JD, Roach LS, Ismagilov RF (2004) A droplet-based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip X-ray diffraction. Angew Chem Int Ed Eng 43:2508–2511

    CAS  Google Scholar 

  80. Maeki M, Yoshizuka S, Yamaguchi H, Kawamoto M, Yamashita K, Nakamura H, Miyazaki M, Maeda H (2012) X-ray diffraction of protein crystal grown in a nano-liter scale droplet in a microchannel and evaluation of its applicability. Anal Sci 28:65–68

    CAS  Google Scholar 

  81. Maeki M, Pawate AS, Yamashita K, Kawamoto M, Tokeshi M, Kenis PJ, Miyazaki M (2015) A method of cryoprotection for protein crystallography by using a microfluidic chip and its application for in situ X-ray diffraction measurements. Anal Chem 87:4194–4200

    CAS  Google Scholar 

  82. Sui S, Wang Y, Dimitrakopoulos C, Perry S (2018) A graphene-based microfluidic platform for electrocrystallization and in situ X-ray diffraction. Crystals 8

    Google Scholar 

  83. Sui S, Wang Y, Kolewe KW, Srajer V, Henning R, Schiffman JD, Dimitrakopoulos C, Perry SL (2016) Graphene-based microfluidics for serial crystallography. Lab Chip 16:3082–3096

    CAS  Google Scholar 

  84. Fukuyama M, Akiyama A, Harada M, Okada T, Hibara A (2015) Microfluidic protein crystallisation controlled using spontaneous emulsification. Anal Methods 7:7128–7131

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masatoshi Maeki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maeki, M., Tokeshi, M. (2019). Microfluidic Technologies and Platforms for Protein Crystallography. In: Tokeshi, M. (eds) Applications of Microfluidic Systems in Biology and Medicine . Bioanalysis, vol 7. Springer, Singapore. https://doi.org/10.1007/978-981-13-6229-3_2

Download citation

Publish with us

Policies and ethics