Skip to main content

Paper-Based Microfluidics for Point-of-Care Medical Diagnostics

  • Chapter
  • First Online:
Applications of Microfluidic Systems in Biology and Medicine

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 7))

Abstract

In the last decade, the chemistry research community has witnessed an explosive growth of microfluidic devices made of paper (paper-based microfluidics). Use of paper as a substrate material brings several attractive features including extremely low cost and auxiliary pump-free liquid transportation, among others, and application of paper-based microfluidics to on-site medical diagnosis has been actively pursued. To meet the demand for medical diagnostic devices operable by end-users without expert knowledge in resource-limited settings, recent studies on paper-based microfluidics pay particular attention to simplification of user operations prior to an assay (e.g. achieving multistep enzymatic assays by single pipetting) and resulting signal readout (e.g. achieving naked eye-based analog thermometer-style result interpretation). One of the objectives of this chapter is to overview state-of-the-art research progresses in simplification of user operational procedures and development of equipment-free signal readout approaches. In addition, the basics of paper-based microfluidics including a short history of paper-based microfluidics, a comparison of paper-based and conventional plastic- or glass-based microfluidic devices and general requirements for ideal point-of-care testing devices are described. The authors believe this chapter helps researchers new to the field and researchers with different background to learn about analytical applications exclusively achieved by paper-based microfluidics and future challenges in developing “truly” practical medical diagnostic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens. Actuat. B: Chem. 1:244–248

    CAS  Google Scholar 

  2. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    CAS  Google Scholar 

  3. Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH (2006) Microfluidic diagnostic technologies for global public health. Nature 442:412–418

    CAS  Google Scholar 

  4. Volpatti LR, Yetisen AK (2014) Commercialization of microfluidic devices. Trends Biotechnol 32:347–350

    CAS  Google Scholar 

  5. Temiz Y, Lovchik RD, Kaigala GV, Delamarche E (2015) Lab-on-a-chip devices: how to close and plug the lab? Microelectron Eng 132:156–175

    CAS  Google Scholar 

  6. Kurita R, Niwa O (2016) Microfluidic platforms for DNA methylation analysis. Lab Chip 16:3631–3644

    CAS  Google Scholar 

  7. Lim YC, Kouzani AZ, Duan W (2010) Lab-on-a-chip: a component view. Microsyst Technol 16:1995–2015

    Google Scholar 

  8. Tsao C-W (2016) Polymer microfluidics: simple, low-cost fabrication process bridging academic lab research to commercialized production. Micromachines 7:255

    Google Scholar 

  9. Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed 46:1318–1320

    CAS  Google Scholar 

  10. Xu Y, Liu M, Kong N, Liu J (2016) Lab-on-paper micro- and nano-analytical devices: fabrication, modification, detection and emerging applications. Microchim Acta 183:1521–1542

    CAS  Google Scholar 

  11. Ruecha N, Yamada K, Suzuki K, Citterio D (2017) (Bio)chemical sensors based on paper. In: Cesar Paixão TRL, Reddy SM (eds) Materials for chemical sensing. Springer International Publishing, Cham, pp 29–74

    Google Scholar 

  12. Yetisen AK, Akram MS, Lowe CR (2013) Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13:2210–2251

    CAS  Google Scholar 

  13. Cate DM, Adkins JA, Mettakoonpitak J, Henry CS (2015) Recent developments in paper-based microfluidic devices. Anal Chem 87:19–41

    CAS  Google Scholar 

  14. Yamada K, Henares TG, Suzuki K, Citterio D (2015) Paper-based inkjet-printed microfluidic analytical devices. Angew Chem Int Ed 54:5294–5310

    CAS  Google Scholar 

  15. Xia Y, Si J, Li Z (2016) Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: a review. Biosens Bioelectron 77:774–789

    CAS  Google Scholar 

  16. Mahadeva SK, Walus K, Stoeber B (2015) Paper as a Platform for sensing applications and other devices: a review. ACS Appl Mater Interfaces 7:8345–8362

    CAS  Google Scholar 

  17. Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    CAS  Google Scholar 

  18. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    CAS  Google Scholar 

  19. Credou J, Berthelot T (2014) Cellulose: from biocompatible to bioactive material. J Mater Chem B 2:4767–4788

    CAS  Google Scholar 

  20. Bajpai P (2012) Brief description of the pulp and paper making process. In: Bajpai P (ed) Biotechnology for pulp and paper processing. Springer US, Boston, pp 7–14

    Google Scholar 

  21. Nery EW, Kubota LT (2013) Sensing approaches on paper-based devices: a review. Anal Bioanal Chem 405:7573–7595

    CAS  Google Scholar 

  22. Rodney C (2004) Scientific American inventions and discoveries. John Wiley & Sons, Inc, Hoboken

    Google Scholar 

  23. Maumené M (1850) On a new reagent for ascertaining the presence of sugar in certain liquids. Philos Mag Ser 3(36):482

    Google Scholar 

  24. Campbell RL, Wagner DB, O’Connell JP (1987) Solid phase assay with visual readout. US Patent 4703017, October 27

    Google Scholar 

  25. Rosenstein RW, Bloomster TG (1989) US Patent 4855240, August 8

    Google Scholar 

  26. Mills CK, Afable C, Candanoza C, Ferreria V, Landon S, Repaske A, Scully J, Gherna R (1989) Comparison of the merckoquant 10007 nitrite test strip with conventional reagents in the detection of nitrate reduction by bacteria. J Microbiol Methods 9:233–237

    Google Scholar 

  27. Müller RH, Clegg DL (1949) Automatic paper chromatography. Anal Chem 21:1123–1125

    Google Scholar 

  28. Chin CD, Linder V, Sia SK (2012) Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 12:2118–2134

    CAS  Google Scholar 

  29. Mao X, Huang TJ (2012) Microfluidic diagnostics for the developing world. Lab Chip 12:1412–1416

    CAS  Google Scholar 

  30. Carrilho E, Martinez AW, Whitesides GM (2009) Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem 81:7091–7095

    CAS  Google Scholar 

  31. Lu Y, Shi W, Jiang L, Qin J, Lin B (2009) Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis 30:1497–1500

    CAS  Google Scholar 

  32. Abe K, Suzuki K, Citterio D (2008) Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal Chem 80:6928–6934

    CAS  Google Scholar 

  33. Fenton EM, Mascarenas MR, López GP, Sibbett SS (2009) Multiplex lateral-flow test strips fabricated by two-dimensional shaping. ACS Appl Mater Interfaces 1:124–129

    CAS  Google Scholar 

  34. Carson FT (1940) Some observations on determining the size of pores in paper. J Res Natl Bur Stand 24:435–442

    CAS  Google Scholar 

  35. Osborn JL, Lutz B, Fu E, Kauffman P, Stevens DY, Yager P (2010) Microfluidics without pumps: reinventing the T-sensor and H-filter in paper networks. Lab Chip 10:2659–2665

    CAS  Google Scholar 

  36. Ahmed S, Bui M-PN, Abbas A (2016) Paper-based chemical and biological sensors: Engineering aspects. Biosens Bioelectron 77:249–263

    CAS  Google Scholar 

  37. Kar S, Maiti TK, Chakraborty S (2015) Capillarity-driven blood plasma separation on paper-based devices. Analyst 140:6473–6476

    CAS  Google Scholar 

  38. Ota R, Yamada K, Suzuki K, Citterio D (2018) Quantitative evaluation of analyte transport on microfluidic paper-based analytical devices (μPADs). Analyst 143:643–653

    CAS  Google Scholar 

  39. Wang X, Zhang Q, Nam C, Hickner M, Mahoney M, Meyerhoff ME (2017) An ionophore-based anion-selective optode printed on cellulose paper. Angew Chem Int Ed 56:11826–11830

    CAS  Google Scholar 

  40. Shibata H, Henares TG, Yamada K, Suzuki K, Citterio D (2018) Implementation of a plasticized PVC-based cation-selective optode system into a paper-based analytical device for colorimetric sodium detection. Analyst 143:678–686

    CAS  Google Scholar 

  41. Cassano CL, Fan ZH (2013) Laminated paper-based analytical devices (LPAD): fabrication, characterization, and assays. Microfluid Nanofluid 15:173–181

    CAS  Google Scholar 

  42. Liu W, Cassano CL, Xu X, Fan ZH (2013) Laminated paper-based analytical devices (LPAD) with origami-enabled chemiluminescence immunoassay for cotinine detection in mouse serum. Anal Chem 85:10270–10276

    CAS  Google Scholar 

  43. Tenda K, Ota R, Yamada K, Henares T, Suzuki K, Citterio D (2016) High-resolution microfluidic paper-based analytical devices for sub-microliter sample analysis. Micromachines 7:80

    Google Scholar 

  44. Urdea M, Penny LA, Olmsted SS, Giovanni MY, Kaspar P, Shepherd A, Wilson P, Dahl CA, Buchsbaum S, Moeller G, Hay Burgess DC (2006) Requirements for high impact diagnostics in the developing world. Nature 444:73–79

    Google Scholar 

  45. Recommendations for Clinical Laboratory Improvement Amendments of 1988 (CLIA) (2018) Waiver applications for manufacturers of in vitro diagnostic devices. http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm079632.htm. Accessed 22 Feb 2018

  46. Nilghaz A, Guan L, Tan W, Shen W (2016) Advances of paper-based microfluidics for diagnostics—the original motivation and current status. ACS Sens 1:1382–1393

    CAS  Google Scholar 

  47. Yamada K, Shibata H, Suzuki K, Citterio D (2017) Toward practical application of paper-based microfluidics for medical diagnostics: state-of-the-art and challenges. Lab Chip 17:1206–1249

    CAS  Google Scholar 

  48. Bai Y, Tian C, Wei X, Wang Y, Wang D, Shi X (2012) A sensitive lateral flow test strip based on silica nanoparticle/CdTe quantum dot composite reporter probes. RSC Adv 2:1778–1781

    CAS  Google Scholar 

  49. Xie QY, Wu YH, Xiong QR, Xu HY, Xiong YH, Liu K, Jin Y, Lai WH (2014) Advantages of fluorescent microspheres compared with colloidal gold as a label in immunochromatographic lateral flow assays. Biosens Bioelectron 54:262–265

    CAS  Google Scholar 

  50. Kim K, Joung H-A, Han G-R, Kim M-G (2016) An immunochromatographic biosensor combined with a water-swellable polymer for automatic signal generation or amplification. Biosens Bioelectron 85:422–428

    CAS  Google Scholar 

  51. Park J, Shin JH, Park JK (2016) Pressed paper-based dipstick for detection of foodborne pathogens with multistep reactions. Anal Chem 88:3781–3788

    CAS  Google Scholar 

  52. Shyu R-H, Shyu H-F, Liu H-W, Tang S-S (2002) Colloidal gold-based immunochromatographic assay for detection of ricin. Toxicon 40:255–258

    CAS  Google Scholar 

  53. Rong-Hwa S, Shiao-Shek T, Der-Jiang C, Yao-Wen H (2010) Gold nanoparticle-based lateral flow assay for detection of staphylococcal enterotoxin B. Food Chem 118:462–466

    CAS  Google Scholar 

  54. Chiao D-J, Shyu R-H, Hu C-S, Chiang H-Y, Tang S-S (2004) Colloidal gold-based immunochromatographic assay for detection of botulinum neurotoxin type B. J Chromatogr B 809:37–41

    CAS  Google Scholar 

  55. Fu E, Liang T, Spicar-Mihalic P, Houghtaling J, Ramachandran S, Yager P (2012) Two-dimensional paper network format that enables simple multistep assays for use in low-resource settings in the context of malaria antigen detection. Anal Chem 84:4574–4579

    CAS  Google Scholar 

  56. Lutz B, Liang T, Fu E, Ramachandran S, Kauffman P, Yager P (2013) Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics. Lab Chip 13:2840–2847

    CAS  Google Scholar 

  57. Apilux A, Ukita Y, Chikae M, Chailapakul O, Takamura Y (2013) Development of automated paper-based devices for sequential multistep sandwich enzyme-linked immunosorbent assays using inkjet printing. Lab Chip 13:126–135

    CAS  Google Scholar 

  58. Ishii M, Preechakasedkit P, Yamada K, Chailapakul O, Suzuki K, Citterio D (2018) Wax-assisted one-step enzyme-linked immunosorbent assay on lateral flow test devices. Anal Sci 34:51–56

    CAS  Google Scholar 

  59. Cherpillod P, Schibler M, Vieille G, Cordey S, Mamin A, Vetter P, Kaiser L (2016) Ebola virus disease diagnosis by real-time RT-PCR: a comparative study of 11 different procedures. J Clin Virol 77:9–14

    CAS  Google Scholar 

  60. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:e63–e63

    CAS  Google Scholar 

  61. Ali MM, Li F, Zhang Z, Zhang K, Kang D-K, Ankrum JA, Le XC, Zhao W (2014) Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chem Soc Rev 43:3324–3341

    CAS  Google Scholar 

  62. Connelly JT, Rolland JP, Whitesides GM (2015) “Paper machine” for molecular diagnostics. Anal Chem 87:7595–7601

    CAS  Google Scholar 

  63. Magro L, Escadafal C, Garneret P, Jacquelin B, Kwasiborski A, Manuguerra J-C, Monti F, Sakuntabhai A, Vanhomwegen J, Lafaye P, Tabeling P (2017) Paper microfluidics for nucleic acid amplification testing (NAAT) of infectious diseases. Lab Chip 17:2347–2371

    CAS  Google Scholar 

  64. Zuk RF, Ginsberg VK, Houts T, Rabbie J, Merrick H, Ullman EF, Fischer MM, Sizto CC, Stiso SN, Litman DJ (1985) Enzyme immunochromatography—a quantitative immunoassay requiring no instrumentation. Clin Chem 31:1144–1150

    CAS  Google Scholar 

  65. Vaughan L, Milavetz G, Ellis E, Szefler S, Conboy K, Weinberger M, Tillson S, Jenne J, Wiener M, Shaughnessy T, Carrico J (1986) Multicentre evaluation of disposable visual measuring device to assay theophylline from capillary blood sample. Lancet 327:184–186

    Google Scholar 

  66. Chen R, Li TM, Merrick H, Parrish RF, Bruno V, Kwong A, Stiso C, Litman DJ (1987) An internal clock reaction used in a one-step enzyme immunochromatographic assay of theophylline in whole blood. Clin Chem 33:1521–1525

    CAS  Google Scholar 

  67. Allen MP, DeLizza A, Ramel U, Jeong H, Singh P (1990) A noninstrumented quantitative test system and its application for determining cholesterol concentration in whole blood. Clin Chem 36:1591–1597

    CAS  Google Scholar 

  68. Liu VY, Lin TY, Schrier W, Allen M, Singh P (1993) AccuMeter noninstrumented quantitative assay of high-density lipoprotein in whole blood. Clin Chem 39:1948–1952

    CAS  Google Scholar 

  69. Cate DM, Dungchai W, Cunningham JC, Volckens J, Henry CS (2013) Simple, distance-based measurement for paper analytical devices. Lab Chip 13:2397–2404

    CAS  Google Scholar 

  70. Yamada K, Henares TG, Suzuki K, Citterio D (2015) Distance-based tear lactoferrin assay on microfluidic paper device using interfacial interactions on surface-modified cellulose. ACS Appl Mater Interfaces 7:24864–24875

    CAS  Google Scholar 

  71. Wei X, Tian T, Jia S, Zhu Z, Ma Y, Sun J, Lin Z, Yang CJ (2016) Microfluidic distance readout sweet hydrogel integrated paper-based analytical device (μDiSH-PAD) for visual quantitative point-of-care testing. Anal Chem 88:2345–2352

    CAS  Google Scholar 

  72. Tian T, An Y, Wu Y, Song Y, Zhu Z, Yang C (2017) Integrated distance-based origami paper analytical device for one-step visualized analysis. ACS Appl Mater Interfaces 9:30480–30487

    CAS  Google Scholar 

  73. Hongwarittorrn I, Chaichanawongsaroj N, Laiwattanapaisal W (2017) Semi-quantitative visual detection of loop mediated isothermal amplification (LAMP)-generated DNA by distance-based measurement on a paper device. Talanta 175:135–142

    CAS  Google Scholar 

  74. Wang AG, Dong T, Mansour H, Matamoros G, Sanchez AL, Li F (2018) Paper-based DNA reader for visualized quantification of soil-transmitted helminth infections. ACS Sens 3:205–210

    CAS  Google Scholar 

  75. Chen Y, Chu W, Liu W, Guo X (2018) Distance-based carcinoembryonic antigen assay on microfluidic paper immunodevice. Sens. Actuat. B: Chem. 260:452–459

    CAS  Google Scholar 

  76. Wei X, Tian T, Jia S, Zhu Z, Ma Y, Sun J, Lin Z, Yang CJ (2015) Target-responsive DNA hydrogel mediated “stop-flow” microfluidic paper-based analytic device for rapid, portable and visual detection of multiple targets. Anal Chem 87:4275–4282

    CAS  Google Scholar 

  77. Zhang L, Nie J, Wang H, Yang J, Wang B, Zhang Y, Li J (2017) Instrument-free quantitative detection of alkaline phosphatase using paper-based devices. Anal Methods 9:3375–3379

    CAS  Google Scholar 

  78. Noiphung J, Talalak K, Hongwarittorrn I, Pupinyo N, Thirabowonkitphithan P, Laiwattanapaisal W (2015) A novel paper-based assay for the simultaneous determination of Rh typing and forward and reverse ABO blood groups. Biosens Bioelectron 67:485–489

    CAS  Google Scholar 

  79. Berry SB, Fernandes SC, Rajaratnam A, DeChiara NS, Mace CR (2016) Measurement of the hematocrit using paper-based microfluidic devices. Lab Chip 16:3689–3694

    CAS  Google Scholar 

  80. Lewis GG, DiTucci MJ, Phillips ST (2012) Quantifying analytes in paper-based microfluidic devices without using external electronic readers. Angew Chem Int Ed 51:12707–12710

    CAS  Google Scholar 

  81. Lewis GG, Robbins JS, Phillips ST (2013) Point-of-care assay platform for quantifying active enzymes to femtomolar levels using measurements of time as the readout. Anal Chem 85:10432–10439

    CAS  Google Scholar 

  82. Zhang Y, Fan J, Nie J, Le S, Zhu W, Gao D, Yang J, Zhang S, Li J (2015) Timing readout in paper device for quantitative point-of-use hemin/G-quadruplex DNAzyme-based bioassays. Biosens Bioelectron 73:13–18

    CAS  Google Scholar 

  83. Zhang Y, Gao D, Fan J, Nie J, Le S, Zhu W, Yang J, Li J (2016) Naked-eye quantitative aptamer-based assay on paper device. Biosens Bioelectron 78:538–546

    CAS  Google Scholar 

  84. Li M, Tian J, Al-Tamimi M, Shen W (2012) Paper-based blood typing device that reports patient’s blood type “in writing”. Angew Chem Int Ed 51:5497–5501

    CAS  Google Scholar 

  85. Yamada K, Suzuki K, Citterio D (2017) Text-displaying colorimetric paper-based analytical device. ACS Sens 2:1247–1254

    CAS  Google Scholar 

  86. Cate DM, Noblitt SD, Volckens J, Henry CS (2015) Multiplexed paper analytical device for quantification of metals using distance-based detection. Lab Chip 15:2808–2818

    CAS  Google Scholar 

  87. Zhong M, Lee CY, Croushore CA, Sweedler JV (2012) Label-free quantitation of peptide release from neurons in a microfluidic device with mass spectrometry imaging. Lab Chip 12:2037–2045

    CAS  Google Scholar 

  88. Mentele MM, Cunningham J, Koehler K, Volckens J, Henry CS (2012) Microfluidic paper-based analytical device for particulate metals. Anal Chem 84:4474–4480

    CAS  Google Scholar 

  89. Rattanarat P, Dungchai W, Cate DM, Siangproh W, Volckens J, Chailapakul O, Henry CS (2013) A microfluidic paper-based analytical device for rapid quantification of particulate chromium. Anal Chim Acta 800:50–55

    CAS  Google Scholar 

  90. Henares TG, Yamada K, Takaki S, Suzuki K, Citterio D (2017) “Drop-slip” bulk sample flow on fully inkjet-printed microfluidic paper-based analytical device. Sens Actuat B: Chem 244:1129–1137

    CAS  Google Scholar 

  91. Kudo H, Yamada K, Watanabe D, Suzuki K, Citterio D (2017) Paper-based analytical device for zinc ion quantification in water samples with power-free analyte concentration. Micromachines 8:127

    Google Scholar 

  92. Chatterjee D, Mansfield DS, Anderson NG, Subedi S, Woolley AT (2012) “Flow valve” microfluidic devices for simple, detectorless, and label-free analyte quantitation. Anal Chem 84:7057–7063

    CAS  Google Scholar 

  93. Karita S, Kaneta T (2014) Acid-base titrations using microfluidic paper-based analytical devices. Anal Chem 86:12108–12114

    CAS  Google Scholar 

  94. Karita S, Kaneta T (2016) Chelate titrations of Ca2+ and Mg2+ using microfluidic paper-based analytical devices. Anal Chim Acta 924:60–67

    CAS  Google Scholar 

  95. Kenney RM, Boyce MW, Whitman NA, Kromhout BP, Lockett MR (2018) A pH-sensing optode for mapping spatiotemporal gradients in 3D paper-based cell cultures. Anal Chem 90:2376–2383

    CAS  Google Scholar 

  96. Wang J, Li W, Ban L, Du W, Feng X, Liu B-F (2018) A paper-based device with an adjustable time controller for the rapid determination of tumor biomarkers. Sens Actuat B: Chem 254:855–862

    CAS  Google Scholar 

  97. Mu X, Xin X, Fan C, Li X, Tian X, Xu KF, Zheng Z (2015) A paper-based skin patch for the diagnostic screening of cystic fibrosis. Chem Commun 51:6365–6368

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Citterio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yamada, K., Citterio, D. (2019). Paper-Based Microfluidics for Point-of-Care Medical Diagnostics. In: Tokeshi, M. (eds) Applications of Microfluidic Systems in Biology and Medicine . Bioanalysis, vol 7. Springer, Singapore. https://doi.org/10.1007/978-981-13-6229-3_13

Download citation

Publish with us

Policies and ethics