Skip to main content

Paper Microfluidics for POC Testing in Low-Resource Settings

  • Chapter
  • First Online:
Applications of Microfluidic Systems in Biology and Medicine

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 7))

Abstract

Paper microfluidics is a subarea of microfluidics in which porous materials are used to create devices. Advantages of paper microfluidics include fluid transport via capillary forces, so that external pumping equipment is not necessary, and the use of less expensive materials than those commonly used in conventional microfluidic devices. Paper microfluidics enables the development of fully disposable devices that are appropriate for use in even the lowest-resource settings, and the potential for high impact improvement to human health. In this chapter, we first discuss the paper microfluidic device fabrication processes of materials selection, fluidic boundary definition, and reagent patterning. Next, we discuss tools development for manipulating fluids in paper microfluidic devices. Then, we describe specific medical applications with discussion of three promising paper microfluidic devices. Finally, we close with a general discussion of challenges in the translation of paper microfluidic devices from the lab to the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The estimate is based on a surface tension of 7.2 × 10−2 N/m, a velocity of 1 × 10−4 m/s, and a viscosity of 1 × 10−3 Pa•s.

References

  1. Beebe DJ, Mensing GA, Walker GM (2002) Physics and applications of microfluidics in biology. Annu Rev Biomed Eng 4:261–286

    CAS  Google Scholar 

  2. Adamson AW, Gast A (1997) Physical chemistry of surfaces, 6th edn. Wiley, New York, p 4–16

    Google Scholar 

  3. Bird RB, Stewart WE, Lightfoot EN (1960) Transport phenomena. Wiley, New York, p 48–52

    Google Scholar 

  4. Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17:273–283

    Google Scholar 

  5. Lucas R (1918) The time law of the capillary rise of liquids. Kolloid-Zeitschrift 23:15–22

    CAS  Google Scholar 

  6. Mendez S, Fenton EM, Gallegos GR, Petsev DN, Sibbett SS, Stone HA, Zhang Y, Lopez GP (2010) Imbibition in porous membranes of complex shape: quasi-stationary flow in thin rectangular segments. Langmuir 26:1380–1385

    CAS  Google Scholar 

  7. Fridley GE, Holstein CA, Oza SB, Yager P (2013) The evolution of nitrocellulose as a material for bioassays. MRS Bull 38:326–330

    CAS  Google Scholar 

  8. Fu E, Yager P, Floriano P, Christodoulides N, McDevitt J (2011) Perspective on diagnostics for global health. IEEE Pulse 2:40–50

    Google Scholar 

  9. Urdea M, Penny LA, Olmsted SS, Giovanni MY, Kaspar P, Shepherd A, Wilson P, Dahl CA, Buchsbaum S, Moeller G, Burgess DCH (2006) Requirements for high impact diagnostics in the developing world. Nature 444:73–79

    Google Scholar 

  10. Yager P, Domingo GJ, Gerdes J (2008) Point-of-care diagnostics for global health. Annu Rev Biomed Eng 10:107–144

    CAS  Google Scholar 

  11. Peeling RW, Holmes KK, Mabey D, Ronald A (2006) Rapid tests for sexually transmitted infections (STIs): the way forward. Sex Transm Infect 82:v1–v6

    Google Scholar 

  12. O’Farrell B (2009) Evolution in lateral flow-based immunoassay systems. In: Wong R, Tse H (eds) Lateral flow immunoassay. Humana Press, New York

    Google Scholar 

  13. Posthuma-Trumpie GA, Korf J, van Amerongen A (2009) Lateral flow (immuno) assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem 393:569–582

    CAS  Google Scholar 

  14. O’Farrell B (2013) Lateral flow immunoassay systems: evolution from the current state of the art to the next generation of highly sensitive, quantitative rapid assays. In: Wild D (ed) The immunoassay handbook. Elsevier, Oxford

    Google Scholar 

  15. Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed 46:1318–1320

    CAS  Google Scholar 

  16. Martinez AW, Phillips ST, Whitesides GM (2008) Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci U S A 105:19606–19611

    CAS  Google Scholar 

  17. Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2010) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82:3–10

    CAS  Google Scholar 

  18. Adkins J, Boehle K, Henry C (2015) Electrochemical paper-based microfluidic devices. Electrophoresis 36:1811–1824

    CAS  Google Scholar 

  19. Mettakoonpitak J, Boehle K, Nantaphol S, Teengam P, Adkins JA, Srisa-Art M, Henry CS (2016) Electrochemistry on paper-based analytical devices: a review. Electroanalysis 28:1420–1436

    CAS  Google Scholar 

  20. Fu E (2014) Enabling robust quantitative readout in an equipment-free model of device development. Analyst 139:4750–4757

    CAS  Google Scholar 

  21. Mak WC, Beni V, Turner APF (2016) Lateral-flow technology: from visual to instrumental. Trends Anal Chem 79:297–305

    CAS  Google Scholar 

  22. Dungchai W, Chailapakul O, Henry CS (2010) Use of multiple colorimetric indicators for paper-based microfluidic devices. Anal Chim Acta 674:227–233

    CAS  Google Scholar 

  23. Cate DM, Dungchai W, Cunningham JC, Volckens J, Henry CS (2013) Simple, distance-based measurement for paper analytical devices. Lab Chip 13:2397–2404

    CAS  Google Scholar 

  24. Fung KK, Chan CPY, Renneberg R (2009) Development of enzyme-based bar code-style lateral-flow assay for hydrogen peroxide determination. Anal Chim Acta 634:89–95

    CAS  Google Scholar 

  25. Coskun AF, Wong J, Khodadadi D, Nagi R, Tey A, Ozcan A (2013) A personalized food allergen testing platform on a cellphone. Lab Chip 13:636–640

    CAS  Google Scholar 

  26. Mudanyali O, Dimitrov S, Sikora U, Padmanabhan S, Navruz I, Ozcan A (2012) Integrated rapid-diagnostic-test reader platform on a cellphone. Lab Chip 12:2678–2686

    CAS  Google Scholar 

  27. Zhu HY, Yaglidere O, Su TW, Tseng D, Ozcan A (2011) Cost-effective and compact wide-field fluorescent imaging on a cell-phone. Lab Chip 11:315–322

    CAS  Google Scholar 

  28. Byrnes S, Thiessen G, Fu E (2013) Progress in the development of paper-based diagnostics for low-resource point-of-care settings. Bioanalysis 5:2821–2836

    CAS  Google Scholar 

  29. Fu E, Liang T, Houghtaling J, Ramachandran S, Ramsey SA, Lutz B, Yager P (2011) Enhanced sensitivity of lateral flow tests using a two-dimensional paper network format. Anal Chem 83:7941–7946

    CAS  Google Scholar 

  30. Fu E, Liang T, Spicar-Mihalic P, Houghtaling J, Ramachandran S, Yager P (2012) Two-dimensional paper network format that enables simple multistep assays for use in low-resource settings in the context of malaria antigen detection. Anal Chem 84:4574–4579

    CAS  Google Scholar 

  31. To A, Downs C, Fu E (2017) Wax transfer printing to enable robust barrier definition in devices based on non-standard porous materials. J Micromech Microeng 27:057001. (6pp)

    Google Scholar 

  32. Martinez AW, Phillips ST, Wiley BJ, Gupta M, Whitesides GM (2008) FLASH: a rapid method for prototyping paper-based microfluidic devices. Lab Chip 8:2146–2150

    CAS  Google Scholar 

  33. Jiang X, Fan ZH (2016) Fabrication and operation of paper-based analytical devices. In: Bohn PW, Pemberton JE (eds) Annual review of analytical chemistry, vol 9. Annual Reviews, Palo Alto, pp 203–222

    Google Scholar 

  34. Xia Y, Si J, Li Z (2016) Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: a review. Biosens Bioelectron 77:774–789

    CAS  Google Scholar 

  35. Bruzewicz DA, Reches M, Whitesides GM (2008) Low-cost printing of poly(dimethylsiloxane) barriers to define microchannels in paper. Anal Chem 80:3387–3392

    CAS  Google Scholar 

  36. Abe K, Suzuki K, Citterio D (2008) Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal Chem 80:6928–6934

    CAS  Google Scholar 

  37. Li X, Tian JF, Nguyen T, Shen W (2008) Paper-based microfluidic devices by plasma treatment. Anal Chem 80:9131–9134

    CAS  Google Scholar 

  38. Chitnis G, Ding Z, Chang C-L, Savran CA, Ziaie B (2011) Laser-treated hydrophobic paper: an inexpensive microfluidic platform. Lab Chip 11:1161–1165

    CAS  Google Scholar 

  39. Curto VF, Lopez-Ruiz N, Capitan-Vallvey LF, Palma AJ, Benito-Lopez F, Diamond D (2013) Fast prototyping of paper-based microfluidic devices by contact stamping using indelible ink. RSC Adv 3:18811–18816

    CAS  Google Scholar 

  40. Carrilho E, Martinez AW, Whitesides GM (2009) Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem 81:7091–7095

    CAS  Google Scholar 

  41. Lu Y, Shi WW, Jiang L, Qin JH, Lin BC (2009) Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis 30:1497–1500

    CAS  Google Scholar 

  42. Lu Y, Shi WW, Qin JH, Lin BC (2010) Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing. Anal Chem 82:329–335

    Google Scholar 

  43. Dungchai W, Chailapakul O, Henry CS (2011) A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst 136:77–82

    CAS  Google Scholar 

  44. Songjaroen T, Dungchai W, Chailapakul O, Laiwattanapaisal W (2011) Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping. Talanta 85:2587–2593

    CAS  Google Scholar 

  45. Lu Y, Lin BC, Qin JH (2011) Patterned paper as a low-cost, flexible substrate for rapid prototyping of PDMS microdevices via “liquid molding”. Anal Chem 83:1830–1835

    CAS  Google Scholar 

  46. Fenton EM, Mascarenas MR, Lopez GP, Sibbett SS (2009) Multiplex lateral-flow test strips fabricated by two-dimensional shaping. ACS Appl Mater Interfaces 1:124–129

    CAS  Google Scholar 

  47. Spicar-Mihalic P, Toley B, Houghtaling J, Liang T, Yager P, Fu E (2013) CO2 laser cutting and ablative etching for the fabrication of paper-based devices. J Micromech Microeng 23:067003. (6pp)

    Google Scholar 

  48. Tenda K, Ota R, Yamada K, Henares TG, Suzuki K, Citterio D (2016) High-resolution microfluidic paper-based analytical devices for sub-microliter sample analysis. Micromachines 7:80

    Google Scholar 

  49. Toley BJ, McKenzie B, Liang T, Buser JR, Yager P, Fu E (2013) Tunable-delay shunts for paper microfluidic devices. Anal Chem 85:11545–11552

    CAS  Google Scholar 

  50. Toley BJ, Wang JA, Gupta M, Buser JR, Lafleur LK, Lutz BR, Fu E, Yager P (2015) A versatile valving toolkit for automating fluidic operations in paper microfluidic devices. Lab Chip 15:1432–1444

    CAS  Google Scholar 

  51. Liang T, Robinson R, Fridley G, Yager P, Fu E (2016) Investigation of varying reagent delivery formats in a malaria system and implications on assay sensitivity. Anal Chem 88:2311–2320

    CAS  Google Scholar 

  52. Cho JH, Paek SH (2001) Semiquantitative, bar code version of immunochromatographic assay system for human serum albumin as model analyte. Biotechnol Bioeng 75:725–732

    CAS  Google Scholar 

  53. Li J, Macdonald J (2016) Multiplexed lateral flow biosensors: technological advances for radically improving point-of-care diagnoses. Biosens Bioelectron 83:177–192

    CAS  Google Scholar 

  54. Fridley GE, Le HQ, Fu E, Yager P (2012) Controlled release of dry reagents in porous media for tunable temporal and spatial distribution upon rehydration. Lab Chip 12:4321–4327

    CAS  Google Scholar 

  55. Fridley GE, Le H, Yager P (2014) Highly sensitive immunoassay based on controlled rehydration of patterned reagents in a 2-dimensional paper network. Anal Chem 86:6447–6453

    CAS  Google Scholar 

  56. Romanov V, Davidoff SN, Miles AR, Grainger DW, Gale BK, Brooks BD (2014) A critical comparison of protein microarray fabrication technologies. Analyst 139:1303–1326

    CAS  Google Scholar 

  57. Mujawar LH, Maan AA, Khan MKI, Norde W, van Amerongen A (2013) Distribution of biomolecules in porous nitrocellulose membrane pads using confocal laser scanning microscopy and high-speed cameras. Anal Chem 85:3723–3729

    CAS  Google Scholar 

  58. Mujawar LH, van Amerongen A, Norde W (2015) Influence of Pluronic F127 on the distribution and functionality of inkjet-printed biomolecules in porous nitrocellulose substrates. Talanta 131:541–547

    Google Scholar 

  59. Abe K, Kotera K, Suzuki K, Citterio D (2010) Inkjet-printed paperfluidic immuno-chemical sensing device. Anal Bioanal Chem 398:885–893

    CAS  Google Scholar 

  60. Teerinen T, Lappalainen T, Erho T (2014) A paper-based lateral flow assay for morphine. Anal Bioanal Chem 406:5955–5965

    CAS  Google Scholar 

  61. Cheng C, Mazzeo A, Gong J, Martinez A, Phillips S, Jain N, Whitesides G (2010) Millimeter-scale contact printing of aqueous solutions using a stamp made out of paper and tape. Lab Chip 10:3201–3205

    CAS  Google Scholar 

  62. Imdieke J, Fu E (2017) Porous stamp-based reagent patterning for lateral flow immunoassays. Anal Methods 9:2751–2756

    CAS  Google Scholar 

  63. Peng Y, Van Gelder V, Amaladoss A, Patel KH (2016) Covalent binding of antibodies to cellulose paper discs and their applications in naked-eye colorimetric immunoassays. J Vis Exp. https://doi.org/10.3791/54111

  64. Credou J, Volland H, Dano J, Berthelot T (2013) A one-step and biocompatible cellulose functionalization for covalent antibody immobilization on immunoassay membranes. J Mater Chem B 1:3277–3286

    CAS  Google Scholar 

  65. Credou J, Volland H, Berthelot T (2015) Photolinker-free photoimmobilization of antibodies onto cellulose for the preparation of immunoassay membranes. J Mater Chem B 3:1079–1088

    CAS  Google Scholar 

  66. Stevens DY, Petri CR, Osborn JL, Spicar-Mihalic P, McKenzie KG, Yager P (2008) Enabling a microfluidic immunoassay for the developing world by integration of on-card dry reagent storage. Lab Chip 8:2038–2045

    CAS  Google Scholar 

  67. Jain NK, Roy I (2009) Effect of trehalose on protein structure. Protein Sci 18:24–36

    CAS  Google Scholar 

  68. Ramachandran S, Fu E, Lutz B, Yager P (2014) Long-term dry storage of an enzyme-based reagent system for ELISA in point-of-care devices. Analyst 139:1456–1462

    CAS  Google Scholar 

  69. Ganaja KA, Chaplan CA, Zhang JY, Martinez NW, Martinez AW (2017) Paper microzone plates as analytical tools for studying enzyme stability: a case study on the stabilization of horseradish peroxidase using Trehalose and SU-8 epoxy novolac resin. Anal Chem 89:5333–5341

    CAS  Google Scholar 

  70. Fu E, Downs C (2017) Progress in the development and integration of fluid flow control tools in paper microfluidics. Lab Chip 17:614–628

    CAS  Google Scholar 

  71. Fu E, Kauffman P, Lutz B, Yager P (2010) Chemical signal amplification in two-dimensional paper networks. Sens Actuators B Chem 149:325–328

    CAS  Google Scholar 

  72. Lutz B, Liang T, Fu E, Ramachandran S, Kauffman P, Yager P (2013) Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics. Lab Chip 13:2840–2847

    CAS  Google Scholar 

  73. Fu E, Lutz B, Kauffman P, Yager P (2010) Controlled reagent transport in disposable 2D paper networks. Lab Chip 10:918–920

    CAS  Google Scholar 

  74. Dharmaraja S, Lafleur L, Byrnes S, Kauffman P, Fu E, Buser J, Toley B, Yager P, Lutz B (2013) Programming paper networks for point of care diagnostics. Proc SPIE 8615. 10.1117/12.2006138

    Google Scholar 

  75. Jahanshahi-Anbuhi S, Chavan P, Sicard C, Leung V, Hossain SMZ, Pelton R, Brennan JD, Filipe CDM (2012) Creating fast flow channels in paper fluidic devices to control timing of sequential reactions. Lab Chip 12:5079–5085

    CAS  Google Scholar 

  76. Renault C, Koehne J, Ricco AJ, Crooks RM (2014) Three-dimensional wax patterning of paper fluidic devices. Langmuir 30:7030–7036

    CAS  Google Scholar 

  77. Renault C, Li X, Fosdick SE, Crooks RM (2013) Hollow-Channel paper analytical devices. Anal Chem 85:7976–7979

    CAS  Google Scholar 

  78. Giokas DL, Tsogas GZ, Vlessidis AG (2014) Programming fluid transport in paper-based microfluidic devices using razor-crafted open channels. Anal Chem 86:6202–6207

    CAS  Google Scholar 

  79. Camplisson CK, Schilling KM, Pedrotti WL, Stone HA, Martinez AW (2015) Two-ply channels for faster wicking in paper-based microfluidic devices. Lab Chip 15:4461–4466

    CAS  Google Scholar 

  80. Glavan AC, Martinez RV, Maxwell EJ, Subramaniam AB, Nunes RMD, Soh S, Whitesides GM (2013) Rapid fabrication of pressure-driven open-channel microfluidic devices in omniphobic R-F paper. Lab Chip 13:2922–2930

    CAS  Google Scholar 

  81. Shin JH, Lee GJ, Kim W, Choi S (2016) A stand-alone pressure-driven 3D microfluidic chemical sensing analytic device. Sensors Actuators B Chem 230:380–387

    CAS  Google Scholar 

  82. Noh N, Phillips ST (2010) Metering the capillary-driven flow of fluids in paper-based microfluidic devices. Anal Chem 82:4181–4187

    CAS  Google Scholar 

  83. Weng CH, Chen MY, Shen CH, Yang RJ (2014) Colored wax-printed timers for two-dimensional and three-dimensional assays on paper-based devices. Biomicrofluidics 8:066502

    Google Scholar 

  84. Songok J, Toivakka M (2016) Controlling capillary-driven surface flow on a paper-based microfluidic channel. Microfluid Nanofluid 20:63

    Google Scholar 

  85. Shin JH, Park J, Kim SH, Park JK (2014) Programmed sample delivery on a pressurized paper. Biomicrofluidics 8:054121

    Google Scholar 

  86. da Silva E, Santhiago M, de Souza FR, Coltro WKT, Kubota LT (2015) Triboelectric effect as a new strategy for sealing and controlling the flow in paper-based devices. Lab Chip 15:1651–1655

    Google Scholar 

  87. Li X, Tian JF, Shen W (2010) Progress in patterned paper sizing for fabrication of paper-based microfluidic sensors. Cellulose 17:649–659

    Google Scholar 

  88. Martinez AW, Phillips ST, Nie Z, Cheng C-M, Carrilho E, Wiley BJ, Whitesides GM (2010) Programmable diagnostic devices made from paper and tape. Lab Chip 10:2499–2504

    CAS  Google Scholar 

  89. Han KN, Choi JS, Kwon J (2016) Three-dimensional paper-based slip device for one-step point-of-care testing. Sci Rep 6:25710

    CAS  Google Scholar 

  90. Koo C, He F, Nugen S (2013) An inkjet-printed electrowetting valve for paper-fluidic sensors. Analyst 138:4998–5004

    CAS  Google Scholar 

  91. Cai LF, Zhong MH, Li HL, Xu CX, Yuan BY (2015) Defining microchannels and valves on a hydrophobic paper by low-cost inkjet printing of aqueous or weak organic solutions. Biomicrofluidics 9:046503

    Google Scholar 

  92. Jiang Y, Hao ZX, He QH, Chen HW (2016) A simple method for fabrication of microfluidic paper-based analytical devices and on-device fluid control with a portable corona generator. RSC Adv 6:2888–2894

    CAS  Google Scholar 

  93. Hong S, Kim W (2015) Dynamics of water imbibition through paper channels with wax boundaries. Microfluid Nanofluid 19:845–853

    Google Scholar 

  94. Lutz BR, Trinh P, Ball C, Fu E, Yager P (2011) Two-dimensional paper networks: programmable fluidic disconnects for multi-step processes in shaped paper. Lab Chip 11:4274–4278

    CAS  Google Scholar 

  95. Houghtaling J, Liang T, Thiessen G, Fu E (2013) Dissolvable Bridges for manipulating fluid volumes in paper networks. Anal Chem 85:11201–11204

    CAS  Google Scholar 

  96. Jahanshahi-Anbuhi S, Henry A, Leung V, Sicard C, Pennings K, Pelton R, Brennan JD, Filipe CDM (2013) Paper-based microfluidics with an erodible polymeric bridge giving controlled release and timed flow shutoff. Lab Chip 14:229–236

    Google Scholar 

  97. Li X, Zwanenburg P, Liu X (2013) Magnetic timing valves for fluid control in paper-based microfluidics. Lab Chip 13:2609–2614

    CAS  Google Scholar 

  98. Chen H, Cogswell J, Anagnostopoulos C, Faghri M (2012) A fluidic diode, valves, and a sequential-loading circuit fabricated on layered paper. Lab Chip 12:2909–2913

    CAS  Google Scholar 

  99. Gerbers R, Foellscher W, Chen H, Anagnostopoulos C, Faghri M (2014) A new paper-based platform technology for point-of-care diagnostics. Lab Chip 14:4042–4049

    CAS  Google Scholar 

  100. Apilux A, Ukita Y, Chikae M, Chailapakul O, Takamura Y (2013) Development of automated paper-based devices for sequential multistep sandwich enzyme-linked immunosorbent assays using inkjet printing. Lab Chip 13:126–135

    CAS  Google Scholar 

  101. Liu H, Li X, Crooks RM (2013) Paper-based SlipPAD for high-throughput chemical sensing. Anal Chem 85:4263–4267

    CAS  Google Scholar 

  102. Ge L, Wang S, Song X, Ge S, Yu J (2012) 3D origami-based multifunction-integrated immunodevice: low-cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device. Lab Chip 12:3150–3158

    CAS  Google Scholar 

  103. Li L, Li W, Yang H, Ma C, Yu J, Yan M, Song X (2014) Sensitive origami dual-analyte electrochemical immunodevice based on polyaniline/au-paper electrode and multi-labeled 3D graphene sheets. Electrochim Acta 120:102–109

    CAS  Google Scholar 

  104. Wu K, Zhang Y, Wang Y, Ge S, Yan M, Yu J, Song X (2015) Paper-based analytical devices relying on visible-light-enhanced glucose/air biofuel cells. ACS Appl Mater Interfaces 7:24330–24337

    CAS  Google Scholar 

  105. Wang S, Ge L, Song X, Yu J, Ge S, Huang J, Zeng F (2012) Paper-based chemiluminescence ELISA: lab-on-paper based on chitosan modified paper device and wax-screen-printing. Biosens Bioelectron 31:212–218

    Google Scholar 

  106. Li W, Li L, Ge S, Song X, Ge L, Yan M, Yu J (2014) Multiplex electrochemical origami immunodevice based on cuboid silver-paper electrode and metal ions tagged nanoporous silver-chitosan. Biosens Bioelectron 56:167–173

    CAS  Google Scholar 

  107. Yang X, Forouzan O, Brown T, Shevkoplyas S (2012) Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices. Lab Chip 12:274–280

    CAS  Google Scholar 

  108. Chen X, Chen J, Wang F, Xiang X, Luo M, Ji X, He Z (2012) Determination of glucose and uric acid with bienzyme colorimetry on microfluidic paper-based analysis devices. Biosens Bioelectron 35:363–368

    CAS  Google Scholar 

  109. Nie Z, Deiss F, Liu X, Akbulut O, Whitesides GM (2010) Integration of paper-based microfluidic devices with commercial electrochemical readers. Lab Chip 10:3163–3169

    CAS  Google Scholar 

  110. Dungchai W, Chailapakul O, Henry CS (2009) Electrochemical detection for paper-based microfluidics. Anal Chem 81:5821–5826

    CAS  Google Scholar 

  111. Deng L, Chen C, Zhu C, Dong S, Lu H (2014) Multiplexed bioactive paper based on GO@SiO2@CeO2 nanosheets for a low-cost diagnostics platform. Biosens Bioelectron 52:324–329

    CAS  Google Scholar 

  112. Ruecha N, Rangkupan R, Rodthongkum N, Chailapakul O (2014) Novel paper-based cholesterol biosensor using graphene/polyvinylpyrrolidone/polyaniline nanocomposite. Biosens Bioelectron 52:13–19

    CAS  Google Scholar 

  113. Talalak K, Noiphung J, Songjaroen T, Chailapakul O, Laiwattanapaisal W (2015) A facile low-cost enzymatic paper-based assay for the determination of urine creatinine. Talanta 144:915–921

    CAS  Google Scholar 

  114. Vella SJ, Beattie P, Cademartiri R, Laromaine A, Martinez AW, Phillips ST, Mirica KA, Whitesides GM (2012) Measuring markers of liver function using a micropatterned paper device designed for blood from a Fingerstick. Anal Chem 84:2883–2891

    CAS  Google Scholar 

  115. Pollock NR, McGray S, Colby DJ, Noubary F, Nguyen H, Nguyen TA, Khormaee S, Jain S, Hawkins K, Kumar S, Rolland JP, Beattie PD, Chau NV, Quang VM, Barfield C, Tietje K, Steele M, Weigl BH (2013) Field evaluation of a prototype paper-based point-of-care Fingerstick transaminase test. PLoS One 8:e75616

    CAS  Google Scholar 

  116. Pollock NR, Rolland JP, Kumar S, Beattie PD, Jain S, Noubary F, Wong VL, Pohlmann RA, Ryan US, Whitesides GM (2012) A paper-based multiplexed transaminase test for low-cost, point-of-care liver function testing. Sci Transl Med 4:152ra129

    Google Scholar 

  117. Connelly JT, Rolland JP, Whitesides GM (2015) “paper machine” for molecular diagnostics. Anal Chem 87:7595–7601

    CAS  Google Scholar 

  118. Lafleur LK, Bishop JD, Heiniger EK, Gallagher RP, Wheeler MD, Kauffman P, Zhang XH, Kline EC, Buser JR, Kumar S, Byrnes SA, Vermeulen NMJ, Scarr NK, Belousov Y, Mahoney W, Toley BJ, Ladd PD, Lutz BR, Yager P (2016) A rapid, instrument-free, sample-to-result nucleic acid amplification test. Lab Chip 16:3777–3787

    CAS  Google Scholar 

  119. Mu X, Zhang L, Chang S, Cui W, Zheng Z (2014) Multiplex microfluidic paper-based immunoassay for the diagnosis of hepatitis C virus infection. Anal Chem 86:5338–5344

    CAS  Google Scholar 

  120. Glavan AC, Christodouleas DC, Mosadegh B, Yu HD, Smith BS, Lessing J, Teresa Fernandez-Abedul M, Whitesides GM (2014) Folding analytical devices for electrochemical ELISA in hydrophobic R-H paper. Anal Chem 86:11999–12007

    CAS  Google Scholar 

  121. Rodriguez NM, Linnes JC, Fan A, Ellenson CK, Pollock NR, Klapperich CM (2015) Paper-based RNA extraction, in situ isothermal amplification, and lateral flow detection for low-cost, rapid diagnosis of influenza a (H1N1) from clinical specimens. Anal Chem 87:7872–7879

    CAS  Google Scholar 

  122. Lu J, Ge S, Ge L, Yan M, Yu J (2012) Electrochemical DNA sensor based on three-dimensional folding paper device for specific and sensitive point-of-care testing. Electrochim Acta 80:334–341

    CAS  Google Scholar 

  123. Huang S, Abe S, Bennett S, Liang T, Ladd PD, Yokobe L, Anderson CE, Shah K, Bishop JD, Purfield M, Kauffman P, Paul S, Welch A, Strelitz B, Follmer K, Pullar K, Sanchez-Erebia L, Gerth-Guyette E, Domingo G, Klein E, Englund J, Fu E, Yager P (2017) Disposable autonomous device for swab-to-result diagnosis of influenza. Anal Chem 89:5776–5783

    CAS  Google Scholar 

  124. Robinson R, Wong L, Monnat RJ Jr, Fu E (2016) Development of a whole blood paper-based device for phenylalanine detection in the context of PKU therapy monitoring. Micromachines 7:28

    Google Scholar 

  125. Zuk RF, Ginsberg VK, Houts T, Rabbie J, Merrick H, Ullman EF, Fischer MM, Sizto CC, Stiso SN, Litman DJ (1985) Enzyme Immunochromatography – a quantitative immunoassay requiring no instrumentation. Clin Chem 31:1144–1150

    CAS  Google Scholar 

  126. Vaughan LM, Milavetz G, Ellis E, Szefler SJ, Conboy K, Weinberger MM, Tillson S, Jenne J, Wiener MB, Shaughnessy T, Carrico J (1986) Multicenter evaluation of disposable visual measuring device to assay theophylline from capillary blood-sample. Lancet 1:184–186

    CAS  Google Scholar 

  127. Novell M, Guinovart T, Blondeau P, Xavier Rius F, Andrade FJ (2014) A paper-based potentiometric cell for decentralized monitoring of Li levels in whole blood. Lab Chip 14:1308–1314

    CAS  Google Scholar 

  128. Yamada K, Shibata H, Suzuki K, Citterio D (2017) Toward practical application of paper-based microfluidics for medical diagnostics: state-of-the-art and challenges. Lab Chip 17:1206–1249

    CAS  Google Scholar 

  129. McKoy JM, Bennett CL, Scheetz MH, Differding V, Chandler KL, Scarsi KK, Yarnold PR, Sutton S, Palella F, Johnson S, Obadina E, Raisch DW, Parada JP (2009) Hepatotoxicity associated with long-versus short-course HIV-prophylactic Nevirapine use a systematic review and meta-analysis from the research on adverse drug events and reports (RADAR) project. Drug Saf 32:147–158

    CAS  Google Scholar 

  130. Saukkonen JJ, Cohn DL, Jasmer RM, Schenker S, Jereb JA, Nolan CM, Peloquin CA, Gordin FM, Nunes D, Strader DB, Bernardo J, Venkataramanan R, Sterling TR, Antituberculosi ATSH (2006) An official ATS statement: hepatotoxicity of antituberculosis therapy. Am J Respir Crit Care Med 174:935–952

    CAS  Google Scholar 

  131. Tostmann A, Boeree MJ, Aarnoutse RE, de lange WCM, van der Ven AJAM, Dekhuijzen R (2008) Antituberculosis drug-induced hepatotoxicity: concise up-to-date review. J Gastroenterol Hepatol 23:192–202

    CAS  Google Scholar 

  132. Pollock NR, McGray S, Colby DJ, Noubary F, Huyen N, The Anh N, Khormaee S, Jain S, Hawkins K, Kumar S, Rolland JP, Beattie PD, Chau NV, Quang VM, Barfield C, Tietje K, Steele M, Weigl BH (2013) Field evaluation of a prototype paper-based point-of-care Fingerstick transaminase test. PLoS One 8:e75616

    CAS  Google Scholar 

  133. Quinn CT (2013) Sickle cell disease in childhood from newborn screening through transition to adult medical care. Pediatr Clin N Am 60:1363–1381

    Google Scholar 

  134. Makani J, Cox SE, Soka D, Komba AN, Oruo J, Mwamtemi H, Magesa P, Rwezaula S, Meda E, Mgaya J, Lowe B, Muturi D, Roberts DJ, Williams TN, Pallangyo K, Kitundu J, Fegan G, Kirkham FJ, Marsh K, Newton CR (2011) Mortality in sickle cell Anemia in Africa: a prospective cohort study in Tanzania. PLoS One 6:e14699

    CAS  Google Scholar 

  135. Modell B, Darlison M (2008) Global epidemiology of haemoglobin disorders and derived service indicators. Bull World Health Organ 86:480–487

    Google Scholar 

  136. Alapan Y, Fraiwan A, Kucukal E, Hasan MN, Ung R, Kim M, Odame I, Little JA, Gurkan UA (2016) Emerging point-of-care technologies for sickle cell disease screening and monitoring. Expert Rev Med Devices 13:1073–1093

    CAS  Google Scholar 

  137. Yang XX, Kanter J, Piety NZ, Benton MS, Vignes SM, Shevkoplyas SS (2013) A simple, rapid, low-cost diagnostic test for sickle cell disease. Lab Chip 13:1464–1467

    CAS  Google Scholar 

  138. Piety NZ, Yang XX, Kanter J, Vignes SM, George A, Shevkoplyas SS (2016) Validation of a low-cost paper-based screening test for sickle cell Anemia. PLoS One 11:e0144901

    Google Scholar 

  139. George A, Piety N, Serrano S, Lanzi M, Patel P, Nirenberg D, Airewele G, Camanda J, Shevkoplyas S (2015) Initial validation of a rapid paper-based test in screening newborns for sickle cell disease. Pediatr Blood Cancer 62:43–43

    Google Scholar 

  140. Piety NZ, George A, Serrano S, Lanzi MR, Patel PR, Noli MP, Kahan S, Nirenberg D, Camanda JF, Airewele G, Shevkoplyas SS (2017) A paper-based test for screening newborns for sickle cell disease. Sci Rep 7:45488

    CAS  Google Scholar 

  141. Molinari NAM, Ortega-Sanchez IR, Messonnier ML, Thompson WW, Wortley PM, Weintraub E, Bridges CB (2007) The annual impact of seasonal influenza in the US: measuring disease burden and costs. Vaccine 25:5086–5096

    Google Scholar 

  142. Vasoo S, Stevens J, Singh K (2009) Rapid antigen tests for diagnosis of pandemic (swine) influenza a/H1N1. Clin Infect Dis 49:1090–1093

    Google Scholar 

  143. Uyeki TM, Prasad R, Vukotich C, Stebbins S, Rinaldo CR, Ferng YH, Morse SS, Larson EL, Aiello AE, Davis B, Monto AS (2009) Low sensitivity of rapid diagnostic test for influenza. Clin Infect Dis 48:E89–E92

    Google Scholar 

  144. Noyola DE, Demmler GJ (2000) Effect of rapid diagnosis on management of influenza a infections. Pediatr Infect Dis J 19:303–307

    CAS  Google Scholar 

  145. Serwint JR, Miller RM (1993) Why diagnose influenza infections in hospitalized pediatric-patients. Pediatr Infect Dis J 12:200–204

    CAS  Google Scholar 

  146. Lei KF, Huang CH, Kuo RL, Chang CK, Chen KF, Tsao KC, Tsang NM (2015) Paper-based enzyme-free immunoassay for rapid detection and subtyping of influenza a H1N1 and H3N2 viruses. Anal Chim Acta 883:37–44

    CAS  Google Scholar 

  147. Wu D, Zhang JH, Xu FH, Wen X, Li PF, Zhang XL, Qiao S, Ge SX, Xia NS, Qian SZ, Qiu XB (2017) A paper-based microfluidic dot-ELISA system with smartphone for the detection of influenza A. Microfluid Nanofluid 21:43

    Google Scholar 

  148. Anderson CE, Holstein CA, Strauch E, Bennett S, Chevalier A, Nelson J, Fu E, Baker D, Yager P (2017) Rapid diagnostic assay for intact influenza virus using a high affinity Hemagglutinin binding protein. Anal Chem 89:6608–6615

    CAS  Google Scholar 

  149. Holstein CA, Chevalier A, Bennett S, Anderson CE, Keniston K, Olsen C, Li B, Bales B, Moore DR, Fu E, Baker D, Yager P (2016) Immobilizing affinity proteins to nitrocellulose: a toolbox for paper-based assay developers. Anal Bioanal Chem 408:1335–1346

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elain Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fu, E. (2019). Paper Microfluidics for POC Testing in Low-Resource Settings. In: Tokeshi, M. (eds) Applications of Microfluidic Systems in Biology and Medicine . Bioanalysis, vol 7. Springer, Singapore. https://doi.org/10.1007/978-981-13-6229-3_12

Download citation

Publish with us

Policies and ethics