Roles of Microbial Metabolites in Bacteriophage-Microbe Interactions



Microbial metabolites, including primary and secondary metabolites, play important roles in bacteriophage-host interactions. The primary metabolites are involved in microbial basic metabolisms for energy production and cell component production, while the secondary metabolites are produced from the primary metabolites. Although the secondary metabolites are not necessary for normal growth of microbes, they are vital for interactions with other microorganisms and environment. The biosynthesis of secondary metabolites is controlled by a lot of factors, such as pathway-specific and global regulator, signal transduction pathways, and epigenetic factors. Bacteriophage infection can alter its host metabolism, and the metabolites from bacteriophage-microbe interactions play very important roles in evolution, ecology, and pharmaceutical implications. The bacteriophage-encoded auxiliary metabolic genes can remodel the host metabolic networks and expand the host metabolism capabilities. On the other hand, the hosts have developed a variety of metabolic strategies to sense and counteract virus infection.


Bacteriophage-host interaction Primary metabolite Secondary metabolite 


  1. Abe F (2007) Exploration of the effects of high hydrostatic pressure on microbial growth, physiology and survival: perspectives from piezophysiology. Biosci Biotechnol Biochem 71(10):2347–2357PubMedCrossRefPubMedCentralGoogle Scholar
  2. Abergel C et al (2007) Virus-encoded aminoacyl-tRNA synthetases: structural and functional characterization of mimivirus TyrRS and MetRS. J Virol 81:12406–12417PubMedPubMedCentralCrossRefGoogle Scholar
  3. Abrudan MI, Smakman F, Grimbergen AJ, Westhoff S, Miller EL, van Wezel GP, Rozen DE (2015) Socially mediated induction and suppression of antibiosis during bacterial coexistence. Proc Natl Acad Sci 112(35):11054–11059PubMedCrossRefPubMedCentralGoogle Scholar
  4. Achan J, Talisuna AO, Erhart A, Yeka A, Tibenderana JK, Baliraine FN, D’Alessandro U (2011) Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malar J 10(1):144PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alperovitch A et al (2011) Reconstructing a puzzle: existence of cyanophages containing both photosystem-I & photosystem-II gene-suites inferred from oceanic metagenomic datasets. Environ Microbiol 13:24–32CrossRefGoogle Scholar
  6. And SWD, Demain AL (1977) Effect of primary metabolites on secondary metabolism. Annu Rev Microbiol 31(6):343Google Scholar
  7. And DRK, Pfander H (1997) Isolation and structure elucidation of carotenoid glycosides from the thermoacidophilic archaea sulfolobus shibatae. J Nat Prod 60(4):371–374CrossRefGoogle Scholar
  8. Andrei G et al (2008) Novel inhibitors of human CMV. Curr Opin Investig Drugs 9:132–145PubMedPubMedCentralGoogle Scholar
  9. Angelis PL et al (1997) Hyaluronan synthase of chlorella virus PBCV-1. Science 278:1800–1803CrossRefGoogle Scholar
  10. Ankrah NY et al (2014) Phage infection of an environmentally relevant marine bacterium alters host metabolism and lysate composition. ISME J 8:1089–1100PubMedPubMedCentralCrossRefGoogle Scholar
  11. Baba M, Nishimura O, Kanzaki N, Okamoto M, Sawada H, Iizawa Y et al (1999) A small-molecule, nonpeptide ccr5 antagonist with highly potent and selective anti-hiv-1 activity. Proc Natl Acad Sci U S A 96(10):5698–5703PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bai FW, Anderson WA, Moo-Young M (2008) Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv 26(1):89–105PubMedCrossRefGoogle Scholar
  13. Bennett JW, Chung KT (2001) Alexander Fleming and the discovery of penicillin. Adv Appl Microbiol 49(49):163–184PubMedCrossRefGoogle Scholar
  14. Bennett JW, Chang PK, Bhatnagar D (1997) One gene to whole pathway: the role of norsolorinic acid in aflatoxin research. Adv Appl Microbiol 45:1–15PubMedCrossRefGoogle Scholar
  15. Berger KL et al (2011) Hepatitis C virus stimulates the phosphatidylinositol 4-kinase III alpha-dependent phosphatidylinositol 4-phosphate production that is essential for its replication. J Virol 85:8870–8883PubMedPubMedCentralCrossRefGoogle Scholar
  16. Blanc M et al (2011) Host defense against viral infection involves interferon mediated down-regulation of sterol biosynthesis. PLoS Biol 9:e1000598PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bohlmann J, Keeling CI (2010) Terpenoid biomaterials. Plant J 54(4):656–669CrossRefGoogle Scholar
  18. Bouwmeester HJ, Matusova R, Sun Z, Beale MH (2003) Secondary metabolite signalling in host–parasitic plant interactions. Curr Opin Plant Biol 6(4):358–364PubMedCrossRefGoogle Scholar
  19. Brakhage AA (1998) Molecular regulation of β-lactam biosynthesis, in filamentous fungi. Microbiol Mol Biol Rev Mmbr 62(3):547PubMedGoogle Scholar
  20. Brakhage AA (2013) Regulation of fungal secondary metabolism. Nat Rev Microbiol 11(1):21PubMedCrossRefGoogle Scholar
  21. Bratbak G et al (1993) Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and the termination of the algal bloom. Mar Ecol Prog Ser 93:39–48CrossRefGoogle Scholar
  22. Breitbart M (2012) Marine viruses: truth or dare. Annu Rev Mar Sci 4:425–448Google Scholar
  23. Brito-Arias M (2007) Synthesis and characterization of glycosides. Springer, Berlin 38(65): 147–169Google Scholar
  24. Brum JR, Sullivan MB (2015) Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat Rev Microbiol 13:147–159PubMedPubMedCentralCrossRefGoogle Scholar
  25. Brum JR et al (2016) Seasonal time bombs: dominant temperate viruses affect Southern Ocean microbial dynamics. ISME J 10:437–449PubMedCrossRefGoogle Scholar
  26. Bystrom A, Claesson R, Sundqvist G (2010) The antibacterial effect of camphorated paramonochlorophenol, camphorated phenol and calcium hydroxide in the treatment of infected root canals. Endod Dent Traumatol 1(5):170–175CrossRefGoogle Scholar
  27. Calland N, Dubuisson J, Rouillé Y, Séron K (2012) Hepatitis C virus and natural compounds: a new antiviral approach? Viruses 4(10):2197–2217PubMedPubMedCentralCrossRefGoogle Scholar
  28. Causey TB, Shanmugam KT, Yomano LP, Ingram LO (2004) Engineering Escherichia coli for efficient conversion of glucose to pyruvate. Proc Natl Acad Sci 101(8):2235–2240PubMedCrossRefGoogle Scholar
  29. Chang P-K, Kenneth C (2013) Genome-wide analysis of the zn(ii)(2)cys(6) zinc cluster-encoding gene family in aspergillus flavus. Appl Microbiol Biotechnol 97(10):4289–4300PubMedCrossRefGoogle Scholar
  30. Cheng YS et al (2015) Organic and inorganic nitrogen impact Chlorella variabilis productivity and host quality for viral production and cell lysis. Appl Biochem Biotechnol 176:467–479PubMedCrossRefGoogle Scholar
  31. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Cantley LC (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452(7184):230PubMedCrossRefGoogle Scholar
  32. Clasen JL, Elser JJ (2007) The effect of host Chlorella NC64A carbon: phosphorus ratio on the production of Paramecium bursaria Chlorella Virus-1. Freshw Biol 52:112–122CrossRefGoogle Scholar
  33. Clemente MI et al (2014) Prostaglandin E2 reduces the release and infectivity of new cell-free virions and cell-to-cell HIV-1 transfer. PLoS One 9:e85230PubMedPubMedCentralCrossRefGoogle Scholar
  34. Clomburg JM, Gonzalez R (2013) Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals. Trends Biotechnol 31(1):20–28PubMedCrossRefGoogle Scholar
  35. Colson P et al (2013) “Megavirales”, a proposed new order for eukaryotic nucleocytoplasmic large DNA viruses. Arch Virol 158:2517–2521PubMedPubMedCentralCrossRefGoogle Scholar
  36. Côté M, MisasiJ RT, Bruchez A, Lee K, Filone CM (2012) Small molecule inhibitors reveal niemann-pick c1 is essential for ebola virus infection. Nature 477(7364):344–348CrossRefGoogle Scholar
  37. Coulombe F et al (2014) Targeted prostaglandin E2 inhibition enhances antiviral immunity through induction of type I interferon and apoptosis in macrophages. Immunity 40:554–568CrossRefPubMedGoogle Scholar
  38. Cushnie TPT, Lamb AJ (2011) Recent advances in understanding the antibacterial properties of flavonoids. Int J Antimicrob Agents 38(2):99–107PubMedCrossRefGoogle Scholar
  39. Cushnie TP, Cushnie B, Lamb AJ (2014) Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int J Antimicrob Agents 44(5):377–386PubMedCrossRefGoogle Scholar
  40. Das K, Arnold E (2013) HIV-1 reverse transcriptase and antiviral drug resistance. Part 1. Curr Opin Virol 3:111–118PubMedPubMedCentralCrossRefGoogle Scholar
  41. Davis EM, Croteau R (2000) Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes. Top Curr Chem 209(1):53–95CrossRefGoogle Scholar
  42. DeVito SR et al (2014) Cytomegalovirus-mediated activation of pyrimidine biosynthesis drives UDP-sugar synthesis to support viral protein glycosylation. Proc Natl Acad Sci U S A 111:18019–18024PubMedPubMedCentralCrossRefGoogle Scholar
  43. Diamond DL et al (2010) Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics. PLoS Pathog 6:e1000719PubMedPubMedCentralCrossRefGoogle Scholar
  44. Dinsdale EA, Edwards RA, Hall D, Angly F, Breitbart M, Brulc JM et al (2008) Functional metagenomic profiling of nine biomes. Nature 452:629–632PubMedCrossRefGoogle Scholar
  45. Disch A et al (1998) Distribution of the mevalonate and glyceraldehyde phosphate/pyruvate pathways for isoprenoid biosynthesis in unicellular algae and the cyanobacterium Synechocystis PCC 6714. Biochem J 333:381–388PubMedPubMedCentralCrossRefGoogle Scholar
  46. Donadio S, Staver MJ, Mcalpine JB, Swanson SJ, Katz L (1991) Modular organization of genes required for complex polyketide biosynthesis. Science 252(5006):675–679PubMedCrossRefGoogle Scholar
  47. Donsbough AL, Powell S, Waguespack A, Bidner TD, Southern LL (2010) Uric acid, urea, and ammonia concentrations in serum and uric acid concentration in excreta as indicators of amino acid utilization in diets for broilers. Poult Sci 89(2):287PubMedCrossRefGoogle Scholar
  48. Edreva A, Velikova V, Tsonev T, Dagnon S, Gürel A, Aktaş L, Gesheva E (2008) Stress-protective role of secondary metabolites: diversity of functions and mechanisms. Gen Appl Plant Physiol 34(1–2):67–78Google Scholar
  49. Eloe EA, Lauro FM, Vogel RF, Bartlett DH (2008) The deep-sea bacterium Photobacterium profundum SS9 utilizes separate flagellar systems for swimming and swarming under high-pressure conditions. Appl Environ Microbiol 74:6298–6305PubMedPubMedCentralCrossRefGoogle Scholar
  50. Enav H et al (2012) Cyanophage tRNAs may have a role in cross-infectivity of oceanic Prochlorococcus and Synechococcus hosts. ISME J 6:619–628PubMedCrossRefGoogle Scholar
  51. Fan H, Li TF, Gong N, Wang YX (2016) Shanzhiside methylester, the principle effective iridoid glycoside from the analgesic herb lamiophlomis rotata, reduces neuropathic pain by stimulating spinal microglial β-endorphin expression. Neuropharmacology 101:98–109PubMedCrossRefGoogle Scholar
  52. Fernandes M, Keller NP, Adams TH (1998) Sequence-specific binding by Aspergillus nidulans AflR, a C6 zinc cluster protein regulating mycotoxin biosynthesis. Mol Microbiol 28(6):1355–1365PubMedCrossRefGoogle Scholar
  53. Fernie AR, Carrari F, Sweetlove LJ (2004) Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr Opin Plant Biol 7(3):254–261PubMedCrossRefGoogle Scholar
  54. Foley M, Tilley L (1997) Quinoline antimalarials: mechanisms of action and resistance. Int J Parasitol 27(2):231–240PubMedCrossRefGoogle Scholar
  55. Forterre P (2013) The virocell concept and environmental microbiology. ISME J 7:233–236PubMedCrossRefGoogle Scholar
  56. Frank JA et al (2013) Structure and function of a cyanophage-encoded peptide deformylase. ISME J 7(6):1150–1160PubMedPubMedCentralCrossRefGoogle Scholar
  57. Frederik FC, Svendsen AB (1976) Apterin, a common furanocoumarin glycoside in the umbelliferae. Phytochemistry 15(6):1079–1080CrossRefGoogle Scholar
  58. Fulton JM et al (2014) Novel molecular determinants of viral susceptibility and resistance in the lipidome of Emiliania huxleyi. Environ Microbiol 16:1137–1149PubMedCrossRefGoogle Scholar
  59. Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754–756PubMedCrossRefGoogle Scholar
  60. Galeotti F, Barile E, Curir P, Dolci M, Lanzotti V (2008) Flavonoids from carnation (dianthus caryophyllus) and their antifungal activity. Phytochem Lett 1(1):44–48CrossRefGoogle Scholar
  61. Gänzle MG, Vermeulen N, Vogel RF (2007) Carbohydrate, peptide and lipid metabolism of lactic acid bacteria in sourdough. Food Microbiol 24(2):128–138PubMedCrossRefGoogle Scholar
  62. Gon S et al (2006) In vivo requirement for glutaredoxins and thioredoxins in the reduction of the ribonucleotide reductases of Escherichia coli. Antioxid Redox Signal 8:735–742PubMedCrossRefGoogle Scholar
  63. Goodwin CM et al (2015) Stealing the keys to the kitchen: viral manipulation of the host cell metabolic network. Trends Microbiol 23:789–798PubMedPubMedCentralCrossRefGoogle Scholar
  64. Gould KS, McKelvie J, Markham KR (2002) Do anthocyanins function as antioxidants in leaves? Imaging of H2O2 in red and green leaves after mechanical injury. Plant Cell Environ 25(10):1261–1269CrossRefGoogle Scholar
  65. Grant M, Lamb C (2006) Systemic immunity. Curr Opin Plant Biol 9:414–420PubMedCrossRefGoogle Scholar
  66. Graves MV et al (1999) Hyaluronan synthesis in virus PBCV-1-infected chlorella-like green algae. Virology 257:15–23PubMedCrossRefGoogle Scholar
  67. Greseth MD, Traktman P (2014) De novo fatty acid biosynthesis contributes significantly to establishment of a bioenergetically favorable environment for vaccinia virus infection. PLoS Pathog 10:e1004021PubMedPubMedCentralCrossRefGoogle Scholar
  68. Guo W, Zhang Z, Zhu T, Gu Q, Li D (2015) Penicyclones A–E, antibacterial polyketides from the deep-sea-derived fungus penicillium sp. f23-2. J Nat Prod 78(11):2699–2703PubMedCrossRefGoogle Scholar
  69. Hartmann MA (1998) Plant sterols and the membrane environment. Trends Plant Sci 3:170–175CrossRefGoogle Scholar
  70. Hartshorn KL, Collamer M, Auerbach M, Myers JB, Pavlotsky N, Tauber AI (1988) Effects of influenza a virus on human neutrophil calcium metabolism. J Immunol 141(4):1295–1301PubMedGoogle Scholar
  71. Havlicek V, Lemr K (2011) Chapter 4: Fungal metabolites for microorganism classification by mass spectrometry. In: Rapid characterization of microorganisms by mass spectrometry. American Chemical Society, Washington, DC, pp 51–60CrossRefGoogle Scholar
  72. Hawrylak B, Matraszek R, Szymańska M (2007) Response of lettuce (Lactuca sativa L.) to selenium in nutrient solution contaminated with nickel. Veg Crops Res Bull 67:63–70CrossRefGoogle Scholar
  73. He T, Li H, Zhang X (2017) Deep-sea hydrothermal vent viruses compensate for microbial metabolism in virus-host interactions. mBio 8:e00893-17PubMedPubMedCentralCrossRefGoogle Scholar
  74. Hirata Y et al (2012) Self-enhancement of hepatitis C virus replication by promotion of specific sphingolipid biosynthesis. PLoS Pathog 8:e1002860PubMedPubMedCentralCrossRefGoogle Scholar
  75. Holecek M (2010) Three targets of branched-chain amino acid supplementation in the treatment of liver disease. Nutrition 26(5):482–490PubMedCrossRefPubMedCentralGoogle Scholar
  76. Huffman J, Gerber R, Du L (2010) Recent advancements in the biosynthetic mechanisms for polyketide-derived mycotoxins. Biopolymers 93(9):764–776PubMedPubMedCentralCrossRefGoogle Scholar
  77. Hurwitz BL, U’Ren JM (2016) Viral metabolic reprogramming in marine ecosystems. Curr Opin Microbiol 31:161–168PubMedCrossRefGoogle Scholar
  78. Hurwitz BL et al (2013) Metabolic reprogramming by viruses in the sunlit and dark ocean. Genome Biol 14:R123PubMedPubMedCentralCrossRefGoogle Scholar
  79. Hurwitz BL, Brum JR, Sullivan MB (2015) Depth-stratified functional and taxonomic niche specialization in the ‘core’ and ‘flexible’ Pacific Ocean Virome. ISME J 9(2):472–484PubMedCrossRefGoogle Scholar
  80. Izzi V, Masuelli L, Tresoldi I, Sacchetti P, Modesti A, Galvano F (2012) The effects of dietary flavonoids on the regulation of redox inflammatory networks. Front Biosci 17(2):2396CrossRefGoogle Scholar
  81. Janelle ME, Gravel A, Gosselin J, Tremblay MJ, Flamand L (2002) Activation of monocyte cyclooxygenase-2 gene expression by human herpesvirus 6 role for cylic AMP-responsive element-binding and activator protein-1. J Biol Chem 277:30665–30674PubMedCrossRefGoogle Scholar
  82. Jian SC, Paul JH (1998) Significance of lysogeny in the marine environment: studies with isolates and a model of lysogenic phage production. Microb Ecol 35:235–243CrossRefGoogle Scholar
  83. Jin M, Xu C, Zhang X (2015) The effect of tryptophol on the bacteriophage infection in high-temperature environment. Appl Microbiol Biotechnol 99(19):1–11CrossRefGoogle Scholar
  84. Jochum GM, Mudge KW, Thomas RB (2007) Elevated temperatures increase leaf senescence and root secondary metabolite concentrations in the understory herb Panax quinquefolius (Araliaceae). Am J Bot 94(5):819–826PubMedCrossRefGoogle Scholar
  85. Jover LF et al (2014) The elemental composition of virus particles: implications for marine biogeochemical cycles. Nat Rev Microbiol 12:519–528PubMedCrossRefPubMedCentralGoogle Scholar
  86. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30PubMedPubMedCentralCrossRefGoogle Scholar
  87. Kang M et al (2014) Chlorovirus PBCV-1 encodes an active copper-zinc superoxide dismutase. J Virol 88:12541–12550PubMedPubMedCentralCrossRefGoogle Scholar
  88. Kant SS, Sinha SK, Prasad SK, Kumar R, Bithu BS, Sadish KS (2011) Synthesis and evaluation of novel analogues of mangiferin as potent antipyretic. Asian Pac J Trop Med 4(11):866–869CrossRefGoogle Scholar
  89. Kato N, Yurimoto H, Thauer RK (2006) The physiological role of the ribulose monophosphate pathway in bacteria and archaea. Biosci Biotechnol Biochem 70(1):10–21PubMedCrossRefGoogle Scholar
  90. Katz L (1997) Manipulation of modular polyketide syntheses. Chem Rev 97(29):2557–2576PubMedCrossRefGoogle Scholar
  91. Kazan K, Gardiner DM, Manners JM (2012) On the trail of a cereal killer: recent advances in Fusarium graminearum pathogenomics and host resistance. Mol Plant Pathol 13(4):399–413PubMedCrossRefGoogle Scholar
  92. Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism—from biochemistry to genomics. Nat Rev Microbiol 3(12):937PubMedCrossRefGoogle Scholar
  93. Kennedy LJ, Stutz JC, Morton JB (1999) Glomus eburneum and g. luteum, two new species of arbuscular mycorrhizal fungi, with emendation of g. spurcum. Mycologia 91(6):1083–1093CrossRefGoogle Scholar
  94. Khaldi N, Seifuddin FT, Turner G et al (2010) SMURF: genomic mapping of fungal secondary metabolite clusters[J]. Fungal Genet Biol 47(9):736–741PubMedPubMedCentralCrossRefGoogle Scholar
  95. Kim Y et al (2012) Novel triacsin C analogs as potential antivirals against rotavirus infections. Eur J Med Chem 50:311–318PubMedPubMedCentralCrossRefGoogle Scholar
  96. Kittakoop P, Mahidol C, Ruchirawat S (2013) Alkaloids as important scaffolds in therapeutic drugs for the treatments of cancer, tuberculosis, and smoking cessation. Curr Top Med Chem 14(2):239CrossRefGoogle Scholar
  97. Knowles B et al (2016) Lytic to temperate switching of viral communities. Nature 531:466–470PubMedCrossRefGoogle Scholar
  98. Koyuncu E et al (2013) Saturated very long chain fatty acids are required for the production of infectious human cytomegalovirus progeny. PLoS Pathog 9:e1003333PubMedPubMedCentralCrossRefGoogle Scholar
  99. Kudo E, Taura M, Matsuda K, Shimamoto M, Kariya R, Goto H, Okada S (2013) Inhibition of HIV-1 replication by a tricyclic coumarin GUT-70 in acutely and chronically infected cells. Bioorg Med Chem Lett 23(3):606–609PubMedCrossRefGoogle Scholar
  100. Kwan BW, Chowdhury N, Wood TK (2016) Combatting bacterial infections by killing persister cells with mitomycin c. Environ Microbiol 17(11):4406–4414CrossRefGoogle Scholar
  101. Lara-Pezzi E, Gómez-Gaviro MV, Gálvez BG, Mira E, Iñiguez MA, Fresno M, Martínez-A C, Arroyo AG, López-Cabrera M (2002) The hepatitis B virus X protein promotes tumor cell invasion by inducing membrane-type matrix metalloproteinase-1 and cyclooxygenase-2 expression. J Clin Invest 110:1831–1838PubMedPubMedCentralCrossRefGoogle Scholar
  102. Lee WA, Martin JC (2006) Perspectives on the development of acyclic nucleotide analogs as antiviral drugs. Antivir Res 71:254–259PubMedCrossRefGoogle Scholar
  103. Li G (2011) Chromatin higher-order structures and gene regulation. Curr Opin Genet Dev 21(2):175–186PubMedPubMedCentralCrossRefGoogle Scholar
  104. Li HC, Lo SY (2015) Hepatitis C virus: virology, diagnosis and treatment. World J Hepatol 7:1377–1389PubMedPubMedCentralCrossRefGoogle Scholar
  105. Liebmann B, Gattung S, Jahn B, Brakhage AA (2003) Camp signaling in, aspergillus fumigatus is involved in the regulation of the virulence gene, pksp and in defense against killing by macrophages. Mol Genet Genomics Mgg 269(3):420PubMedCrossRefGoogle Scholar
  106. Liefhebber JM et al (2014) Modulation of triglyceride and cholesterol ester synthesis impairs assembly of infectious hepatitis C virus. J Biol Chem 289:21276–21288PubMedPubMedCentralCrossRefGoogle Scholar
  107. Lin LT, Hsu WC, Lin CC (2014) Antiviral natural products and herbal medicines. J Tradit Complement Med 4(1):24–35PubMedPubMedCentralCrossRefGoogle Scholar
  108. Lindell D et al (2005) Photosynthesis genes in marine viruses yield proteins during host infection. Nature 438:86–89CrossRefGoogle Scholar
  109. Loebenstein G (2009) Local lesions and induced resistance. Adv Virus Res 75:73–117PubMedCrossRefGoogle Scholar
  110. Logan BK, Distefano S (1998) Ethanol content of various foods and soft drinks and their potential for interference with a breath-alcohol test. J Anal Toxicol 22(3):181–183PubMedCrossRefGoogle Scholar
  111. Los M, Wegrzyn G (2012) Pseudolysogeny. Adv Virus Res 82:339–349PubMedCrossRefGoogle Scholar
  112. Lotito SB, Frei B (2006) Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: cause, consequence, or epiphenomenon? Free Radic Biol Med 41(12):1727–1746PubMedCrossRefGoogle Scholar
  113. Maat DS et al (2016) Increasing P limitation and viral infection impact lipid remodeling of the picophytoplankter Micromonaspusilla. Biogeosciences 13:1667–1676CrossRefGoogle Scholar
  114. Maceyka M, Spiegel S (2014) Sphingolipid metabolites in inflammatory disease. Nature 510:58–67PubMedPubMedCentralCrossRefGoogle Scholar
  115. Macheleidt J, Mattern DJ, Fischer J, Netzker T, Weber J, Schroeckh V, Brakhage AA (2016) Regulation and role of fungal secondary metabolites. Annu Rev Genet 50:371–392PubMedCrossRefGoogle Scholar
  116. Machida K, Arisawa A, Takeda S, Tsuchida T, Aritoku Y, Yoshida M (2008) Organization of the biosynthetic gene cluster for the polyketide antitumor macrolide, pladienolide, in streptomyces platensis mer-11107. J Agric Chem Soc Jpn 72(11):2946–2952Google Scholar
  117. Malitsky S et al (2016) Viral infection of the marine alga Emiliania huxleyi triggers lipidome remodeling and induces the production of highly saturated triacylglycerol. New Phytol 210:88–96PubMedCrossRefGoogle Scholar
  118. Martín-Acebes MA et al (2014) The composition of West Nile Virus lipid envelope unveils a role of sphingolipid metabolism in flavivirus biogenesis. J Virol 88:12041–12054PubMedPubMedCentralCrossRefGoogle Scholar
  119. Martinez JM et al (2007) Molecular dynamics of Emiliania huxleyi and cooccurring viruses during two separate mesocosm studies. Appl Environ Microbiol 73:554–562PubMedCrossRefGoogle Scholar
  120. Martín-López MJ, Bermejo-González F (2010) Amino acids as precursors to indolizidine alkaloids. DPPA-promoted decarbonylation of a bicyclic amino acid: an easy entry to hydroxylated indolizidines. Tetrahedron Lett 35(47):8843–8846CrossRefGoogle Scholar
  121. Maxwell JR et al (1980) Configuration at C-24 in steranes and sterols. Nature 286:694–697CrossRefGoogle Scholar
  122. Mazor Y et al (2014) Crystal structures of virus-like photosystem I complexes from the mesophilic cyanobacterium Synechocystis PCC 6803. elife 3:e01496PubMedCentralCrossRefPubMedGoogle Scholar
  123. Menendez-Arias L et al (2014) Nucleoside/nucleotide analog inhibitors of hepatitis B virus polymerase: mechanism of action and resistance. Curr Opin Virol 8:1–9PubMedCrossRefGoogle Scholar
  124. Messina P, Labbé E, Buriez O, Hillard EA, Vessières A, Hamels D (2012) Deciphering the activation sequence of ferrociphenol anticancer drug candidates. Chem Eur J 18(21):6581–6587PubMedCrossRefGoogle Scholar
  125. Michely S et al (2013) Evolution of codon usage in the smallest photosynthetic eukaryotes and their giant viruses. Genome Biol Evol 5:848–859PubMedPubMedCentralCrossRefGoogle Scholar
  126. Mitscher LA (2010) Biosynthesis of the tetracycline antibiotics. J Pharm Sci 57(10):1633–1649CrossRefGoogle Scholar
  127. Miyanari Y et al (2007) The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol 9:1089–1097PubMedCrossRefGoogle Scholar
  128. Mondol MA, Kim JH, Lee MA, Tareq FS, Lee HS, Lee YJ (2011) Ieodomycins a-d, antimicrobial fatty acids from a marine bacillus sp. J Nat Prod 74(7):1606–1612PubMedCrossRefGoogle Scholar
  129. Mulard L (2001) Essentials of carbohydrate chemistry and biochemistry. Biochimie 83(6):548–548CrossRefGoogle Scholar
  130. Munger J et al (2008) Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nat Biotechnol 26:1179–1186PubMedPubMedCentralCrossRefGoogle Scholar
  131. Murphy AM, Chivasa S, Singh DP, Carr JP (1999) Salicylic acid-induced resistance to viruses and other pathogens: a parting of the ways? Trends Plant Sci 4:155–160PubMedCrossRefGoogle Scholar
  132. Naik NG, Wu HN (2015) Mutation of putative N-glycosylation sites on dengue NS4B decreases RNA replication. J Virol 89:6746–6760PubMedPubMedCentralCrossRefGoogle Scholar
  133. Naylor M, Murphy AM, Berry JO, Carr JP (1998) Salicylic acid can induce resistance in plant virus movement. Mol Plant-Microbe Interact 11:860–868CrossRefGoogle Scholar
  134. Netzker T, Fischer J, Weber J, Mattern DJ, König CC, Valiante V, Brakhage AA (2015) Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters. Front Microbiol 6:299PubMedPubMedCentralCrossRefGoogle Scholar
  135. Nikolic VD, Savic IM, Nikolic LB, Stankovic MZ, Marinkovic VD (2011) Paclitaxel as an anticancer agent: isolation, activity, synthesis and stability. Cent Eur J Med 6(5):527–536Google Scholar
  136. Ōmura S, Ikeda H, Ishikawa J, Hanamoto A, Takahashi C, Shinose M, Kikuchi H (2001) Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci 98(21):12215–12220PubMedCrossRefGoogle Scholar
  137. Pérez-Gil J, Rodríguez-Concepción M, Vickers CE (2017) Chapter 14: Formation of isoprenoids. In: Biogenesis of fatty acids, lipids and membranes. Springer, Cham, pp 1–29Google Scholar
  138. Pestka JJ (2010) Deoxynivalenol: mechanisms of action, human exposure, and toxicological relevance. Arch Toxicol 84(9):663–679PubMedCrossRefGoogle Scholar
  139. Pichersky E, Gang DR (2000) Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends Plant Sci 5(10):439–445PubMedCrossRefGoogle Scholar
  140. Pilon-Smits EA, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12(3):267–274PubMedCrossRefGoogle Scholar
  141. Polyak SJ, Morishima C, Lohmann V, Pal S, Lee DY, Liu Y, Oberlies NH (2010) Identification of hepatoprotective flavonolignans from silymarin. Proc Natl Acad Sci 2009:14009Google Scholar
  142. Purdy JG et al (2015) Fatty acid elongase 7 catalyzes lipidome remodeling essential for human cytomegalovirus replication. Cell Rep 10:1375–1385PubMedPubMedCentralCrossRefGoogle Scholar
  143. Qin Q, Li Y, Zhang Y, Zhou Z, Zhang W, Chen X et al (2011) Comparative genomics reveals a deep-sea sediment-adapted life style of Pseudoalteromonas sp. SM9913. ISME J 5:274–284PubMedCrossRefGoogle Scholar
  144. Rasmussen AL et al (2011) Systems virology identifies amito-chondrial fatty acid oxidation enzyme, dodecenoyl coenzyme A delta isomerase, required for hepatitis C virus replication and likely pathogenesis. J Virol 85:11646–11654PubMedPubMedCentralCrossRefGoogle Scholar
  145. Robinson JA (1991) Polyketide synthase complexes: their structure and function in antibiotic biosynthesis. Philos Trans R Soc Lond 332(1263):107–114CrossRefGoogle Scholar
  146. Romagnolo DF, Selmin OI (2012) Flavonoids and cancer prevention: a review of the evidence. J Nutr Elder 31(3):206–238Google Scholar
  147. Rosenwasser S et al (2014) Rewiring host lipid metabolism by large viruses determines the fate of Emiliania huxleyi, a bloom forming alga in the ocean. Plant Cell 26:2689–2707PubMedPubMedCentralCrossRefGoogle Scholar
  148. Rosenwasser S et al (2016) Virocell metabolism: metabolic innovations during host–virus interactions in the ocean. Trends Microbiol 24(10):821–832PubMedCrossRefGoogle Scholar
  149. Roux S et al (2016) Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537(7622):689–693PubMedCrossRefGoogle Scholar
  150. Rowinsky EK (1997) The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents. Annu Rev Med 48(48):353PubMedCrossRefGoogle Scholar
  151. Rucker J, Samson M, Doranz BJ, Libert F, Berson JF, Yi Y (1996) Regions in β-chemokine receptors ccr5 and ccr2b that determine hiv-1 cofactor specificity. Cell 87(3):437–446PubMedCrossRefGoogle Scholar
  152. Rue CA et al (2004) A cyclooxygenase-2 homologue encoded by rhesus cytomegalovirus is a determinant for endothelial cell tropism. J Virol 78:12529–12536PubMedPubMedCentralCrossRefGoogle Scholar
  153. Rynkiewicz MJ, Cane DE, Christianson DW (2001) Structure of trichodiene synthase from fusarium sporotrichioides provides mechanistic inferences on the terpene cyclization cascade. Proc Natl Acad Sci U S A 98(24):13543–13548PubMedPubMedCentralCrossRefGoogle Scholar
  154. Sakowski EG et al (2014) Ribonucleotide reductases reveal novel viral diversity and predict biological and ecological features of unknown marine viruses. Proc Natl Acad Sci U S A 111:15786–15791PubMedPubMedCentralCrossRefGoogle Scholar
  155. Salminen A, Huuskonen J, Ojala J et al (2008) Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. Ageing Res Rev 7(2):83–105PubMedCrossRefGoogle Scholar
  156. Samsa MM et al (2009) Dengue virus capsid protein usurps lipid droplets for viral particle formation. PLoS Pathog 5:e1000632PubMedPubMedCentralCrossRefGoogle Scholar
  157. Santoro MG (1997) Antiviral activity of cyclopentenone prostanoids. Trends Microbiol 5:276–281PubMedCrossRefGoogle Scholar
  158. Schatz D et al (2014) Hijacking of an autophagy-like process is critical for the life cycle of a DNA virus infecting oceanic algal blooms. New Phytol 204:854–863PubMedPubMedCentralCrossRefGoogle Scholar
  159. Schroeckh V, Scherlach K, Nützmann HW, Shelest E, Schmidt-Heck W, Schuemann J, Brakhage AA (2009) Intimate bacterial–fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc Natl Acad Sci 106(34):14558–14563PubMedCrossRefGoogle Scholar
  160. Schupp PJ, Kohlert-Schupp C, Whitefield S, Engemann A, Rohde S, Hemscheidt T, Rostama B (2009) Cancer chemopreventive and anticancer evaluation of extracts and fractions from marine macro-and micro-organisms collected from twilight zone waters around Guam. Nat Prod Commun 4(12):1717PubMedPubMedCentralGoogle Scholar
  161. Selstam E, Jackson AO (1983) Lipid composition of Sonchus Yellow Net Virus. J Gen Virol 64:1607–1613CrossRefGoogle Scholar
  162. Sharon I et al (2009) Photosystem I gene cassettes are present in marine virus genomes. Nature 461:258–262PubMedPubMedCentralCrossRefGoogle Scholar
  163. Sheyn U et al (2016) Modulation of host ROS metabolism is essential for viral infection of a bloom-forming coccolithophore in the ocean. ISME J 10(7):1742–1754PubMedPubMedCentralCrossRefGoogle Scholar
  164. Shimizu K, Hicks JK, Huang TP, Keller NP (2003) Pka, ras and rgs protein interactions regulate activity of aflr, a zn(ii)2cys6 transcription factor in aspergillus nidulans. Genetics 165(3):1095–1104PubMedPubMedCentralGoogle Scholar
  165. Silva ND, Guyatt H, Bundy D (1997) Anthelmintics. Drugs 53(5):769–788PubMedCrossRefPubMedCentralGoogle Scholar
  166. Smet J et al (2016) High coverage metabolomics analysis reveals phage-specific alterations to Pseudomonas aeruginosa physiology during infection. ISME J 10(8):1823–1835PubMedPubMedCentralCrossRefGoogle Scholar
  167. Speir E et al (1998) Aspirin attenuates cytomegalovirus infectivity and gene expression mediated by cyclooxygenase-2 in coronary artery smooth muscle cells. Circ Res 83:210–216PubMedCrossRefGoogle Scholar
  168. Spencer CM et al (2011) Human cytomegalovirus induces the activity and expression of acetyl-coenzyme a carboxylase, a fatty acid biosynthetic enzyme whose inhibition attenuates viral replication. J Virol 85:5814–5824PubMedPubMedCentralCrossRefGoogle Scholar
  169. Stocker-Wörgötter E (2008) Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimate metabolite production, and PKS genes. Nat Prod Rep 25(1):188–200PubMedCrossRefGoogle Scholar
  170. Sullivan MB, Coleman ML, Weigele P, Rohwer F, Chisholm SW (2005) Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations. PLoS Biol 3:e144PubMedPubMedCentralCrossRefGoogle Scholar
  171. Sullivan MB et al (2006) Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts. PLoS Biol 4(8):1344–1357CrossRefGoogle Scholar
  172. Sun H, Zhang A, Yan G, Piao C, Li W, Sun C, Wang X (2013) Metabolomic analysis of key regulatory metabolites in hepatitis C virus–infected tree shrews. Mol Cell Proteomics 12(3):710–719PubMedCrossRefGoogle Scholar
  173. Surmacz L, Swiezewska E (2011) Polyisoprenoids – secondary metabolites or physiologically important superlipids? Biochem Biophys Res Commun 407(4):627–632PubMedCrossRefGoogle Scholar
  174. Suttle CA (2007) Marine viruses–major players in the global ecosystem. Nat Rev Microbiol 5:801–812PubMedPubMedCentralCrossRefGoogle Scholar
  175. Syed GH, Amako Y, Siddiqui A (2010) Hepatitis c virus hijacks host lipid metabolism. Trends Endocrinol Metab 21(1):33–40PubMedCrossRefGoogle Scholar
  176. Sylvan JB, Toner BM, Edwards KJ (2012) Life and death of Deep-Sea vents: bacterial diversity and ecosystem succession on inactive hydrothermal Sulfides. MBio 3(1):e00279PubMedPubMedCentralCrossRefGoogle Scholar
  177. Syrén PO, Hammer SC, Claasen B, Hauer B (2014) Entropy is key to the formation of pentacyclic terpenoids by enzyme-catalyzed polycyclization. Angew Chem Int Ed 53(19):4845–4849CrossRefGoogle Scholar
  178. Thomas W, Mcreynolds J, Mock C, Bailey D (1974) Ampicillin-resistant Haemophilus influenzae meningitis. Lancet 303(7852):313CrossRefGoogle Scholar
  179. Thomas SAL, von Salm JL, Clark S (2017) Keikipukalides, furanocembrane diterpenes from the antarctic deep sea octocoral Plumarella delicatissima. J Nat Prod 81(1):117–123PubMedPubMedCentralCrossRefGoogle Scholar
  180. Thompson LR et al (2011) Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. Proc Natl Acad Sci U S A 108(39):757–764CrossRefGoogle Scholar
  181. Thornburg CC, Zabriskie TM, McPhail KL (2010) Deep-sea hydrothermal vents: potential hot spots for natural products discovery? J Nat Prod 73(3):489–499PubMedCrossRefGoogle Scholar
  182. Tilburn J, Sarkar S, Widdick DA, Espeso EA, Orejas M, Mungroo J, Arst HN Jr (1995) The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid-and alkaline-expressed genes by ambient pH. EMBO J 14(4):779–790PubMedPubMedCentralCrossRefGoogle Scholar
  183. Tudzynski P, Hölter K, Correia T, Arntz C, Grammel N, Keller U (1999) Evidence for an ergot alkaloid gene cluster in claviceps purpurea. Mol Gen Genet 261(1):133–141PubMedCrossRefGoogle Scholar
  184. Vardi A et al (2012) Host-virus dynamics and subcellular controls of cell fate in a natural coccolithophore population. Proc Natl Acad Sci U S A 109:19327–19332PubMedPubMedCentralCrossRefGoogle Scholar
  185. Vila R, Mundina M, Tomi F, Furlán R, Zacchino S, Casanova J (2002) Composition and antifungal activity of the essential oil of solidago chilensis. Planta Med 68(02):164–167PubMedCrossRefGoogle Scholar
  186. Villegas-Escobar V, Ceballos I, Mira JJ, Argel LE, Orduz PS, Romero-Tabarez M (2013) Fengycin c produced by bacillus subtilis ea-cb0015. J Nat Prod 76(4):503–509PubMedCrossRefGoogle Scholar
  187. Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206PubMedPubMedCentralCrossRefGoogle Scholar
  188. Vuyst LD, Callewaert R, Crabbé K (1996) Primary metabolite kinetics of bacteriocin biosynthesis by lactobacillus amylovorus and evidence for stimulation of bacteriocin production under unfavourable growth conditions. Microbiology 142(4):817–827CrossRefGoogle Scholar
  189. Wang LQ, Wang Y, Gao SY, Zhu H, Wang F, Li H (2017) Phenolic amides with anti-parkinson’s disease (pd) effects from nicandra physaloides. J Funct Foods 31:229–236CrossRefGoogle Scholar
  190. Waris G, Siddiqui A (2005) Hepatitis C virus stimulates the expression of cyclooxygenase-2 via oxidative stress: role of prostaglandin E2 in RNA replication. J Virol 79:9725–9734PubMedPubMedCentralCrossRefGoogle Scholar
  191. Werner RG (1984) Secondary metabolites with antibiotic activity from the primary metabolism of aromatic amino acids. In: Essential and Non-essential metals metabolites with antibiotic activity pharmacology of benzodiazepines interferon gamma research. Springer, Berlin/HeidelbergGoogle Scholar
  192. Williams RB, Henrikson JC, Hoover AR, Lee AE, Cichewicz RH (2008) Epigenetic remodeling of the fungal secondary metabolome. Org Biomol Chem 6(11):1895–1897PubMedCrossRefGoogle Scholar
  193. Wilson WH et al (1996) The effect of phosphate status on the kinetics of cyanophage infection in the oceanic cyanobacterium Synechococcus Sp. Wh78031. J Phycol 32:506–516CrossRefGoogle Scholar
  194. Xu K, Nagy PD (2014) Expanding use of multi-origin sub-cellular membranes by positive-strand RNA viruses during replication. Curr Opin Virol 9:119–126PubMedCrossRefGoogle Scholar
  195. Xu M, Lee EM, Wen Z, Cheng Y, Huang WK, Qian X (2016) Identification of small molecule inhibitors of zika virus infection and induced neural cell death via a drug repurposing screen. Nat Med 22(10):1101–1107PubMedPubMedCentralCrossRefGoogle Scholar
  196. Xu C, Sun X, Min J, Zhang X (2017) A novel benzoquinone compound isolated from deep-sea hydrothermal vent triggers apoptosis of tumor cells. Mar Drugs 15(7):200PubMedPubMedCentralCrossRefGoogle Scholar
  197. Yáñez JA, Andrews PK, Davies NM (2007) Methods of analysis and separation of chiral flavonoids. J Chromatogr B Analyt Technol Biomed Life Sci 848(2):159–181PubMedCrossRefGoogle Scholar
  198. Young DD, Connelly CM, Grohmann C, Deiters A (2010) Small molecule modifiers of microrna mir-122 function for the treatment of hepatitis c virus infection and hepatocellular carcinoma. J Am Chem Soc 132(23):7976–7981PubMedCrossRefGoogle Scholar
  199. Zandi K, Teoh BT, Sam SS, Wong PF, Mustafa MR, AbuBakar S (2011) Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virol J 8(1):560PubMedPubMedCentralCrossRefGoogle Scholar
  200. Zhang Y-Q, Wilkinson H, Keller NP, Tsitsigiannis D (2005) Secondary metabolite gene clusters. In: An Z (ed) Handbook of industrial microbiology. MarcelDekker, New York, pp 355–386Google Scholar
  201. Zhang H, Syed S, Iii CFB (2010) Highly enantio- and diastereoselective mannich reactions of glycine schiff bases with in situ generated n-boc-imines catalyzed by a cinchona alkaloid thiourea. Org Lett 12(4):708–711PubMedCrossRefPubMedCentralGoogle Scholar
  202. Zhang W, Li S, Zhu Y, Chen Y, Chen Y, Zhang H (2014) Heronamides d-f, polyketide macrolactams from the deep-sea-derived streptomyces sp. scsio 03032. J Nat Prod 77(2):388PubMedCrossRefPubMedCentralGoogle Scholar
  203. Zhu H et al (2002) Inhibition of cyclooxygenase 2 blocks human cytomegalovirus replication. Proc Natl Acad Sci U S A 99:3932–3937PubMedPubMedCentralCrossRefGoogle Scholar
  204. Zignego AL, Fontana R, Puliti S, Barbagli S, Monti M, Careccia G (2015) Relevance of inapparent coinfection by hepatitis b virus in alpha interferon-treated patients with hepatitis c virus chronic hepatitis. J Med Virol 51(4):313–318CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.College of Life SciencesZhejiang UniversityHangzhouChina
  2. 2.Key Laboratory of Marine Genetic Resource, Third Institute of OceanographyMinistry of Natural ResourcesXiamenChina

Personalised recommendations